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ON ERROR-CORRECTING CODES AND INVARIANT LINEAR FORMS*

A. R. CALDERBANKf AND P. DELSARTE

Abstract. Given a code C, invariant linear forms are used to study the designs afforded by codewords of
a fixed weight. The most important theorem relating codes and designs is due to Assmus and Mattson [J.
Combin. Theory, 6 (1969), pp. 122-151], and this theorem is extended in different ways. For extremal self
dual codes over the fields :2 and :3, it is proved that the t-designs afforded by the codewords of any fixed weight
exhibit extra regularity with respect to (t + 2)-sets. The same is true for the design afforded by the codewords
of minimum weight in an extremal self-dual code over :4. The invariant linear forms are also used to construct
Boolean designs with several block sizes, extending previous work by Safavi-Naini and Blake Utilitas Math.,
14 (1978), pp. 49-63], [Ars Combin., 7 (1979), pp. 135-151], [Inform. and Control, 42 (1986), pp. 261-
282].
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1. Introduction. We analyze the relationship between linear codes and the designs
afforded by codewords of a fixed weight using invariant linear forms. Given a t-subset x
of the coordinate set [1, n] { 1, 2, n }, let M(x) be the number ofcodewords in
C of weight w with exactly j nonzero entries in the set x. Let Lt be the space of linear
forms in the variables M and let It be the space of invariant linear forms; those linear
forms w,j aw,jM’ for which w, aw,M’(x) is independent of x. The codimension
At(C) of It in Lt, and the space I itself are fundamental to this analysis. The reason is
that, for every weight w in C, the index At(C) determines the regularity with which the
design afforded by the codewords of weight w meets an arbitrary subset of points. For
example, if At(C) 0, then the codewords of any fixed weight form a t-design.

A companion paper 3 considers families of w-subsets ofan n-set within the Johnson
scheme J(n, w) and describes the structure ofthe space of invariant forms in the variables
Mr, j 0, l, under the assumption that the codimension of this space is known.

The usefulness of invariant linear forms as an analytical tool stems from the fact
that the algebraic theory of error-correcting codes provides a great many invariant linear
forms (see Delsarte [7 ], [8] or Goethals [12] and MacWilliams and Sloane I16, Chap.
21 for an introduction to this theory). Section 2 contains all the results that we need
from this theory.

The most important theorem relating codes and designs is the Assmus-Mattson
theorem 2 ]. If C is a linear code satisfying the Assmus-Mattson hypotheses, then the
codewords of any fixed weight form a t-design (At(C) 0). The main result of 3 is
Theorem 3.5, which extends the Assmus-Mattson theorem; the conclusion of Theorem
3.5 is an upper bound on At / 2(C), given the extra assumption that the weights wj in C
satisfy wj w9_ >-- 2 for all j. If C is an extremal self-dual binary code with all weights
divisible by 4, then Theorem 3.5 implies that At / 2 (C) 1. This means that the t-designs
afforded by the codewords of any fixed weight have the extra property of regularity with
respect to (t + 2)-sets. For octads in the Golay code, the extra regularity on 7sets is
expressed in the invariance ofthe 7-form 6My8 + M68. If At + 2(C) 1, then every vector
in I{+ 2 is a multiple ofa single nonzero vector a (a’fm) with integer entries. This vector
allows us to read off the invariant (t + 2)-forms in the variables M’, J 0, + 2.
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We calculate the one-dimensional space I- for the [24, 12, 8] Golay code and for the
48, 24, 12 extended quadratic residue code (or any extremal self-dual 48, 24, 12 code
with all weights divisible by 4).

A second reason for studying the spaces I{ is to construct "Boolean designs with
several block sizes" 14 ], 17 ], 21 ], which are analogous to "Euclidean designs with
several radii" [10 ]. For the [24, 12, 8] Golay code, the 7-form 6M87 + M2 is invariant.
This means that the collection of Golay codewords with weights 8 and 12, where the
octads are taken with multiplicity 6, is a 7-design. We note that, if C is a linear code and
if d’ is the minimum distance in C1, then, for any l < d’, the collection of codewords of
C (all taken with multiplicity is an/-design (in the projection of C onto an arbitrary
/-set, every l-tuple appears the same number of times).

Safavi-Naini and Blake 18 ]- 20 have described methods ofconstructing t-designs
with different block sizes from the supports of codewords in a binary linear code. Their
theory uses the four fundamental parameters of a code described by Delsarte 8 ]. We
extend this theory by exploiting the full distance spectrum of a code, rather than just the
minimum weight and the number of nonzero weights. We also make use of a result
proved in 4 ], which characterizes collections of subsets that satisfy certain 2-term in-
variant forms.

In 5 we use this characterization to derive a strengthening ofthe Assmus-Mattson
theorem (different from that given in 4 under the assumption that C is a binary linear
code for which the first gap in the weight distribution is nontrivial.

In 6 we extend the analysis given in 2-5 to nonbinary linear codes. We prove
that, ifC is an extremal self-dual ternary code, then the t-designs afforded by the codewords
of any fixed weight also have the extra property of regularity with respect to (t + 2)-sets.
For extremal self-dual codes over :4, we prove that the t-design afforded by codewords
of minimum weight exhibits extra regularity on (t + 2)-sets.

In 7 we extend the analysis given for linear codes to nonlinear codes that are
distance invariant. This we do by means of an example: the Nordstrom-Robinson code.

2. Algebraic theory of error-correcting codes. Given an alphabet Rq of q letters,
and given a code C in R, let Ai be the average number of codewords in C at distance
from a given codeword. If C is a linear code over the field :q, then Ai is just the number
ofcodewords in C with weight i. We can apply the MacWilliams transform to the distance
distribution A (Ao, An) to obtain the dual distribution B (B0, Bn), where

n

o AjPi(j)(2.1) B
IC J=

(2.2) Pi() E (-1)J(q 1) i-j
n

j=0 j

is the ith Krawtchouk polynomial. If C is a linear code over the field ]:q, then Bi is just
the number of codewords of weight in the dual code C1, and (2.1) expresses the
MacWilliams identities.

Let Wl d, w2, Ws be those nonzero indices for which Ai 4: 0, and let w’,
w, be those nonzero indices j for which Bj : 0. The annihilator polynomial ()

of C is defined to be

(2.3) a(r)= wi=1

and where
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The parameter s’ is called the external distance of C (it is greater than or equal to the
coveting radius of C), and the parameter w’ (sometimes denoted d’) is called the dual
distance of C.

Below, we expand the shifted annihilator polynomial ma() as a linear combination
of Krawtchouk polynomials:

stWm

(2.4) ’ma(’) Z otnPi()-
i=0

Given a vector z e R, let bi(z) be the number of codewords in C at distance from z.
Delsarte [7] proved that

s’+m I’1, ifm 0,
(2.5) , obi(z)

i= 0 0, otherwise,

and we use this result continually, after changing variables so as to better study the design
properties of codewords of C.

A code C is said to be distance invariant if the number of codewords at distance
from a fixed codeword only depends on i, and not on the particular codeword chosen.
All linear codes are distance invariant. A sufficient condition for distance invariance is
that the number s of distances is at most equal to the dual distance d’ (see Delsarte 7,
Thm. 5.4 ]). For simplicity, we only consider nonlinear codes, over a field alphabet
that are distance invariant and that contain the zero vector. For these codes, the weight
spectrum coincides with the distance spectrum.

Given a t-subset x of the coordinate set [1, n] { 1, 2, n }, let M’(x) be the
number of codewords in C of weight w with exactly j nonzero entries in the set x. Let
L be the space of linear forms in the variables M’, where -< -< s and 0 _-< j -< t. We
are interested in the subspace/t of invariant linear forms; formally,

(2.6)

It aiM’ , aM’(x) is a constant independent of the t-set x
j=0 j=0

The support supp (c) ofa codeword c e C, with weight w, is the set of w coordinates
where the entries of c are nonzero. The design formed by the codewords in C of weight
w is the set of supports of codewords of weight w. IfRq is a field, and if C is closed under
multiplication by nonzero scalars in :q, then we count supports with multiplicity 1/
(q ), since the q scalar multiples of a given codeword have the same support. If
the code C contains two codewords ofweight w with the same support that are not scalar
multiples of each other, then the design will have multiple blocks (blocks with integer
multiplicity greater than ).

Let v0 --< n be the largest integer satisfying

[v0+q-2](2.7) v0- < d,
q-1

where if q 2 we take v0 n. If w =< v0, then two codewords of weight w with the same
support must be scalar multiples of one another. The designs formed by codewords of
C with weight w _-< v0 are simple (that is, all blocks have multiplicity ).

The design properties of the codewords of C are determined by the codimension of
/t in Lt and by the dual space It itself. We begin with a straightforward but important
observation.
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PROPOSITION 2.1. The codewords ofanyfixed weight in Cform a t-design ifand
only ifIt Lt. We emphasize again that when we speak oft-designs, we mean to allow
t-designs with multiple blocks.)

When q 2, then, for any m, t, we obtain invariant linear forms
st+m

(2.8) , a’ , M’’ It
i=0 l,j

w! +t 2j

directly from (2.5). When q 4: 2, we obtain invariant linear forms in the variables M)i
by summing (2.5) over all vectors z e : with support x: We obtain

(2.9) b;(z)= M’(x)(l,.l(q-2)b

Wr,l b \vl
supp (z) x wr+ 2/+ b

n is a vector with supp (z) x, andby counting in two ways the pairs (z c) where z e :q

c e C is a codeword with d(z, c) (the weight wt(c) Wr, Isupp (c) N xl l, and
l b nonzero entries of z and c agree).

The most important theorem relating codes and designs is the Assmus-Mattson
theorem, given below. Our statement of this theorem differs from statements given else-
where (for example in 2 ], 5 ], and 16 ). In the other versions ofthe Assmus-Mattson
theorem, the conclusion applies only to codewords c e C with weight wt(c) <= Vo, where
v0 is defined in (2.7). The extra condition appears when the authors of 2 ], 5], and
16 ], when referring to t-designs, wish to exclude t-designs with multiple blocks. Since
we mean to allow t-designs with repeated blocks, we may omit the extra condition.

THEOREM 2.2 (Assmus-Mattson). Let C be a linear n, k, d] code over :q, where
the weights ofthe nonzero codewords are wl d, w2, Ws. Let w’, w’2, W’s, be
the nonzero weights in C+/-. Let be the greatest integer in the range 0 < < d such that
there are at most d- weights w with 0 < w <= n t. Then the codewords ofany weight
wi in Cform a t-design.

In later sections, we need the coefficients of ’J, ’J-l in the Krawtchouk polynomial
P(g’). It can be shown that

(-q)
(2.10) coeff (P(g’))

j!

(2.11) coeffj (ej(’))
(-q)-’ { (q- 2)(j- 1)}(j- 1)i (q- 1)n-

2

where coeff (p(’)) denotes the coefficient of 4 in the polynomial p(’). For q 2, we
also need the identity

(--2)J -2
(2.12) coeff_2 (P(’))

24(j- 2)!
{12n(n- 1) + 8(j- 2)}.

3. Binary codes and invariant linear forms. In this section, we consider binary linear
codes, and we begin by using invariant linear forms to prove the Assmus-Mattson theorem
(in the case where q 2). Actually, we prove slightly more.

THEOREM 3.1 (Assmus-Mattson). Let C be a binary linear n, k, d] code, where
the weights ofthe nonzero codewords are w d, w2, w,. Let w’, w’2, Ws, be
the nonzero weights in C+/-. Let be the greatest integer in the range 0 < < d such that
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withO< < d tor d t+there are at most d- weights wi wi=n-t. Then s’ s’
1, and the codewords in C ofanyfixed weight wiform a t-design.

Proof. We prove that s’ d- or s’ d- + by proving that there are no
codewords in C+/- with weight w satisfying n < w < n.

Suppose that w], 4: n. Let s’ d + and suppose that > Then Ws n
+ g, where g >- l. We apply (2.5) to an arbitrary (t -/)-set x and obtain

f ct_, ifZ(t- l) _-< d,
(3 1) lmdt_ l( X)t+

1, otherwise.

The two possibilities in (3.1) correspond to d(x, 0) _-< d- + and d(x, 0) > d- +
l. Since a- t+t 4:0 (the degree ofthe annihilator polynomial is d- + l, and the degree
of the Krawtchouk polynomial Pi() is i), it follows that the codewords in C of weight
d form a (t /)-design. Since g >_- l, the codewords of weight d also form a (t g)-
design. Let c be a codeword in C+/- with weight w], n + g and let x be the comple-
mentary (t g)-set. Since M(x) 4:0 for all 0, g, there exists a codeword
y e C, for which the inner product (y, c) satisfies (y, c) (mod 2 ). This is impossible;
hence 0 and s’ d- t.

Suppose that ws, n. Let s’ d + and suppose that > 2. Then Ws,_

n + g, where g >_- 1. We apply (2.5) to an arbitrary (t + )-set x and obtain

fl-_z+,, ifZ(t-l)<d,
(3.2) Mat_ (x)t+l- l+

1, otherwise

(since w, n, it follows that w2 > d + 2). We must prove that (3.2) is not identically
zero. It follows directly from the definition of the annihilator polynomial that

t+l-1 (2W} n)
O-t+ i= d-t+l

(as above,

_
/

g= 0). Since w_ /

_
n w, we have that

(3.3) -t+-i no-+d(d + l),

and, in particular, -t/- g= 0. Now it follows from (3.2) that the codewords in C of
weight d form a (t g)-design. Given a codeword c e C with weight w’,_ n + g,
the above argument produces a codeword y C for which (y, c) (mod 2). This is
impossible; hence and s’ d- + 1.

Given Proposition 2.1, we must prove that It L, or, equivalently, that I { 0 }.
’,= n) ornoteven(ws g=n) WeLet 0 or 1, according to whether C is even (w

apply (2.5) to an arbitrary t-set x and obtain_
Mf(x)= {1- " if2t_-<d+,

1, otherwise

(where ,% g= 0), so that the codewords in C ofweight d form a t-design. It follows that
the space L of invariant linear forms contains the triangular system

-- J
j=0,,...,.

Hence the restriction L[Mf; j 0, 1, t] of the space I to the variables Mr, j 0,
1, .-., is full, and/?[M; j 0, , ..., t] {0}.
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It is important to observe that, if It [Mt] { 0 }, then M;’ It, and so the codewords
in C of weight wt form a t-design. We then have that

f=J J M’elt forj=0, 1, ,t,

from which it follows that I{[M"; j O, 1, ..., t] { 0 }.
Now suppose that It # Lt. Then there exists e >- 2 such that I{[M’] , and

I{[M"; j O, 1, ..., t and l < e] {0 }. We apply (2.8) with m We d to an
arbitrary t-set x and obtain the invariant linear form

(3.5) a? M)’ + aw-
i=0 O_j_t

l<e
wt+ 2j

where awm,_t # 0. However, this contradicts the assumption that I[M’] # { 0 }. Hence
It tt, and the proof is complete.

This is certainly not the shortest available proof of the Assmus-Mattson theorem.
However, it serves to introduce the viewpoint that the best way to study the design
properties of codewords is through the invariant forms (2.8) and (2.9), provided by the
algebraic theory of error-correcting codes.

DEFINITION 3.2. Given a code C, we define the index A (=Am(C)) by A
dim Lm) dim Im).

The indices Am and the spaces Im are fundamental to this study of the relationship
between codes and designs. IfC satisfies the hypotheses ofthe Assmus-Mattson theorem,
then the index At(C) equals zero, and the codewords ofany fixed weight form a t-design.
Sometimes these t-designs have the extra property that certain linear forms are constant
on/-sets, for some 1 > t. This extra regularity is determined by the index At(C) and by
the space I itself. Linear forms defined over/-sets will be called/-forms.

A companion paper 3] considers w-subsets of an n-set (the Johnson scheme
J(n, w)) and describes the structure ofthe space ofinvariant/-forms under the assumption
that the codimension ofthis space is known. What is remarkable about codes C satisfying
the hypotheses of the Assmus-Mattson theorem is the simultaneous existence of s in-
teresting spaces of forms (one space for each nonzero weight in C), each with codi-
mension no more than At(C), and all linked together by the Krawtchouk coefficients
aT’. This interaction between the Hamming and Johnson schemes is still mysterious.

Ofparticular interest is the case where the index At(C) equals 1. In this case, vectors
in I are multiples of single vector a with integer entries a. Given a weight Wm in C,
the linear form

(3.6) a’M"(x)- a"’M’_(x)

is independent of the/-set x. Furthermore, if a ’J > 0 and a,m < 0, then the linear form

1t/l’Wm WmMW(3.7) atj (x)- at t(x)
is independent of the/-set x. In this case, consider the collection f of codewords in C
with weight w or Wm, where codewords ofweight Wm are taken with multiplicity a, and
codewords ofweight w are taken with multiplicity -am. Then f is an/-design with two
different block sizes. If a, a}m have the same sign, then we can still construct an/-design
fl if we are willing to assign a negative multiplicity to codewords of a particular weight.

LEMMA 3.3. Let C be a binary linear [n, k, d] code, where the weights of the
nonzero codewords are w d, w2, w. Let w’, w’, Ws, be the nonzero weights
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in C+/-. Let be the greatest integer in the range 0 < < d such that there are at most
with 0d- weights w w n t. Then

(l) At/2(C) dim (I/2[M2, M’ m 1, s]);
ifws n, then

Wm(2) A.2(C) dim (I.2[M.2, M, Wm n/2J]).
w w =0, form=l sProof. Let a (a) e I. 2 and suppose that at. 2 at.

The Assmus-Mattson theorem provides invafiant linear fos-- /j

Hence a 0, and this proves pa (1). To prove pa (2), we obsee that, if w n,
then we have the invafiant forms

Mm_- MTm_-In the example that follows, we calculate the space I for the 24, 12, 8 Golay
code. Since we use (2.8) to produce invafiant forms in I7, we must be able to calculate
the achouk coecients a. The achouk recuence (for q 2)

(3.8) (i +
provides the recursion

(3.9) 23 =-(n- 1)a+ na-- ial for m 1.

Example 3.4. Here C is the [24, 12, 8 Golay code. The annihilator polynomial
a(f) is ven by

3.10
i=0

Since C satisfies the hypotheses ofthe Assmus-Mattson theorem Mth 5, the codewords
in C of any fixed weight N form a 5-design, and we have the invafiant linear fos

(3.11) (f)z= J
Mr,, j=0,...,5.

The matrix .4 of coefficients is given by

(3.12)

j\f 7 6 5 4 3 2 0

21 6
35 15 5
35 20 10 4
21 15 10 6
7 6 5 4

3
3 2

and is independent of the weight wt. The solutions x [xT, x0] to the equation
.4xr 0 form a two-dimensional space V, which we may parametrize as

(3.13) V- {x7(1, 0,-21, 70,-105, 84,-35, 6) + x6(0, -6, 15,-20, 15,-6, 1)}
or as

(3.14) V= {Xo(6,-35, 84,-105, 70,-21, O, 1) + x(1,-6, 15,-20, 15,-6, 1, 0)}.
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We prove that every vector in I is a multiple ofa single nonzero vector with integer
entries. Let a (a) e I and let aw (a7t, a’t). Since a78 4:0 (the octads in the
Golay code do not form a 7-design), we may multiply through to obtain a78 1.

We apply (2.8) with m 0 and obtain the invariant 7-form

0 0 8a3M6 M78 + M68.Ot 1M7 +

Since a 8 e V is orthogonal to 1, 1, 0, .-., 0), we have that

(3.16) a 8 1, 1, 15, 55, -85, 69, -29, 5).

Since the codewords in C of weight 16 are the complements of the codewords of
weight 8, we have the invariant 7-form M6 4- M6. Since a 16 V is orthogonal to
(0, 0, 1, ), it follows from (3.14) that

(3.17) a 16 Y16(5, -29, 69, -85, 55,-15,-1, 1)

for some constant Y6- Since the 7-forms M M6_
j., j 0, 7 are invariant, we

have YI6 1.
Since codewords in C of weight 12 come in complementary pairs, the 7-form

M72 M2 is invariant. Thus a 12 e V is orthogonal to 1, 0, 0, -1 ), and so

(3.18) a 2 Y2( 1, -5, 9, -5, -5, 9, -5,

for some constant Y2. Next, we calculate the Krawtchouk coefficients a using the re-
currence (3.9) and obtain

35 -5
a=al=a=0, a3=--, a=0, a= 12.

We apply (2.8) with rn and obtain the invariant 7-form 21M M M2. Since
this form is orthogonal to a (a)’), we have that

2 a6 a a7
2 -6 Y12 0,

so that Y2 -6. We have now shown that every vector in I is a multiple of the vector
a (a)), given below:

(3.19)

wt\j

8
12
16
24

7 6 5 4 3 2 0

-1 -15 55 -85 69 -29 5
-6 30 -54 30 30 -54 30 -6
5 -29 69 -85 55 -15 -1
0

Note that every column of(3.19) sums to zero. The 7-forms M + M)2 + M)6,
j 0, ..., 7 are invariant because, in the projection of the Golay code C onto an
arbitrary 7-set, every 7-tuple appears 32 times.

Consider the collection ft of codewords in C with weight 8 or 12, where codewords
of weight 8 are taken with multiplicity 6, and codewords of weight 12 with multiplicity
1. Since 6M78 + M2 I7, the collection 2 is a 7-design (with 7 6).
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Let C be a binary linear code satisfying the hypotheses of the Assmus-Mattson
theorem. Suppose that wj wj_ 2 for all j. Let

(3.20)

(3.21)

(3.22)

"t,(C) I{jlwj wj_, + 2}1,
4(C) l{ li <= s’ and there exists a weight wj in C such that

i= wj- t- 2ori= wj- t}l,
if co 0 for all -< s’ for which there exists
a weight w in C such that wj- t- 2 or w- t,

otherwise.
e(c) I o,

1,

THZORZM 3.5. Let C be a binary linear n, k, d] code, where the weights of the
nonzero codewords are w d, w2, Ws. Let w’, w’2, w, be the nonzero weights
in C+/-. Let be the greatest integer in the range 0 < < d such that there are at most
d- weights w with 0 < w <-_ n t. Suppose that wj wj_ >= 2 for allj. Then

A, + 2(C) =< (C) + (C) (C).

Proof. If At+ 2(C) > 4(C) + 3"(C) e(C), then there exists a (am) 4:0 in
I{+2 such that a 0 if either (i) Wm-S <- s’, wherej + or / 2, or (ii)j +
and Wm/ Wm + 2. The Assmus-Mattson theorem provides the invariant (t + 2)-forms

(3.23) m j=O,...,t.
f=s J

It follows that, if Wm- 2 <= s’, then avm 0 for all j 0, ..., t + 2. Let e be the
greatest integer, with e >= 2, such that

a=0 forl<e and j=0,...,t+2.

We apply (2.8) with m We s’- 2 to obtain an invariant (t + 2)-form

(3.24) c + o__M+,
i= 0_-<j_-<t+2

wl+ t+ 2- 2j=

where o g= 0. Since (3.24) is orthogonal to a, we have that a/ 0. If We+We--t--2
w 0, and it follows from (3.23) that a’ 0 for allw + 2, then, by definition, a/l

j 0, + 2. Since this contradicts the definition of e, we have that w+ g=
We + 2. Next, we apply (2.8) with m We s’ to obtain an invariant (t + 2)-form

(3.25) o M" + oz__M+ + _M+.
i= 0-<_j_t+2

l<e
wt+ + 2- 2j=

WeSince (3.25) is orthogonal to a, we have that at+l 0, and again it follows from (3.23)
that a 0 for all j, contradicting the definition of e. Hence At+ 2(C) =< 4(C) +
3’(C) e(C), as required.

Given a binary code C with At(C) 1, then, for any weight Wm in C, there is an
invariant/-form

(3.26) a_m M amMV[_
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The invariant forms that appear in (3.26) are far from arbitrary. To be more specific,
we need a little representation theory of the symmetric group (see Calderbank, Delsarte,
and Sloane [4] for more details).

Let f be the set of w-subsets of the n-set 1, n { 1, 2, n } with w =< n / 2 J (if
w > [n/2 J then take complements). We sometimes identify f with the set of all points
(]) (I)1, (])n) that satisfy Sp e { 0, }, for all p, and Z )p W. The space Re,
consisting of all mappings from fl to R, is invariant under the natural action of the
symmetric group Sn. The irreducible Sn-invariant subspaces of Re are the harmonic
subspaces harm (i), 0, 1, w, and we begin with a brief description of these
subspaces.

First, we define the homogeneous space hom(i) to be the set of functions f: f -R represented by homogeneous polynomials f(z) f(z, zn) of total degree and
degree -< in each variable zp. The monomials zp...zpi are linearly independent, and
so hom (i) is an (7)-dimensional vector space over R. The harmonic space harm (i) is
the subspace of hom (i) containing all functions fthat satisfy the "Laplace equation"
Af(z) 0, where the differential operator A is given by

zXf(z) E Of(z)

p=l OZp

The harmonic space harm (i) is the eigenspace of degree of the Johnson scheme
J(n, w) (see Dunkl [11] and Delsarte [9]). We have the orthogonal decomposition

hom (i) harm (i) hom (i ),

with respect to the inner product (f, g) Xon f(b)g($), from which it follows that
the dimension of harm (i) is (7) (i-1).

If k is an Sn-invariant subspace of R e, then we can write

3.27 , ] harm (i),
iT

where T is a well-defined subset of { 0, 1, w }, and denotes the orthogonal sum.
Next, consider a nonempty subset 3 of f. A subspace b ofR u is said to be a-regular

if it satisfies

I1(3.28) (r(),f) - (r(f),f) for all fe ’,

where r( is the characteristic function of a subset of f. Since r(fl) is the all-one
function (which spans harm (0)), the inner product ( r( f),f) vanishes for all fe harm (j)
withj >= 1. If k is S-invariant and 8-regular, then it follows from (3.27) and (3.28) that
we have that

(3.29) (r(),f> 0 for all f harm (j) withj T,j # O.

In other words, is a T-design, as defined by Delsarte in [9]. When 0 e T, a T-design
is defined to be a T’-design with T’ T\ { 0 ). Delsarte [9 proved that a classical t-
design is a T-design, with T { 1, ..., t }. Note that, when 0 g T, then (3.29) means
that

r() e harm (i).
ict T

The above argument (used in both directions) shows that the concept of a T-design
is equivalent to that of an S,-invariant -regular subspace of.



ON ERROR-CORRECTING CODES AND INVARIANT LINEAR FORMS

Given a subset of ft and an integer with -< l =< w, let us suppose that the linear
form

(3.30) bM(x) + b’M’_ (x)

is independent of the/-set x. With the/-set x {p, ..., Pt }, we associate the function

fx(Cb) b4p,4p"’4,t + b’[(1 4p,)bp’. "4p, + + (1 p,)Op,...p,_,],

which represents (3.30). Calderbank, Delsae, and Sloane [4] proved the following
theorem by analyzing the harmonic decomposition of the linear space ff spanned by the
functions (for all/-sets x).

THEOREM 3.6. Let be a nonempty collection of w-subsets of the n-set
{ 1, 2, n }. Given an Lset x, suppose that there exist real numbers b, b’, c, not all
zero, such that

bM(x) + b’M_ (x) c

for all l-subsets x of { 1, 2, n }. Then

is an { l}-design ifb lb’,

is an {l- 1}-design ifb lb’.

In particular, if is not an { l }-design, then is an { l}-design.
Note that, if is an (l 2)-design that satisfies the hypotheses of Theorem 3.6,

then either is an (l )-design, in which case

(3.31) M + IM_ It,

or is a { 1, 2, 2, } -design. Calderbank, Delsae, and Sloane 4 proved that
is a { 1, 1 2, }-design if and only if

(3.32) [l(w (n 2l + 2)]M + (w )M_ e Iz.
We now specialize these results to bina linear codes C that satisfy the hypotheses of
the Assmus-Mattson theorem.

COROLLARY 3.7. Let C be a binary linear n, k, d] code, where the weights ofthe
nonzero codewords are w d, w2, w. Let w, w, Ws, be the nonzero weights
in C. Let be the greatest integer in the range 0 < < d such that there are at most
d- weights w with 0 < w n t. IfAt + 2(C) 1, then, for any weight Wm in C with
Wm [n /2 J, either

The codewords ofweight Wm in Cform a (t + )-design, and

(3.33) (t + 2)Mr+2 + Mt+ elt+2, or

(2) The codewords ofweight Wm in Cform a { 1, t, + 2 }-design, and

Mt+2 + (Wm- t- 1)mt It+2.(3.34) [(t+2)(Wm-t- 1)-(n-2t-2)] w

Remarks. If Wm is a weight in C with Wm > [n/2 J, then either the codewords
of weight Wm in C form a (t + 1)-design and 3.33) holds, or

(3.35)

[(t+2)(n-Wm-t- 1)-(n-Zt-2)]M+(n-wm-t- 1)MeL+2.

(2) If At + 2(C) 1, then vectors in I{+ 2 are multiples of a sine nonzero vector
a (a)th integer entries. These entries are deteined by the achouk expansion
of the annihilator polynomial, which is, in turn, determined by the weights w in the
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dual code C1. Corollary 3.7 implies that there are just two possibilities for the space
ItS+ 2[M)Vm; j 0, 1, + 2 ]. We conjecture that it is possible to use this restriction
to classify the parameters of codes satisfying the hypotheses of the Assmus-Mattson
theorem, for which At / 2 (C) 1.

Example 3.8. Here 3, and C is the 16, 11, 4 extended Hamming code. The
weight distribution of C is

Ao A16 1, A4 A12 140, A6 Ao 448, A8 870,

and the Krawtchouk expansion of the annihilator polynomial is given by

oz(’)=2’ 1-g =Po(f)+Pl(’)+P(f).
By Lemma 3.3, we can calculate the index A(C) from the restriction of the spaces L,
I5 to the variables M’, M’. Since the 5-forms M’ M:- are invariant, we can, in
fact, calculate zX(C) by restricting to the variables M44, M5, M4, M, M4. First, we
calculate the achouk coecients using the recuence (3.9), shown below-

105 -3
(3.36) a=a=0, al- a=

8 8

Since C satisfies the hypotheses of the Assmus-Mattson theorem with 3, the
codewords in C of any fixed weight wt form a 3-design. The matrix A of coefficients
appearing in the invafiant 5-forms (3.23) is given by

(3.37)

j\f 5 4 3 2 0

10 4
10 6 3
5 4 3 2

and is independent of the weight wt. The solutions x [xs, x0] to the equation
Ax 0 form a two-dimensional space V, which we may parametrize as

(3.38) V= {xs( 1, 0, -10, 20, -15, 4) + x4(0, |, -4, 6, -4, }
or as

(3.39) V= {x0(4, -15, 20, -10, O, 1) + x(1, -4, 6, -4, 1, 0)}.
Let a (a) be a nonzero vector in I3 and let aw (a’, a). Since the

codewords in C of weight 4 do not form a 4-design, we may assume that

(3.40) a4 y4(0, 1,-4, 6,-4, 1)

for some constant Y4. Since codewords of weight 8 come in complementary pairs, the 5-
form M8 Mo is invariant, and

(3.41) a Y8( 1, -3, 2, 2, -3,

for some constant Y8. Finally, we write

(3.42) a6 Y6( 1, 0, -10, 20, -15, 4) + y(0, 1, -4, 6, -4,

for some constants Y6, Y. Note that aj.w a6__-)w, since the 5-form M’( M6-w is
invariant.
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Now we apply (2.8) and (3.36) to obtain the following system of invariant linear
forms:

(3.43) M44 + M65,

These invariant 5-forms are orthogonal to a, and so we obtain

(3.44) Y6 Y4, Y Y8 + 4y4 0.

It follows that A5 =< 2 and that any vector in I is a linear combination ofthe two vectors
given below:

4
6
8
10
12
16

5 4 3 2 0 wtj

0 0 0 0 0 0 4
0 -4 6 -4 and 6

-1 3 -2 -2 3 -1 8
-4 6 -4 0 10

0 0 0 0 0 0 12
0 16

5 4 3 2 0

0 -4 6 -4
-1 0 10 -20 15 -4
4 -12 8 8 -12 4

-4 15 -20 10 0 -1
-4 6 -4 0

0

The collection of codewords in C with weights 8 and 10 is a 5-design with X5 39,
and the collection of codewords in C with weights 6 and 12 is a 5-design with X5 26.

4. Extremal binary self-dual codes. Let C be an extremal binary self-dual [n, n/2,
41n/24J + 4] code and let 1, 3, or 5, according to whether n 16, 8, 0 (mod 24).
Then the Assmus-Mattson theorem implies that the codewords in C of any fixed weight
form a t-design. For a list of the known extremal codes, see Conway and Sloane [6,
p. 194].

COROLLARY 4.1. Let C be an extremal binary self-dual n, n/ 2, 4[n/24J + 4 code
and let 1, 3, or 5, according to whether n 16, 8, 0 (mod 24). Then A + 2(C) 1.

Proof. We apply Theorem 3.5; we have that 3’(C) 0, (C) 2, and e(C) 1,
since a_

_
na t+l/(d-t+ 1)4:0(see(3.3)) HenceA+2(C)=<

Now we can apply Corollary 3.7 to the extremal self-dual codes of lengths 24 and
48 (with 5), to extremal self-dual codes of lengths 32, 56, 80, and 104 (with 3),
and to extremal self-dual codes of lengths 16, 40, 54, 88, and 136 (with ).

We conclude this section by computing the space I$ for any self-dual [48, 24, 12
doubly even code.

Example 4.2. Here 7 and C is the 48, 24, 12 extended quadratic residue code
(or any extremal self-dual [48, 24, 12] code). Again, AT(C) 1, and vectors in I$ are
multiples of a single nonzero vector a (a)Vm). The weight distribution of C is

A12 A36 17296, A16 A32 535095, A2o A28 3995376, A24 7681680

(see Mallows and Sloane 15 ), and the integrality conditions exclude the possibility that
the codewords in C of some fixed weight Wm form a 6-design. Hence AT(C) 1, and
Corollary 3.7, part (2) applies. Every vector in I is a multiple ofa single nonzero vector
with rational entries. Let a (a) e I, and let a wt (aTt, a). Since
a2 4:0 (the vectors ofweight 12 in C do not form a 7-design), we may multiply through
to obtain a7

2 1. (Since we choose the normalization a2 1, we cannot assume that
a has integer entries.)

For w 12, the vector a 2 is in the two-dimensional space V given in (3.13) and
(3.14). Here (3.34) provides the invariant 7-form M2 h- M2 so that a 12 is orthogonal
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to 1, 1, 0, ..., 0). Hence

(4.1)
a- 1,-1,-15, 55,-85, 69,-29, 5),

a 36 (5,-29, 69,-85, 55,-15,-1, 1).

For wt 16, (3.34) provides the invariant 7-form 17g6 + 5M6 and so

a 6 y6(5,-17, -3, 95, -185, 165, -73, 13),
(4.2)

a y( 13, -73, 165, 185, 95, -3, 17, 5)

for some constant Y6.
For w 20, (3.34) provides the invariant 7-form 31 M27 + 7M, and so

a2 Y2o(7, -31, 39, 25, -115, 123, -59, 11),
(4.3)

a 28 Y2o( 11, -59, 123, -115, 25, 39, -31, 7)

for some constant Y2o.
Finally, for wt 24, symmetry (aj2.4 a274_ j) gives

(4.4) a24 Y24( 1, --5, 9, -5, -5, 9, -5, 1)

for some constant Yz4.
Since the minimum weight in C (=C) is greater than 7, every 7-tuple occurs a

constant number of times in the projection of C onto an arbitrary 7-set. This means that
the linear forms

7

(4.5) M, j 0, 1,..., 7,
/=1

are invariant, and hence

(4.6) 3;24 =-6- 18y16- 18y2o.

It remains to calculate Yl6 and Y2o.
The Krawtchouk coefficients a are as follows:

5
ao=a=a2=a= 1, a4=27 z. 54"

For simplicity, we work with the coefficients/3im that are obtained from the aT’ by cleating
denominators and removing common factors (this does not change the space 17, which
is closed under scalar multiplication). Thus

/3=/3 =/3=/3=54, /34= 10, /35=/3=/3=6, /38= 1.

Below, we calculate the coefficients/3 using the recurrence (3.9)"

/3=/31=/3=0, /3= 1980, fl=0, /3=-20,

3=0, t=205, /3=0, and t3=-9.
We apply (2.8) with rn and obtain the invariant linear form

-20M2 + 205M2 9M2 9M6 17.

Since this form is orthogonal to a (ajW), we have that

-20a2 + 205a2 9a2 9a6 -90 45y6 0,
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so that Yl6 -2. Below, we calculate the coefficients/3, by iterating the recurrence
(3.9):

-4931435520,

7632595080,

-5893240320,

2459153565,

-868612800,

729050435,

-639907200,

341853110,

-99955200,

9444042,

3957120,

-1707255,

285120,

-19305.

We apply (2.8) with m 5 and obtain the invariant linear form

flM.2 q_ f15 i,r12 5 lr12 M,2 5 i12

(4.7) + 5 16 M6 5 16
9 7 + # + 3

+ #5 20
13 7

Since (4.7) is ohogonal to a, we have that Y0 5. By (4.6), we have that Y24 --60,
and the vector a (at) is completely determined as follows:

Wm\j

12
16
20
24
28
32
36
48

7 6 5 4 3 2 0

-1 -15 55 -85 69 -29 5
-10 34 6 -190 370 -330 146 -26
35 -155 195 125 -575 615 -295 55

-60 300 -540 300 300 -540 300 -60
55 -295 615 -575 125 195 -155 35

-26 146 -330 370 -190 6 34 -10
5 -29 69 -85 55 -15 -1
0

Let fl[P2, ,/936] be the collection of codewords in C with weights 12, 36 and
where codewords of weight wt are taken with multiplicity Pt. If

P2 lOP6 + 35P20 60P24 + 55P28 26P32 + 5P36 O,

then [PI2, P36] is a 7-design. In particular, t2[10, 1, 0, 0] is a block design
with two block sizes and 7 85.

5. Strengthening the Assmus-Mattson theorem. If C is a code that satisfies the
hypotheses ofthe Assmus-Mattson theorem, and if there is a nontrivial gap between the
first two weights in C, then we can strengthen the conclusions of that theorem.

THEOREM 5.1. Let C be a binary linear n, k, d] code, where the weights of the
nonzero codewords are w d, WE, Ws. Let w’, ws, be the nonzero weights in
C+/- Let be the greatest integer in the range 0 < t < d such that there are at most d

’with 0 < <weights w w n t. Let 6 0 or according to whether C is even or
not even.

Suppose that w2 > d + 2 6. Then either
d-t

(1) wf--i=1

(d- t) (3n2 + (d- t + 1)(3n- 2(d + 2t + 2)))
12

(2) the codewords in C ofanyfixed weight wiform a t + )-design.

or
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Proof. Suppose that the codewords of weight d form a (t + )-design. Then
ItX+[Mja.; j 0,..., + 1] {0}. For 2, 3,..., we apply (2.5) with m w;-
s’ to an arbitrary (t + )-set and obtain ItX+ [M { 0 }. Hence I+ { 0 },
and the codewords in C of any fixed weight wi form a (t + )-design.

Suppose now that the codewords of weight d do not form a (t + )-design. If 6
1, then s’ d- t, and applying (2.5) with m 0 to an arbitrary (t + )-set x gives

(5.2) a_ M at. { 1, if d < 2t + 1,
t- (x)=

1-at+, ifd_2t+

(if c e C satisfies d(c, x) -< d 1, then wt(c) d or c 0). It follows from (5.2) that
d >= 2t + 1, at+ and a_t- 0. We now apply (2.5) with m 0 to an arbitrary
(t + 2)-set x and obtain the invariant (t + 2)-form

(5.3) t- 2 1,

which is nonzero, since a-t :b O. By Corollary 3.7, we must have that

(5.4)
a,--2 (t + 2)(d- t- 1) (n 2t 2).
a_ d-t-

otherwise, the codewords of weight d form a (t + )-design.
If 6 0, then s’ d- + 1, and applying (2.5) with m 0 to an arbitrary

(t + )-set x gives the invariant (t + )-form

(5.5)

_
_,M+ +

_
+t,

which is nonzero, since aI_ t+l 5/= 0. The Assmus-Mattson theorem implies that the
codewords of weight d form a t-design, and so the (t + )-form

(5.6) (t + 1)Mta+ + Mta

is invariant. Since the codewords of weight d do not form a (t + )-design, the (t + )-
forms (5.5) and (5.6) are proportional, and so

O/t- t-(5.7) a_t+l (t + 1).

It remains to verify that (5.1) is equivalent to (5.7) when 6 0 and that (5.1) is
equivalent to (5.4) when di 1. We do this by equating coefficients of -d-t-6-1 in the
Krawtchouk expansion of the annihilator polynomial a(’) as follows:

d-t+l-6

( )
d-t+l-6

(5.8) a(’) 2"- I-[ ae().
i= Wi i=0

It follows from (2.10) that

(5.9) (d- + )!2 n-k
o.

1-6aa-t+ 2a-t+,-6 1-i/a-{+.= -6 wi’

and it follows from (2.10 ), (2.11 that

a_t_6 Yia---+’-6 2w n
_

d-t+ 1-t+l-6

n
if6 O,

d-t+l’

O, if6= 1.
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Given (2.10)-(2.12), we equate coefficients of -d-- in (5.8) and obtain

(_2)d-t- l-b

a]-,-1-b
(d- t- 8)!

+ O/]--t+ l--b 24(d- t- 8)!
{12n(n 1) + 8(d- t- 8)}

2"-*c(,i<j W} Wj)(--1 )d-t-l-b

We use (5.9) to rewrite (5.11 as

t- l-b "- na t-b + a t+ l-b {12n(n 1)

4(Zi<j W t++ 8(d- t- 8)}/24
(d-t+ 1-6)(d-t-6)

(5.12)

[[(t + 2)(d- t- 1)- (n- 2t- 2)]/(d- t- 1)t-l-b__

Ol-t+ l-b l + 1,

Now

(5.13)

and by (5.10) we have that

2 WiW"j W
i<j

n2(d + 2) 2

(5.14) 4

d-t+ l-b

w
i=1

d-t, Wi --/7 2, if6=O,
i=1

n2( d t)2 , wi, if6= 1.
4 i=1

if6= 1,

if6 O,

We obtain (5.1) by substituting (5.10), (5.13), and (5.14) into (5.12).
Remarks. If we take n 4m + 2 and assume C to be the code spanned by the

blocks { 1, 2m + }, { 2m + 2, 4m + 2 }, then C satisfies the hypotheses of
Theorem 5.1 with 1. In this case, (5.1) reduces to the identity

2m 2m

w; =4’2 i2=4.2m(2m+ 1)(4m+ 1).
i=1 i=1 6

In this case, the codewords of minimum weight d 2m + do not form a 2-design, so
(5.2) must be satisfied.

(2) Let C be a binary self-dual [24u, 12u, 4u + 4] doubly even code. Suppose that
all multiples of 4 in the range [4u + 4, 20u 4 occur as weights in C; that is, W’l
4u + 4,..., W’au-1 20u 4, and W’au 24u. Then C satisfies the hypotheses of
Theorem 5.1 with 5. In this case, (5.1) becomes the identity

an-1 5u--I I ],2 (5u- 1)5u(10u- 1) u(u+ 1)(2u+ 1)a Wi Z (4i)2= 16
i=l i=u+l 6 6

6. Nonbinary codes. In this section, we generalize the results obtained in 3 to
nonbinary codes, starting with Theorem 3.5. The parameters 3’(C), b(C), and e(C) are
defined in (3.20)-(3.22).
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THEOREM 6.1. Let C be a linear [n, k, d] code over q, where the weights ofthe
nonzero codewords are w d, WE, Ws. Let W’l, Ws, be the nonzero weights in
C+/- Let be the greatest integer in the range 0 < < d such that there are at most d t
weights w with 0 < w <- n t. Suppose that wj- wj_ >= 2 for all j, and that either

(1) WE- t- 2 >-_s ’, or
(2) w2- t- 2 s’- and as,_ 4: -(t + 2)(q- 2)a,.

Then At+ 2(C) _-< 4(C) + "v(C) e(C).
Proof. If At+ 2(C) > ok(C) + 3’(C) e(C), then there exists a (a)TM) 4:0 in

I{+ 2 such that a 0 if either (i) wt-j _-< s’, where j + or t + 2, or (ii)j +
and wt+ wt + 2. Following the proof of Theorem 3.5, let e be the greatest integer,
with e >_- 2, such that a 0 for ! < e and j 0, + 2.

Let x be any (t + 2)-set, and let z e : be a vector with support x. If We 2 >=
s’, then we apply (2.5) with m We- 2 s’ and obtain

m b z(z)(6.1) otbi(z) + Otw-t-2 We--t--
i<We-t-2 0, ifm 4: 0,

=]/= 0o NOWwhere a We-- 2 s’

(6.2) , bwe-t-2(z) MtW-z(X),
supp (z) x

since (6.2) just counts pairs (z, c), where c e C is a codeword that agrees with z on x
supp (z). Therefore (6.1) yields the invariant (t + 2 )-form

(6.3) ew,,M) + Otwe_t_2Mt+ 2.
l<e

j_t+2

WeSince (6.3) is orthogonal to a, we have that at+ 2 O.
If We 2 s’ 1, then we apply (2.5) with m 0 and obtain

(6.4)
i<We--t--2

Now

(6.5)
supp (z) x

(OtOs,_lbwe_t_2(Z) h- Ots,bwe_t_(z))

(a,_ + (t + 2)(q- 2)a,)MtW2,
since (6.5) counts pairs (z, c), where c e C is a codeword that agrees with z in at least
(t + positions on x supp (z). If asO,_ 4: (t + 2)(q 2) a sO,, then we deduce that

we 0oat+2
To prove a’$ 0 (we may assume that We+ 4: We + 2), we apply (2.5) with

m We t s’ and sum over all vectors z with support x to obtain the invariant
(t + 2)-form

(6.6) Z
l<e

j<=t+2

+ (q 2 Mt+ 1,ew.jM + eWe, + 2MtW 2 -]- ol We- 2

where the coefficient of MtWl is nonzero. Since (6.6) is orthogonal to a, we have that
at+We 0, and the proof is completed, as in Theorem 3.5.
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Remarks. We may rewrite the condition ao,_ 4: (t + 2)(q 2 a o, in terms of
the weights w. Equating coefficients of .s, in

Il ot/pi(’),(6.7) qn-k
W i:0

we obtain

(6.8)
(-1)s qn-k
I-Is’ as (_q)S

i=1 Wi S’!

Equating coefficients of ’s’- in (6.7) gives

(-1)’q"-g(-X’ w)
Hi=I Wi

iii (q
(q +

Since , 0, we may divide through by , and use (6.8) to obtain,_ s, (q 2)(s’ 1)
(n(q- 1) qw}) +’ Sti= 2

We may rewrite ,_ + 2)(q 2) a, as

(6.9) n(q- 1)-qw}s’(q-2) t+2+
i=1 2

COOA 6.2. Let C be a linear n, k, d] code over q, where the weights ofthe
nonzero codewords are Wl d, w, ..., w. Let w, ..., w, be the nonzero weights in
C Let be the greatest integer in the range 0 < < d such that there are at most d
weights w} with 0 < w} n t. Suppose that w w_ 3 for all j, and that either

(1) w-t-2s’, or
(2) w- t- 2 s’- land

(6.10) n(q- 1)-qw}s’(q-2) t+2+
2i=1

Then
+(C) dim I+[M+, M+ ].

Proof. The proof follows directly from Theorem 6.1 and (6.9).
COROLLARY 6.3. Let C be an extremal ternary selfidual [n, n/2, 3kn/12j + 3]

code and let 1, 3, or 5, according to whether n 8, 4, or 0 (mod 12). Then the
codewords in C ofanyfixed weightform a t-design. Furthermore, + ( C) 1, and, for
every weight w in C, either

The codewords ofweight w in Cform a (t + )-design and

(t + 1)M+ + M+l e I+, or

(2) The codewords ofweight w in Cform a { 1, 2, t, + 2 } design and

+ (w )M+ e It+ 2, ifw In/2],
(ii) [(t + 2)(n- w- t- 1)- (n- 2t- 2)]M

+ (n w- t- 1)Ms It+, ifw > kn/2J.
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Proof. The codewords ofweight w form a t-design because C satisfies the hypotheses
of the Assmus-Mattson theorem.

Let x (p, Pt / 2 ) be any (t + 2)-set. We puncture the code C by deleting
coordinates p, Pt + 2, to obtain a code (. Table 1, below, relates the parameters of
and C.

The code +/- is obtained by taking codewords c (c, Cn) in C+/- with cp
cp,/ 0, and deleting these + 2 coordinates. In each case, the number ofweights

in (+/- is one greater than the minimum distance in . The MacWilliams relations allow
us to solve for the weight distribution of t in terms of one free parameter 3, say. Thus,
ifd is the number of codewords of weight in , then

(6.11) di-- t31,i + 2,i

l/t3u+3 d3u+for some constants e,i, /32,i. Now3u+-t l’at+2 2- Mt3g]-3 and so wecan
produce a nonzero invariant (t + 2)-form involving the variables 3u/ and 3u/ 3

lwt+2 vat+l

Hence

(6.12) dim (It+_[Mta+_, Mta+ 1]) -< 1.

To prove that At / 2(C) =< 1, we apply Corollary 6.2. For 1, 3, we have that wa
2 >- s’, and, for 5, we have that w2 2 s’- 1,

4u

9U(U--3)(3U--1)24u--9i= 4:3U 7+
i=u+l 2 2

Thus Corollary 6.2 applies, and At / (C) =< 1. The remainder ofthe prooffollows Corollary
3.7, and we omit the details.

Let C be a linear n, k, d] code over q that satisfies the hypotheses of the Assmus-
Mattson theorem. It is sometimes possible to prove that the t-design formed by the
codewords of minimum weight d has the extra property that certain linear forms are
constant on/-sets, for some > t, without being able to prove that the t-designs formed
by codewords of other weights have this extra regularity.

COROLLARY 6.4. Let C be a linear n, k, d] code over :q, where the weights ofthe
nonzero codewords are Wl d, w2, ws. Let w’, w’2, ws, be the nonzero weights

TABLE
The Parameters ofthe codes C and .

t=l

t=3

t=5

n 12u+8
k=6u+4
d=3u+3
s’=3u+2

n= 12u+4
k=6u+2
d=3u+3
s’= 3u+

n 12u
k=6u
d=3u+3
s’= 3u

r= 12u+5
k=6u+4
d= 3u
g’=3u+

r= 12u-
k=6u+2
d=3u-2
’=3u-

r= 12u-7
k=6u
d=3u-4
g’= 3u- 3
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in C-. Let l be an integer in the range 0 < l < d such that there are at most d l +
weights w with 0 < w <= n l. Let be the collection ofcodewords in C with weight
d. Ifw2 >= d + 2, then either is an { l }-design or is an { l }-design.

Proof. Puncture Cwith respect to any/-set, and deduce that there exists a nontrivial
invariant/-form involving the variables Mta and Mta_ (the argument was used in Cor-
ollary 6.3 to derive (6.11 )). Then apply Theorem 3.6.

Example 6.5. Let C be an extremal quaternary self-dual n, n/ 2, 2[ n/ 6 J + 2 code
and let t 1, 3, 5, according to whether n -= 4, 2, or 0 (mod 6). Then C satisfies the
hypotheses ofthe Assmus-Mattson theorem, and the codewords in C ofany given weight
form a t-design. Furthermore, C satisfies the hypotheses of Corollary 6.4 with + 2,
so that the codewords of weight d in C form a (t + )-design or a { 1, t, + 2 }
design.

7. Nonlinear codes. The algebraic theory of error-correcting codes outlined in 2
applied to linear and nonlinear codes. The following theorem is due to Delsarte 8, Thm.
5.7 ], and it is an analogue of the Assmus-Mattson theorem.

THEOREM 7.1 (Delsarte). Let C be a binary code of minimum distance d and
external distance s’, with d >= s’. Then C is distance invariant. Moreover, the codewords
ofa given weightform a t-design with d- s’.

Goethals and van Tilborg [13] have extended Theorem 7.1 to q-ary t-designs (a q-
ary t-(n, w, )) design is a collection S of vectors ofweight w with the property that every
vector x e R of weight is covered by exactly ) vectors y in S). Assmus, Goethals, and
Mattson have also given a more explicit proof of this extension.

Example 7.2. Here C is the Nordstrom-Robinson code with distance distribution

(7.1) A0 A16 1, A6 A10 112, and A8 30.

The Krawtchouk expansion of the annihilator polynomial is given by

(7.2)
0(D + 1( + P(I + g 3( + P4(f.

Let x be an arbitrary 3-set. It follows directly from (2.5) that 1/2(M((x) + l, and so
the codewords of weight 6 in C form a 3-design with X3 4. The standard argument
proves that A(C) 0 and that the codewords of any given weight form a 3-design.

Next, we investigate regularity with respect to 5-sets. Let x be an arbitrary 5-set,
and let a (a’) be an arbitrary nonzero vector in I-. If a (a’), then the vectors
aw lie in the space V described in (3.38) and (3.39). We know that

a y( 1, 0, -10, 20, -15, 4) + y(0, 1, -4, 6, -4, ),

and, since the Nordstrom-Robinson code is closed under taking complements, we have
that

a y6(4, -15, 20, -10, 0, + y( 1, -4, 6, -4, 1, 0),

for suitable constants Y6, Y. Symmetry gives a Ys( 1, -3, 2, 2, -3, for some
constant y.

We apply (2.5) with rn 0 and obtain the invariant 5-form

6 8(7.3) M56 + M4 + Ms.
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Since (7.3) is orthogonal to the vector a (a)t), we have that

(7.4) 5Y6 + Y + Y8 0.

It follows that every vector in I is a linear combination of the two vectors given
below:

6
8
10
16

5 4 3 2 0 wt\j

0 -10 20 -15 4 6
-5 15 -10 -10 15 -5 and 8
4 -15 20 -10 0 10
0 16

5 4 3 2 0

0 -4 6 -4
-1 3 -2 -2 3 -1

-4 6 -4 0
0

In this case, we can prove that As(C) 2. If As(C) 1, there is a nontrivial
invariant 5-form relating M and M]. Since the integrality conditions imply that the
codewords of weight 6 do not form a 4-design, it follows from Theorem 3.6 that the 5-
form M + M64 is invariant. Clearly, M(x) + M64(x) 1, since, if M65(x) l, then
M64(x) 0. However, counting pairs (c, x) with c e C and Isupp (c) N supp (x)l >-- 4,
we see that

Hence As(C) 2.

112((6 6 165)+(4)10)/(5) =4(4:1)"

Acknowledgment. The authors thank Prof. E. F. Assmus, Jr. for bringing to their
attention the references by Safavi-Naini and Blake.

Note added in proof. H. Koch Discrete Mathematics, 83 (1990), pp. 291-300 has
also analyzed the regularity of designs afforded by codewords of a fixed weight in self-
dual doubly-even extremal codes. He employs a theorem ofVenkov that requires weighted
theta functions and the theory of modular forms.
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ALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERS*
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Abstract. In a graph G (V, E), E[v] denotes the set of edges in the subgraph induced by N[v]
v t u V: uv e E }. The neighborhood-covering problem is to find the minimum cardinality of a set C of

vertices such that E t E[ v]: v e C }. The neighborhood-independence problem is to find the maximum
cardinality of a set of edges in which there are no two distinct edges belonging to the same E[v for any v e V.
Two other related problems are the clique-transversal problem and the clique-independence problem. It is
shown that these four problems are NP-complete in split graphs with degree constraints and linear time algorithms
for them are given in a strongly chordal graph when a strong elimination order is given.

Key words, neighborhood-covering, neighborhood-independence, clique-transversal, clique-independence,
chordal graph, strongly chordal graph, split graph, NP-complete
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1. Introduction. The concept of neighborhood number was first introduced by
Sampathkumar and Neeralagi SN ]. Suppose that G (F, E) is a finite undirected graph
with vertex set F and edge set E. The (open) neighborhood N(v) of a vertex v is the set
ofvertices adjacent to v, and the closed neighborhoodN[v is { v } t3 N(v). A neighborhood-
covering set C is a set of vertices such that E t3 { E[ v ]: v e C }, where E[ v] is the set
of edges in the subgraph induced by N[ v ]. (This definition is slightly different from the
original one in [SN]; we follow the terminology in [LT] .) The neighborhood-covering
number pN(G) of G is the minimum cardinality of a neighborhood-coveting set in G. A
neighborhood-independent set of G is a set of edges in which there are no two distinct
edges belonging to the same E[v for any v e F. The neighborhood-independence number
aN(G) of G is the maximum size of a neighborhood-independent set in G. These two
parameters are related by a min-max duality inequality: aN(G) <= PN(G) for any graph
G. A graph is called neighborhood-perfect if aN(H) 0N(H) for every induced subgraph
HofG.

Two other related problems are defined as follows. In a graph G (V, E), a clique
is a set of pairwise adjacent vertices. A maximal clique is a clique of size >_-2 that is
maximal under inclusion. A clique-transversal set of G is a set of vertices that meets all
maximal cliques of G. As defined in [T], the clique-transversal number zc(G) of G is
the minimum cardinality of a clique-transversal set in G. We now introduce the concept
ofa clique-independent set, which means a collection ofpairwise disjoint maximal cliques.
The clique-independence number ac(G) ofG is the maximum size ofa clique-independent
set in G. There is also a min-max duality inequality: ac(G) <= rc(G) for any graph G.
Note that the clique-independence number ofa triangle-free graph is equal to its matching
number and hence can be computed in polynomial time.

Various properties ofpN(G), OIN(G), ’c(G), and at(G) have been studied in SN],
LT ], T ], AST ], and EGT ]. The aim of this paper is to investigate some problems
concerning the algorithmic complexity of determining these four parameters of a given
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graph. Erdrs, Gallai, and Tuza [EGT] proved that the problem of finding the clique-
transversal number is NP-complete over the class of triangle-free graphs, and more gen-
erally over the class of graphs with girth at least g for any fixed g >- 4. Lehel and Tuza
[LT] gave an O(I 11 / IEI algorithm for finding PN(G) and aN(G) ofan interval graph
G. Wu [W] gave an O(I VI 3) algorithm for determining pN(G) and aN(G) of a strongly
chordal graph G.

In 3 we prove that the problems of finding pN(G), aN(G), zc(G), and ac(G) are
NP-complete over the class of split graphs with degree constraints. Section 4 gives linear
time algorithms for determining tN(G), oN(G), "rc(G), and ac(G) of a strongly chordal
graph G if a strong elimination order is available.

2. Terminology. The concept of chordal graph was introduced by Hajnal and Sur-
nyi HS in connection with the theory of perfect graphs; see [Go]. A graph is chordal
(or triangulated) ifevery cycle oflength greater than three has a chord (i.e., every induced
cycle is a triangle). One of the most important properties of a chordal graph G is that
its vertices have a perfect elimination order v, v2, Vn; i.e., for each _-< _-< n),
Ni[ vi is a clique, where Ni[x] is the closed neighborhood ofx in the subgraph Gi of G
induced by { vi, vi +1 vn }. Note that any maximal clique of a chordal graph G is
equal to some Ni[ vi ], but Ni[ vi] is not necessarily an maximal clique.

Two interesting subclasses of chordal graphs discussed in this paper are strongly
chordal graphs and split graphs. An s-sun (or incomplete s-trampoline) is a chordal graph
with a Hamiltonian cycle x, y, x2, Y2 Xs, Ys, x such that each Yi is of degree two.
A strongly chordal graph (or sun-free chordal graph) is a chordal graph without any s-
sun as an induced subgraph for all s >_- 3. It was proved in [F1 that a graph is strongly
chordal if and only if its vertices have a strong elimination order v, v2,..., vn; i.e., for
each <= <= n), Ni[l)j]

_
Ni[l)k] when vj, vk Ni[l)i] andj < k. Note that a strong

elimination order is always a perfect elimination order. Anstee and Farber [AF] gave
O( V 3) algorithms; Hoffman, Kolen, and Sakarovitch HKS gave an O( V 3) algo-
rithm; Lubiw [Lu] gave an O(I El log2 EI) algorithm; Paige and Tarjan [PT] gave an
O(I El log EI) algorithm; and Spinrad [S] gave an O(I VI 2) algorithm for recognizing
if a graph G (V, E) is strongly chordal and for finding a strong elimination order when
G is strongly chordal.

A graph G (V, E) is split if its vertex set Vcan be partitioned into a clique /’1 and
an independent set V2. Every split graph is chordal, and a natural perfect elimination
order is given by listing the vertices in F2 first and then the vertices in V1. Note that an
s-sun in which { x, x2, Xs } is a clique is a split graph.

3. Split graphs and NP-completeness. Let us recall the following two problems;
see [CN1], [CN2 ], and IF2 ]. A dominating set D of a graph G (V, E) is a set of
vertices such that every vertex not in D is adjacent to some vertex in D; i.e., V t_J ( N[ v ]:
v e D }. The domination number (G) ofG is the minimum cardinality of a dominating
set in G. A 2-stable set of G is a set of vertices in which any two distinct vertices are of
distance greater than 2. The 2-stability number a2(G) of G is the maximum cardinality
of a 2-stable set in G. Note that c2(G) -< di(G) for any graph G.

THEOREM 1. It is NP-complete to determine the neighborhood-covering number,
the clique-transversal number, and the domination number of a split graph with only
degree-2 vertices in the independent set.

Proof. Suppose that G (V, E) is a split graph without isolated vertices such that
Vis the disjoint union ofa clique V and an independent set V. Without loss ofgenerality,
we may assume that N[x] is a proper subset of V for any x e V (otherwise, we move
x from V2 to V ). So the only maximal cliques of G are Vl and N[x] for all x V2.
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By the fact that N[x]
_
N[y] for any x e V2 and y e N(x), we can always find a

minimum neighborhood-coveting set C V. The same is true for clique-transversal
sets and dominating sets. In fact, these three terms are then identical, and so PN(G)
c(G) =/(G).

Note that split graphs are in one-to-one correspondence to hypergraphs in which
multiple edges are allowed. Vertices in the clique V of a split graph G correspond to
vertices of the hypergraph, and a nonisolated vertex y in the independent set V2 corre-
sponds to an edge, which is NG(y), of the hypergraph. It is then clear that di(G) is equal
to the transversal number of the corresponding hypergraph HG, which is the minimum
number of vertices meeting all edges. Hence the theorem follows from the fact that
determining the transversal number of a 2-uniform hypergraph (i.e., a graph) is NP-
complete; this problem is called the "vertex cover" problem and also the "hitting set"
problem on pp. 190 and 222, respectively, of GJ ].

THEOREM 2. It is NP-complete to determine the neighborhood-independence num-
ber, the clique-independence number, and the 2-stability number of a split graph with
only degree-3 vertices in the independent set.

Proof. A neighborhood-independent set of a split graph G must be of the form
{ x’x e E" x e S} for some 2-stable set S

_
V2. Moreover, a clique-independent set of G

is of the form { N[x]" x e S } for some 2-stable set S
_

V2. These, together with the fact
that any 2-stable set of G is a subset of V2, imply that CN(G) ac(G) c2(G).

Also, c2(G) is equal to the matching number, which is the maximum number of
pairwise disjoint edges, of the corresponding hypergraph H as described in the proof of
Theorem 1. Hence the theorem follows from the fact that determining the matching
number of a 3-uniform hypergraph is NP-complete; a special case of this problem is
called "three-dimensional matching" (see GJ, p. 221 ). [2]

Note that Chang and Nemhauser CN proved that it is NP-complete to determine
the domination number and the 2-stability number of a split graph without degree con-
straints. Moreover, the NP-completeness of the neighborhood-coveting/independence
problem was first observed by Lehel [L] by a different reduction. Let us note further
that Theorems and 2 remain valid under the assumption that the degrees of all vertices
in the independent set are equal to k for some k >= 3.

For any graph G (V, E), we define the neighborhood-split graph S(G) of G in the
following way. The vertex set of S(G) is V U E. In S(G), any two vertices of V are
adjacent, E is an independent vertex set, and an e e E is adjacent to a v e V if and only
if e e E[ v]. Note that S(G) has no isolated vertex if G has at least two vertices. The
following statement is immediately seen from the definitions.

PROPOSITION 3. For any graph G with at least one edge, tav(G) (S(G)) and
ON(G) c2(S(G)).

A structural relation between G and S(G) is given by the following result.
THEOREM 4. IfG is strongly chordal, then so is S( G).
Proof. Since G is strongly chordal, its vertices have a strong elimination order v,

v2 Vn. We order the vertices of S(G) as el, e2, em, 1,/)2, ln in such a
way that, for any ei (1)i, I)i2), ej (l)j, l)j2), < j, i < i2, jl < j2, we have that < jl
or (i j and i2 < j2). It is easy to check that this order is a strong elimination order
of S(G). Thus S(G) is strongly chordal.

Note that the strong elimination order of S(G) in the proof of Theorem 4 can be
obtained in linear time from a strong elimination order of G. By Proposition 3 and
Theorem 4, we can use the linear algorithms [F2], [HKS] for the domination number
and the 2-stability number to find the neighborhood-coveting number and the neigh-
borhood-independence number of a strongly chordal graph. However, S(G) has VI /
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IEI vertices and O(I VI IEI) edges. So this method gives an O(I VI IEI) algorithm.
Actually, the algorithm in [W] is just this method without describing S(G).

4. Efficient algorithms in strongly chordal graphs. In this section, we derive efficient
algorithms for finding pN(G), aN(G), re(G), ac(G), and the corresponding optimum
solution sets of a strongly chordal graph G. Suppose that a strong elimination order v,
v2, vn of G is given. Note that this is also a perfect elimination order. For technical
reasons, we add an isolated vertex Vo to G.

Recall that Ni[x] respectively, Ni (x)) is the closed respectively, open neighborhood
of vertex x in the subgraph Gi of G induced by { vi, vi + 1, Vn }. For simplicity, we
call vi < vj if < j. For each vi V, denote by Vm,) the maximum element in N[v ];
i.e., m(i) max { j: vj

LEMMA 5. A clique-transversal set is a neighborhood-covering setfor any graph.
Proof. The lemma follows from the fact that each edge is contained in a maximal

clique.
LEMMA 6. In a graph, replacing each edge ofa neighborhood-independent set by a

maximal clique containing it yields a clique-independent set.
Lemmas 5 and 6, together with the min-max duality inequalities in 1, give that,

for any graph G,

(4.1) aN(G) <= ON(G) <= ’c( G) and aN(G) <= ac( G) <= ’c( G).

The idea of our algorithms is to find a clique-transversal set C, which is also a
neighborhood-covering set by Lemma 5, a clique-independent set Ic, and a neighborhood-
independent set IN such that CI Icl I1. If such sets are found, then they are
optimum solutions for the four problems, and all inequalities in (4.1) are equalities. This
provides an algorithmic proof for a special case of the following result.

THEOREM 7 (see [LT]). ac(G) aN(G) ON(G) rc(G) for any odd-sun-free
chordal graph G.

Algorithm NHD (NHD means NeighborHooD)

lo
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

C;
Ic ",-- ;
IN,--- J;
identify all such that N[v] is a maximal clique;
fori= ltondo

if N[ vii is a maximal clique ml N;[v] C thn d
vp max { Vo } U (N[v] C); { Note that v < v now.

v min (N(v) Np[vp]);
IN IN
Ic Ic { Ni[v }
Vmi) max N[v];
CC {Vm.};
end if;

end for.

THEOREM 8. Algorithm NHDgives a minimum clique-transversal set C, a maximum
clique-independent set Ic, and a maximum neighborhood-independent set INfor a strongly
chordal graph G in linear time when a strong elimination order is given.

Proof. By steps 6, 11, and 12 of Algorithm NHD, the final C is a clique-transversal
set of G.
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In step 8, vj must exist; otherwise, Ni[ l)i] Np[ 1)p] would imply that Ni[ l)i is not
a maximal clique. Suppose that vivj and vi,v, (with i’ < i) are two distinct edges of
that are both in some E[lq]. Consider the set C at the beginning of iteration i, i.e.,
when step 8 is just done. For the case of q =< i’, since q <= i’ < < j, v,,(i,
Nq[Vi,]

_
Nq[Vi] Nq[VA; i.e., viv and vi,v, both are in E[l)m(i,)]. For the case of i’ <

q, since i’ < q <= m(i’), vi, vj Ni,[Vq]
_

Ni,[Vm(i’]; i.e., viv and vi,v, both are in
E[ vm(;,]. Note that l)m(i, . C, since, in iteration i’, we put vi,v, into IN and 1)m(i, into
C. By the choice of Vp and vj. (in steps 7 and 8), VpVi E and VpVj E, and Vp
for some vi,tvj,t - IN with m(i’) < m(i") < i. So Vp l)m(i, . Nm(i’)[ Vi c7. Nm(i,)[ Vj], which
contradicts vpvj E. Therefore IN is a neighborhood-independent set of G.

By Lemma 6, Ic is a clique-independent set of G. Since CI lcl INI, these
three sets are optimum solutions of these four problems.

Next, we show that Algorithm NHD has running time linear in VI / EI. First,
step 4 can be performed by Gavril’s linear algorithm; see G]. In iteration i, step 6 needs
INi[ vi]l operations to check if Ni[ vii N C . This can be done if C is represented
by a Boolean function fas follows:

1, ifieC,
f(i)=

0, ifiqC;

then we check iff(q) 0 for all vq e Ni[ vi]. Step 7 can also be done in the same way.
For step 8, we keep an array g( :n) whose values are all initially zero. At the

beginning of iteration i, g(l:n) contains values < i. To find v. of step 8, we first set
g(q) -- for all vq N[vp and then check if g(q) < for each vq N[ vi to obtain v.
Note that Vp N[ vi] and vp < vi imply that Np[ vp] Np[ l)i] c: N[ vi]. So step 8 needs
[Ni(vi)[ + [Np[Vp][ <= 2[N[vi][ operations.

Finally, steps 9, 10, and 12 need constant time, and step 11 needs [N[vi ][ time.
So the total running time is O( ,i deg v + 1)= O([V[ + [El).

We can modify Algorithm NHD slightly to get a simpler one as follows. First, we
delete step 4 from the algorithm. Then we replace step 6 by step 6’ as follows:

6’. if N v fq C then do.

Also, insert step 8.5 between steps 8 and 9, shown below:

8.5. if v9 does not exist then go to 13.

All results are the same, except that we need not identify all maximal cliques.
THEOREM 9. The modified algorithm gives a minimum clique-transversal set C, a

maximum clique-independent set Ic, and a maximum neighborhood-independent set IN
for a strongly chordal graph G in linear time when a strong elimination order is given.

Proof. The argument is the same as in the proof ofTheorem 8, except that we must
prove that, in iteration i, N;[ vi is a maximal clique if and only if vj. exists.

Note that if vj- does not exist, then either Ni (vi) J, and so Ni[ vi { vi } is not
a maximal clique; else Ni[ vi] Np[Vp], and so Ni[vi] is not a maximal clique.

On the other hand, suppose that v exists. Then Ni l)i) :#: , and so INi[ l)i - 2.
Suppose that Ni[vi] is not a maximal clique; i.e., Ni[vi is a subset of some maximal
clique Nq[ Vq], where Vq < vi. Note that Nq[ vq] C 4: J by the algorithm now, say
Vm(i’) Nq[ Vq] N C. Then vi,v/, viv; E[/)m(i,)]. By a similar argument as in the proof
ofTheorem 8, to prove that IN is neighborhood-independent, we obtain a contradiction.
So Ni[ vi] is a maximal clique.
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5. Concluding remarks. According to Theorems and 2, we cannot expect a good
characterization for the class of graphs G satisfying PN(G) =< k (or aN(G) -< k) if k is
large. We must note here that many graphs G contain some induced subgraph G’ in
which PN(G’) is much larger than pN(G) (and the same holds even for aN(G)). The
following problems, however, seem to be easier.

1. Let k by a given natural number. Characterize the graphs G in which pN(G’)
(and/or aN(G’)) is at most k for all induced subgraphs G’. (For k 1, the question is
easy; cf. LT ].)

2. Prove that every neighborhood-perfect graph is perfect LT ].
3. Characterize neighborhood-perfect graphs.
4. Determine the algorithmic complexity of finding pN(G) and aN(G) for planar

graphs.
5. Find similar estimates and characterizations for coveting and independence, when

Ek[ v is defined as the set of edges in the subgraph induced by the vertices of distance at
most k from v. (With this notation, El[v] E[v].)
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ON THE STRUCTURE OF THE STRONG
ORIENTATIONS OF A GRAPH*

JOHN DONALD AND JOHN ELWIN

Abstract. Given a graph G, denote by Strong(G) the digraph whose vertices are the strong orientations
of G, with a directed edge from orientation O to orientation O’ if O’ can be obtained from O by a "simple
transformation," that is, by reversing the orientation on all edges in a directed cycle or on certain directed paths
ofG with orientation O. The main result is that Strong(G) is strongly connected. The computational complexity
ofdetermining a sequence of simple transformations between two strong orientations is shown to be polynomial
in the size of G. These results depend on the notion of a minimal difference set, or MDS. A complete charac-
terization of MDSs is given.

Key words, strongly connected, strong orientation, difference graph, handle basis

AMS(MOS) subject classifications. 05C20, 05C30, 05C50

Introduction. An orientation O of an undirected graph G is an assignment of a
direction to each of the edges of G. This amounts to replacing each unordered pair
representing an edge in the graph by an ordered pair. We denote the resulting digraph
by (G, O). Given an undirected graph, we may ask whether it admits an orientation
with given properties. For example, every undirected graph without self loops admits an
acyclic orientation. A connected undirected graph admits a strong orientation, i.e., one
for which the resulting digraph is strongly connected, if and only if the graph has no
bridging edges 8 ].

This classical and elementary result invites certain refinements. Boesch and Tindell
2] and Chung, Gary, and Tarjan 4] ask when a partial orientation extends to a strong
one. They provide a linear time algorithm for determining the answer. They also address
the question of optimizing the orientation with respect to certain measures, such as the
diameter of the resulting digraph, a problem shown to be NP-hard in Chvatal and Tho-
masen 3 ]. Roberts and Xu 9 ]-[ 12 consider optimizing the orientations ofgrid graphs
with respect to various measures.

Given such interest, it is natural to view the set of strong orientations of a graph G
as a search space Strong(G). Here we investigate the structure of this space. We endow
Strong(G) with an operation we call a simple transformation, which connects pairs of
its members. Our connectivity theorem, Theorem 3.1, states that the resulting graph or
digraph is itself strongly connected; that is, we may connect any two strong orientations
of a graph by a sequence of simple transformations.

Ifwe reverse the orientations along any simple cycle in a strongly connected digraph,
we get another strongly connected digraph. We should certainly call such an operation
"simple." Moreover, cycles are easy to discover and recognize. However, the cycle reversal
operation does not connect Strong(G).

We need the extra power provided by the handles of a handle basis. A handle basis
B (h;, 0, ..-, d- of a digraph G expresses G as the edge disjoint union of a
sequence of subgraphs, where h0 is a simple cycle, and hi, > 0, is a simple path that
meets the union ofhj,j < i, exactly in its endpoints. The endpoints ofhi may be identical,
in which case hi is a cycle. The number d of handles is always the cyclomatic number
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(or topological dimension) of G. A digraph admits a handle basis if and only if it is
strongly connected. The subgraph given by the union of any initial segment of handles
in any handle basis for G is a strongly connected subgraph of G. Furthermore, given any
strongly connected subgraph H of G, we may extend any handle basis for H to one for
G. If the strongly connected graph G has n vertices and m edges, then it is easy to see
that its dimension, and therefore the size of its handle bases, is m n + 1. See Donald,
Elwin, Hager, and Salamon [5] for applications of the handle basis concept.

Now let (G, O) be a strong orientation, let B be a handle basis of (G, O), and let
h be any handle of B. This reversal of all the orientations of edges of h results in a new
strong orientation. Accordingly, we define a simple transformation between strong ori-
entations of a graph G as the reversal of all edges of some handle in some handle basis
for some strongly connected graph (G, O). These are the operations that we show connect
any two strong orientations of a given graph.

Given two strong orientations O and O’ of G, there is a set of directed edges D of
(G, O) that we must eventually reverse to get to (G, O’). We call D a difference set or
a difference graph, according as we are referring only to the edge set in D or to the induced
subgraph of G consisting of the edges ofD together with their endpoints. We would like
to know the structure of possible difference graphs D. D need not be a handle in some
handle basis. For example, D need not be connected. Similarly, we would like to know
what the remainder graphs G\D can look like, where G\D is the digraph remaining
after deleting the edges (but not the vertices) of D.

A simple example illustrates the possible structure of both G\D and D (cf. Fig. ).
Let G\D consist of the vertex disjoint union of two strongly connected graphs G1 and
G2. Let D consist of two edges, one connecting G1 to G2 and one connecting G_ to
G. Then G is strongly connected. D may be a cycle (Fig. (c)), a path of length two
(Fig. (b)), or two disjoint edges (Fig. (a)), depending on where the endpoints of its
edges are.

We have not succeeded in proving the connectivity theorem without first coming
to understand something about the structure ofpossible difference graphs and remainder
graphs. The critical concept is that ofminimal difference set, that is, a nonempty difference
set not properly containing a smaller difference set. The example Ds in the previous
paragraph are minimal. Difference sets properly containing the edges of some handle in
a handle basis are not. The difference set arising from a simple transformation, that is,
the edges ofjust one handle, may or may not be minimal.

We first hoped to connect strong orientations by successively decreasing the size of
the difference set. We would then have an orderly metric overseeing the process. Examples
like the simple one above show, however, that we cannot do it; in certain situations, all
handle reversals will enlarge the difference set.

What emerges instead (as Theorem 2.15 is a complete characterization ofminimal
difference graphs and their associated remainder graphs. Strangely, the only possible
structures are generalizations ofthe above example. A minimal difference graph is either
a cycle or a vertex disjoint union of simple paths. The associated remainder graph is a
vertex disjoint union of strongly connected graphs, which the minimal difference graph
connects in some cyclic order. Figure illustrates the possibilities.

Given the characterizations embodied in Theorem 2.15, we may proceed directly
to prove Theorem 3.1, basing the proof entirely on the structural characterization of
Theorem 2.15.

The proof of Theorem 3.1 involves a bunch of structures that must exist, but the
proofdoes not concern itselfwith how to find them. In 4 we show that we can construct
and/or identify these things in polynomial time. For example, we may identify handles
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G2 2

G1 G1

(c)
(a)

G2
G1

(d)

FIG. 1. Each figure shows a minimal difference graph D (shown as heavy arrows) connecting the strong
components (shown as blobs) ofG\D. (a) D is 2 disjoint edges; (b) D is a 2-path; (c) D is a 2-cycle; (d) A
larger example, in which D is a vertex disjoint union ofsimple paths.

and minimal difference graphs in polynomial time, and we may find a minimal difference
set inside a difference set in polynomial time. Most importantly, in Theorem 4.5 we
show that we may construct the sequence required by Theorem 3.1 in polynomial time.

We do not address here the issue offinding a shortest path in Strong(G) using simple
transformations or of finding canonical paths. In fact, the inspiration for this work was
6 ], in which Irving and Leather use certain transformations to connect solutions to the

stable marriage problem. Not only do they achieve a useful description of the solution
space, but they also show, as a consequence, that the size of the solution space is #P-
hard to compute. We have a preliminary description ofthe space Strong(G), which may
prove useful, but so far we have failed to apply it to significant computational problems
about that space.

1. Notation and conventions. Our notation and usages are, we hope, relatively stan-
dard and self explanatory. Graphs are normally undirected, unless otherwise indicated
by context. Digraphs are directed graphs. Graphs and digraphs may have selfloops and
multiple edges because all our results are invariant under subdivision of edges. Here, by
a subdivision of the edge xy in a graph or digraph G, we mean the addition of some new
point z to G and the replacement of edge xy with the new pair of edges xz and zy.

Let G be a graph or digraph. Let Xbe a set ofedges on the vertices ofG not belonging
to the edges of G. Then G[X denotes the graph or digraph on the vertices of G whose
edge set is the union ofX and the edges of G.

Conversely, let X be a set of edges or (by abuse of notation?) a subgraph of the
graph or digraph G. Then G\Xdenotes the graph obtained from G by deleting the edges
in X (but not the vertices).

IfX is a set of oriented edges or a digraph, the reversal XR ofX denotes the set of
edges or the digraph obtained from X by reversing the orientations of all the edges.
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A source vertex of a digraph is a vertex with indegree O. Similarly a sink vertex is
one with outdegree O. Generalizing, a source subgraph of a digraph is a subgraph with
no incoming edges. Similarly, a sink subgraph has no outgoing edges. In particular, if
we construct the strong components of a digraph, source components are those with no
incoming edges, and sink components are those with no outgoing ones.

Because we work with orientations of an undirected graph, we often speak of a
graph G and an orientation O. In this case, (G, O) refers to the resulting digraph. When
0 is understood and the context is one of directed graphs, we may drop the explicit
reference to 0 and refer simply to the digraph G. To shorten some of the terminology,
when we have structures that are always directed, we may in some settings refer to them
as graphs. For example, we say difference graphs rather than difference digraphs.

2. Minimal difference sets. Let G be a graph and let O be a strong orientation.
Then a difference set D for (G, O) is a set of O-oriented edges ofG such that (G\D)[DR

is strongly connected. Once we fix O, then the difference sets are in one-to-one corre-
spondence with the orientations of G. Thus we may study difference sets instead ofstrong
orientations. We call the subgraph of (G, O) induced by D a difference graph.

Certain obvious sets are always difference sets, regardless of the structure of the
surrounding digraph. The point of the next proposition is that reversing part or all of a
subdigraph so as to make it strongly connected will not destroy the strong connectivity
of a containing digraph.

PROPOSITION 2.1. Let G, O) be a strongly connected digraph. IfD is a strongly
connected subdigraph, then D is a difference graph. More generally, suppose there exists
a subdigraph H ofG containing D such that (H\D)[DR is strongly connected. Then D
is a difference graph for G.

In terms of the structure of G, handle bases provide the critical source of difference
sets. The next, equally obvious, proposition overlaps Proposition 2.1.

PROPOSITION 2.2. Let D be the union ofsome ofthe handles ofsome handle basis
of(G, 0). Then D is a difference graph.

There exist difference graphs that are neither strongly connected nor a union of
some of the handles in a handle basis, such as the examples in Fig. 1. The situation with
the more general statement in Proposition 2.1, however, is more subtle. The statement
allows H G, in which case all difference graphs trivially are of the given type. The
import of the proposition, however, is that to find difference sets, we can seek proper
subgraphs H that would become strongly connected after reversal of some subset D of
its edges. Surprisingly, with a trivial exception, all difference graphs are of this type, i.e.,
their complements G\D are not "minimal" with respect to the ability of D to connect
them (cf. Corollary 2.16 ), but proving this fact apparently requires Theorem 2.15, below.

We pursue some ideas relating to the connecting property of difference sets. We
define a connecting set for the digraph H to be any set E of non-H edges on the vertices
of H such that H[E] is strongly connected. A connecting set is minimal if no proper
subset is a connecting set. Obviously, any subset E of the edges of a strongly connected
graph G is a connecting set for G\E.

A connecting set E is reversible if ER is also a connecting set. Thus a difference set
D is just a reversible connecting set for the associated remainder graph G\D. Such a
connecting set need not exist if we disallow multiple edges. For example, let G\D be the
complete acyclic graph consisting of points zi, 1, ..., n, with edges zizj, < j. If we
do not disallow multiple edges (as we do not), then, given a connecting set, we may
always throw in its reverse to get a reversible connecting set. Reversible connecting sets
enjoy one crucial property with respect to the digraph G they connect.
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LEMMA 2.3. LetD be a reversible connecting setfor the nonstrongly connected digraph
G. Then, for each source and sink point ofG, D contains at least one inbound edge, and
at least one outbound edge. More generally, for each source and sink component ofG,
D contains at least one inbound edge and at least one outbound edge.

A second property of reversible connecting sets is a kind of duality.
LEMMA 2.4. Let D be a reversible connecting setfor G, which spans G; that is, such

that every vertex ofG is incident at some edge ofD. Then G is a reversible connecting
setfor D.

Certain connecting sets D automatically qualify as reversible.
LEMMA 2.5. Let D be a connecting set for G for which the graph induced by the

pairs in D is strongly connected. Then D is reversible.
Such reversible connecting sets lack constraintmthere are too many of them. For

example, every strongly connected digraph is a reversible connecting set for its own
vertices. We may even blow up those vertices into larger, strongly connected digraphs of
arbitrary structure.

THEOREM 2.6. Let D be a strongly connected digraph. Then D is a reversible con-
necting graph for its own vertices, and, in fact, D provides a reversible connecting graph
for any vertex disjoint union ofstrongly connected graphs in one-to-one correspondence
with the vertices of D.

Proof. Let Ci be the strongly connected components whose vertex disjoint union
forms G. Distinguish any vertex v,. of C,. and fix a correspondence between the vertices
ofD and the vi. There results a correspondence between the edges of D and a set D’ of
non-D edges joining certain vi. Then G[D’] is strongly connected, and the subgraph of
G[D’] induced by D’ is isomorphic to D.

To constrain our sets further, we define reversible minimal connecting sets (RMCs),
i.e., reversible connecting sets that are also minimal connecting sets. The reversible con-
necting sets constructed in Theorem 2.6 are RMCs if and only if D is itself minimally
connected; that is, if and only if for no edge e ofD is D\e strongly connected. Difference
sets need not, of course, be minimal connecting sets, but the difference sets of Fig. are
minimal connecting sets. Theorem 2.6 has an obvious generalization.

THEOREM 2.7. Let D be a strongly connected digraph. Then some topologically
equivalent digraph D is an RMCfor its own vertices.

Proof. By subdividing every edge ofD, there results a minimally connected digraph.
We now ask what digraphs G with nonstrongly connected components admit RMCs

and what their RMCs can look like. At first glance, RMCs may seem hard to construct
in this case. Thus we offer the following conjecture.

CONJECTURE 2.8. Let G be a topologically connected digraph that is not strongly
connected. Then G has no RMC.

EXAMPLE 2.9. It is not hard, however, to construct RMCs for disconnected digraphs
whose components are not strongly connected. As a simple example, let G be two vertex
disjoint edges vw and xy. Let D consist of the edges wv, vy, yx, xw. Then D is an
RMC. Symmetry is lost, however. G is not an RMC for D. Furthermore, DR is not an
RMC for G.

CONJECTURE 2.10. Let G have at least one topological component that is not strongly
connected. Then G admits no RMC whose reversal is also an RMC.

The point of the previous development is to focus on connectivity properties that
are relevant to the issue of difference sets. In fact, although we take no position about
the truth or falsity of Conjecture 2.10, we can prove its analogue for difference sets, and
that is precisely the result we need.
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We define a minimal difference set or MDS D for G to be a nonempty difference
set no proper subset ofwhich is a difference set. The notion ofMDS for G differs slightly
from that ofRMC for G\D because RMCs may be empty. IfG\D is strongly connected,
then D is an MDS if and only if D is a singleton set. D cannot be an RMC for G\D in
this case; the only RMC is empty. If G\D is not strongly connected, however, and D is
an MDS for G, it is an RMC for G\D. There is less anomaly here than we might think,
because if G\D is not strongly connected, then D cannot be a singleton. This follows
from our structure theorem to follow, but it is obvious if we note that in this case the
unique edge ofD must connect some sink component ofG\D to some source component.
DR could then not connect G\D.

MDSs enjoy a number of very constraining properties not shared by RMCs. We
begin with the following lemma, which shows that only the simple cycle from among
strongly connected digraphs can be an MDS.

LEMMA 2.11. Let D be an MDS. IfD is not a simple cycle, then D can contain no
topological cycles.

Proof. Suppose that D contains the topological cycle Z. If Z is coherently oriented
in D, then, by Proposition 2.1, Z is a difference set. Otherwise, the reversal of some
proper subset of the edges of Z will yield a coherently oriented cycle. Thus, again by
Proposition 2.1, that subset of edges is a difference set.

MDSs enjoy a critical duality lacking for RMCs.
LEMMA 2.12. Let D be an MDSfor G. Then DR is also an MDSfor G\D[DR].
Proof. DR is certainly a difference set. It is minimal because if a subset Do of DR

is reversible, then the subset (D Dff) ofD is reversible.
The following property of MDSs is central for their characterization.
LEMMA 2.13. Let D be an MDSfor G. Then there can be no subdigraph H ofG\D

andproper subset Do ofD such that Do is a connecting setfor H. Equivalently, no proper
strongly connected subdigraph K ofG contains only a proper subset Do ofD.

Proof. IfHand Do exist, then by Proposition 2.1, D is a difference set for G\D[DR].
Thus DR is not minimal. Then, by Lemma 2.12, D is also not minimal. The equivalence
follows by considering H K\D.

We now want to prove our characterization of MDSs. Let D be a difference set for
the digraph G. The proof strategy depends on focussing not on the MDS per se, but on
the remainder digraph G\D. Specifically, we ask what structural restrictions, if any,
obtain for G\D. We aim to prove a theorem for difference sets that we can only conjecture
for RMCs. The following lemma is the analogue for MDSs of Conjecture 2.10.

LEMMA 2.14. Let D be an MDSfor G. Then every topological component ofG\D
is strongly connected.

Proof. Suppose the contrary and let C be such a topological component. Let X be
a source component of C and let Y be some sink component (therefore, distinct from
X) accessible in C from X via a simple path P in C, whose internal vertices necessarily
avoid X. Note that no edge ofD is in P. By the strong connectivity of G, there is some
simple path P2 in G from Y to X whose internal vertices also avoid X. Now X, Y, P,
and P2 together form a strongly connected subdigraph K of G. K contains at least one
edge ofD because X is not accessible from Y in G\D. K cannot contain D because, by
Lemma 2.3 (with G\D playing the role of G in the statement of that lemma), the
reversibility ofD implies that D contains at least one outgoing edge e from X. The only
such edge in K is the first edge of P, which we have observed contains no edges of D;
i.e., e is not in K. Thus, K contains only a proper subset ofD. By Lemma 2.13, D is not
an MDS.
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It is now easy to prove the main result of this section, a structural characterization
of MDSs.

THEOREM 2.15. Let D be an MDS for G. Then G\D is a vertex disjoint union of
some number r >- ofstrongly connected subdigraphs. If r l, then D is a singleton.
Otherwise, indexing mod r, there is an ordering C, ..., Cr ofthe components ofG\D
and there are pairs { xi, Yi } ofpoints of Ci, 1, ..., r, such that the edges olD are
exactly yixi +1, 1, ..., r. D is a simple cycle or a vertex disjoint union of simple
paths. Conversely, given a structurefor G\D and D as just described, D is an MDS.

Proof. That G\D is a vertex disjoint union of some number r >_- of strongly
connected subdigraphs is the content ofLemma 2.14. If r 1, then D must be singleton.
We assume now that r > 1.

Consider now the digraph D’ resulting from G by condensing the strong components
Ci ofG\D to points vi. This is the quotient ofG in which we identify all points belonging
to the same strong component ofG\D. D’ is also strongly connected. Suppose D’ contains
a proper simple cycle Z through some subset V0 of the points vi. Then, by lifting Z in
some way to G and augmenting the result by paths in each C meeting the lift, we can
construct a simple cycle in G, which meets D in a proper subset. By Lemma 2.13, no
such simple cycle Z exists. Thus D’, being strongly connected without proper cycles,
must be a simple cycle. The order in which D’ traverses its points provides the indexing
by i, l, ..., r, of the components C; of G\D.

Returning to D, we see that it must consist of edges Yi xi + 1, l, ., r, with xi
and Yi in Ci. The structure of D now depends on which satisfy xi Yi. If all do, then
D is a simple cycle. Otherwise, it consists of disjoint paths.

The converse is obvious.
As a result of Theorem 2.15, we see that there are no unusual species of MDS. A

difference set may, of course, be more complicated, but if it is, then it must contain
MDSs. It does not follow immediately from the theorem that we can efficiently recognize
MDSs inside a given difference set. In fact, we can. We address this issue in 4.

As a corollary to Theorem 2.15, we state a partial converse to Proposition 2.1
alluded to in the introduction to this section. In the context ofa potential duality between
difference sets D and remainder digraphs G\D, it says that if D is minimal, then G\D
is not, unless it is trivial.

COROLLARY 2.16. Let D be an MDSfor the digraph G. Then either G D or else
there exists a proper subdigraph H ofG containing D such that H\D DR is strongly
connected. IfG 4: D, H can consist ofD and simple paths from x to yi for each cf
Thm. 2.15).

Proof. This follows directly from the structure of G and G\D.
The following easy fact also follows directly from the theorem, although it has a

direct and obvious proof.
COROLLARY 2.17. Let the MDS D consist ofa single edge. Then G\D is strongly

connected.
Proof. By the theorem, D has the same number of edges as there are strong com-

ponents of G\D.
The following somewhat surprising corollary generalizes Corollary 2.17.
COROLLARY 2.18. Let D be a nonempty difference set. Then D contains an edge e

whose removal graph G\e consists ofa linear chain ofsome number r ofstrongly connected
subgraphs connected in order by r- edges.

Proof. D contains some MDS. Any edge in an MDS has this property by the theorem.
We conclude this section with an example.
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We remind the reader that a subset Do of D is a difference set if and only if
(DR D) is a difference set in (G\D)[DR] (cf. Lemma 2.12).

EXAMPLE 2.19. In Fig. 2(a), we show our strongly connected graph G together
with an associated difference set D consisting of the heavy arrows. This difference set is
an RMC, but it is not minimal as a difference set. Figure 2(a) emphasizes G\D, whose
structure is a vertex disjoint union oftwo edges and two noncyclic simple paths oflength
three. By our structure theorem, we know D is not an MDS. Figure 2 (b) emphasizes D,
whose structure is a vertex disjoint union of two noncyclic simple paths of length five.
Figure 2 (c) shows the target graph, where it is clear that the four diagonal members of
DR are not necessary for connectivity. Thus, as we may have suspected from Conjecture
2.1 O, DR is not an RMC.

Returning now to the MDSs inside D, we note first that being minimal as a con-
necting set, D contains no singleton MDSs. Secondly, the left and right six-vertex rectangles
in Fig. 2 (a) are strongly connected, and { el, e2 } connects them into a two cycle. Thus

(a)

(b)

Q R S T
.I el

J E

h G F

(c)

FIG. 2. (a) A digraph G with the difference set D shown as heavy arrows. G\D has no strongly connected
topological components. D is a minimal connecting set for G\D. (b) A different view of G, showing D as a
union of 5-paths. c The digraph after reversing D. DR is not a minimal connecting set.
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{ el, e2 } is an MDS. Clearly if we reverse one of el and e2, we then must reverse the
other to preserve connectivity. If we do not change el or e2, then we see by inspection
that any other MDSs must lie inside one or the other six-vertex rectangle, preserving its
strong connectivity. Further inspection reveals that there are no other possibilities.

As for MDSs inside Dn, the situation is more complicated. Each diagonal member
ofDR is a singleton MDS, so these edges can belong to no other MDS. (MDSs need not
be disjoint.) Every difference set of G contains some MDS, and thus contains { el, e2 }.
Thus, by the remark preceding this example, every difference set inside DR must avoid
{e, e }. Reversing MDSs involving the other edges would create sources or sinks. Thus,
there are only the four singleton MDSs inside DR.

3. The space of strong orientations. Let Strong(G) denote the set of strong orien-
tations of the graph G. We now consider a natural structure for this set.

Let O be an orientation in Strong(G). By Proposition 2.2, any handle in any handle
basis of (G, O) is a difference set. We call a difference set corresponding to some handle
a simple difference set. We say there is a simple transformation between the strong ori-
entations O and O’ if O’ results from O by the reversal of some simple difference set for
the strongly connected digraph (G, O).

We now endow Strong(G) with a digraph structure by saying that there is an edge
connecting O to O’ if there is a simple transformation between them.

THEOREM 3.1. The digraph on Strong(G) with edges provided by simple transfor-
mations is strongly connected.

Proof. Given two orientations O and O’ in Strong(G), we must show there is a
sequence of simple transformations connecting them. Equivalently, we consider the dif-
ference set D in (G, O) corresponding to O’. We must show there exists a sequence of
simple difference sets whose reversals will accomplish the reversal of D.

It is sufficient to show that we can achieve the reversal of an MDS by a sequence
ofsimple transformations. Accordingly, we may assume D is an MDS. By Theorem 2.15,
we know that G\D is a union ofstrongly connected components Ci, 1, ., r, which
D connects into a cycle via r edges ei Yi xi +1, with xiand Yi points of C; (here, we
identify r + with ).

Consider first the case r 1. Then G\D is strongly connected. Thus, we may extend
a handle basis for G\D to one for G, in which, evidently, the unique edge of D is the
last handle. Thus, reversing that edge is a simple transformation.

Assume now r > 1. Let Pi be a simple path in Ci connecting x; to Yi. Pi will be
trivial if x; Yi. Now we define a simple cycle Z by the sequence P el P2 ez. Prer. We
may let Z be the "zeroth" handle in some handle basis whose remaining elements we
do not care about. Z defines a simple transformation. Applying that transformation leads
to a new digraph consisting ofthe topologically connected subdigraphs C resulting from
the reversal in Ci of the edges of P;, with the C connected in reverse circular order of
the indices by the edges e ofDR.

The effect of applying the simple transformation just described is to achieve the
reversal of all of D, together with the reversal of each Pi. To complete the achievement
of reversing D, we must reverse each p/n, thus returning the components C) to their
original structure Ci. Note that each p/n is in fact a difference set by Proposition 2.1
applied to P inside C). The C) need not, of course, be strongly connected. To show
that we can effect the reversal of P, it is then sufficient to prove the following lemma.

LEMMA 3.2. Let the difference graph D in the digraph G be a simple path oflength r.
Then we may effect the reversal ofD by a sequence ofat most r simple transformations.

ProofofLemma 3.2. We use induction on the length r of D. If r 1, then D is an
MDS, and, as proved above, reversal ofD constitutes a simple transformation.
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Assume r > 1. It suffices to show that there exists a simple difference set consisting
of some initial portion of the path D. Then the associated simple transformation will
yield a shorter difference graph that is also a simple path, and we can apply induction.

Let the path D consist of the edges ei xixi +1, 0, -.., r 1. By the strong
connectivity of G, there exists a simple path P from xr to x0. Similarly, there exists a
shortest simple path Q from Xo to Xr in (G\D)[DR]. P and Q lie in distinct digraphs,
but with regard only to their vertex sets, they need not be interior vertex disjoint, nor
need they be disjoint from the interior of D. Let xq be the first point ofD after x0 along
Q. Let Q0 be the segment of Q bounded by x0 and xq. Then Q0 is edge disjoint from D
whence it may be viewed as a path in G, as well as in (G\D)[

The subdigraph H ofG consisting ofthe not necessarily disjoint subdigraphs P, Qo,
and the tail x’"Xr ofD is strongly connected. Thus, we may begin a handle basis of G
with any handle basis for H.

Now let p be the smallest index > such that xp is on P. The subgraph ofD induced
on { xjlj -<- min (p, q) } is edge disjoint from H and has both its endpoints in H so we
may take this segment for the next handle h. The difference set given by h is an initial
segment ofD oflength q > 0. Effecting the corresponding simple transformation shortens
D, at which point we may apply induction.

To complete the proof of the theorem, we simply apply Lemma 3.2 to each P as
difference set in G.

We remark that our use ofthe cycle Z in the preceding proof simplifies the notation
and ideas, but we can replace Z by a handle properly contained in Z if Z # G. In fact,
suppose some P; is nontrivial. Then the corresponding C; is not a point. Begin a handle
basis for G with one for Ci. Now we can use the component of Z\P containing D as
the next handle; that is, we use all of Z\Pi except for any isolated points inside

The diameter of a digraph is the maximum distance between two of its vertices,
where the distance between vertices is the number of edges in a shortest path connect-
ing them.

COROLLARY 3.3. The diameter ofStrong(G) is <= mn, where m is the number of
edges in G, and n is the number ofvertices in G.

Proof. We have to bound the number ofsimple transformations required to connect
two orientations O and O’. The process of applying simple transformations breaks down
into stages, one for each MDS requiting treatment as in Lemma 3.2. Each stage decreases
the size of the remaining difference set; therefore, there are at most m stages.

We now try to bound the number of simple transformations required in each stage.
If the associated MDS has size one, then we require only one simple transformation,
because, as seen previously, a singleton MDS is a handle in some handle basis. Otherwise
the MDS is disconnected, and we have to apply one transformation based on a cycle
containing all of the MDS edges, and then we have to reduce, in sequence, difference
sets that are simple paths. The total length of these paths is at most n 2. From Lemma
3.2, we can reverse a difference set that is a path of length r with at most r simple
transformations. Thus, the total number of simple transformations required in one stage
is at most + (n 2) n 1.

The bound in Corollary 3.3 is not particularly sharp. If n 1, then G consists of
one vertex supporting a bouquet of m selfloops. In this case and when D equals all the
selfloop edges of G, we must reverse the selfloops one at a time, and the distance between
G and GR is in fact mn m.

If n > 1, then the dimension d of G m n + < m. In particular, because we
may move from G to GR by reversing d handles, we may do this with fewer than m
simple transformations. Difference sets in G that do not correspond to GR have fewer
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than m edges. Moreover, each stage in the reversal process either involves a singleton D
whose reversal takes just one simple transformation, or it shortens D by at least 2. Com-
bining these observations, we see that we may sharpen our estimate of the diameter: if
n > 1, then the diameter of Strong(G) -< (m )n/2. Even this reasoning avoids the
subtleties of the situation. For example, if D is large, then the paths constructed as the
second part of an early phase will intersect D. Thus we will not have to return entire
paths to their original condition. Also, it appears difficult to arrange for the independence
of several phases in the transformation process without focussing each phase on a different
part of the graph. The result is that the paths resulting from reversing the cycles at the
beginning of a phase will also lie in different parts of the graph. We have no example
proving that the diameter of G is on the order of mn.

We conclude this section with an example illustrating the main theorem.
EXAMPLE 3.4. The digraph G and difference set D are those of Example 2.19, de-

picted in Fig. 2 (a). The difference set is not a simple path, so we have to find an MDS.
In Example 2.19, we showed that the only MDS is Do { e, e2 }. Following the proof
of Theorem 3.1, we begin by reversing some simple cycle containing those edges. This
cycle is unique, in this case, containing all of D, together with the edges JP and UE.

The first simple transformation yields a digraph like that in Fig. 2 (c), but containing
(jp)R and (UE)R instead of JP and UE. A moment’s reflection shows that (jp)R and
(UE)R are indeed difference sets, and thus, as in the argument in the proofofthe theorem,
their reversals are simple transformations.

4. Efficient determination of paths in Strong(G). In Corollary 3.3, we showed that
we may convert one strong orientation of G into another in at most mn simple trans-
formations, where m is the number of edges in G, and n is the number of vertices. We
have not shown, however, that there exists a computationally feasible way to find the
simple transformations that will effect the conversion. Here, by computationally feasible,
we mean computable in polynomial time. In this section, we show that all the objects
in this paper may be identified or located in polynomial time. Here, by polynomial time
(linear time, and so forth), we mean time polynomial in the number and size of all the
objects in question. In the case of graphs, the size would typically be the sum n + m of
the number of vertices and edges. We denote the size of object X by size(X). IfX is a
subobject ofX, then because size(X =< size(X) in typical cases, a function polynomial
of some degree in size(X1 + size(X) is also polynomial of the same degree in size(X).
It is standard (e.g., that we may find the strong components of a digraph G in time
linear in size (G).

Throughout the discussion, m denotes the number of edges in G, and n denotes the
number of vertices. If G is strongly connected and n > 1, then m >= n, so that a function
polynomial of degree k in size(G) is polynomial of degree k in m.

We will use the standard "big-oh" notation: function f(x) is O(g(x)) if for all
sufficiently large x, there exists a constant C such thatf(x) <= Cg(x). Thus we may find
the strong components of a digraph G in O(n + m) time.

First, we consider the identification of handles. Simple cycles can always function
as the first handle in some handle basis. We may thus consider only simple paths. Let P
be a simple path in the strongly connected digraph G. Let G, denote the induced sub-
digraph of G obtained by deleting interior points of P, that is, all points except the
endpoints.

THEOREM 4.1. Let P be a simple noncyclic path in the strongly connected digraph
G. Then P is a handle ifand only ifboth endpoints ofP lie in the same strong component
ofGe. In particular, we can tell in O(size(G)) time whether P is a handle in some han-
dle basis.
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Proof. Let P be a noncyclic handle in some handle basis. Consider the digraph Ge
G interior(P) obtained by deleting the interior vertices of P. Construct the strong

components of Ge. Then P has both endpoints in the strong component containing all
those handles in the handle basis that precede P.

Conversely, suppose both endpoints of P lie in the strong component C of Ge.
Construct a handle basis for G by beginning with one for C. We may then take P for the
next handle.

Because, given P, constructing Ge and determining its strong components can be
done in time linear in size(G) + size(P) (therefore linear in size(G)), we can tell in
linear time whether P is a handle in some handle basis.

THEOREM 4.2. Let G be a strongly connected digraph. Then we can construct a
handle basis for G in linear time, i.e., in time that is O(m ).

Proof. We claim, rather casually, that this may be done by an easy modification of
standard depth first search (see Baase [1]). Every back edge encountered in the search
produces another handle in the handle basis.

Because a set D of edges is a difference set in the strongly connected digraph G if
and only if (G\D)[Dn is strongly connected, we have a second obvious identification.

THEOREM 4.3. Let D be a set ofedges in the strongly connected digraph G. Then
we can tell in linear time whether D is a difference set.

From Theorem 2.15, we have the identification of MDSs.
THEOREM 4.4. Let D be a difference set in the digraph G. Then we can tell in linear

time whether D is an MDS.
Proof. We only have to check the structure specified by Theorem 2.15. To do this,

construct the strong components of G\D in time linear in size(G) + size(D) size(G)
and then check (in linear time) whether D joins them in some circular order.

We now turn to the construction of paths in Strong(G). Our goal is to show that
we may construct them in polynomial time.

THEOREM 4.5. Let 0 and O’ be strong orientations ofthe graph G. Then we may
construct a pathfrom G, O) to G, 0’) in Strong(G) in O(m3) time, i.e., in time cubic
in size(G).

Proof. We use a series of lemmas.
LEMMA 4.6. Let D be a difference set that is a simple noncyclic path in the digraph

(G, 0). Then we may reverse D with <= size(D) simple transformations. In particular,
we may reverse D in O(size(D)* size(G)) time, and, in particular, in O(mn) time.

Proof of Lemma 4.6. Following the proof of Lemma 3.2, we see that we must
construct paths Pand Q. It is standard (e.g., Baase that such paths can be constructed
in linear time. Now we need not construct a handle basis for the strongly connected
digraph H as in that proof. We simply effect the reversal of the initial segment of that
path or the segment from the initial vertex of D to the first point of the return path Q
common to D and Q, as in that proof.

Because we need at most size(D) of these simple transformations (following, for
example, the proof of Corollary 3.3 ), the total time is O(size(D) * size(G)).

LEMMA 4.7. Let D be an MDS in the digraph G. Then we may reverse D using
simple transformations in O( mn) time.

ProofofLemma 4.7. Referring to the proof ofTheorem 3.1, we may find the strong
components Ci of G\D and then the cycle Z in linear time. We may reverse Z in linear
time. Now the sum ofthe sizes of the paths Pi is at most n. Each reversed path P may,
by Lemma 4.6, be returned to its unreversed state in time that is O(size(Pi )* size(G)).
Adding these up, we see that all the paths P may be returned to their unreversed states
in time, which is O(n * size(G)), i.e., in time O(mn).
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LEMMA 4.8. Given a difference set D in the digraph G, we mayfind an MDS inside
D in time linear in size(D)* size(G), and, in particular, in O(m2) time.

Proof ofLemma 4.8. We apply Corollary 2.18 and analyze the structure of G\ e
for each edge e of D. Each analysis is O(size(G)). One of these analyses must yield the
structure described in that corollary.

We complete the proof of Theorem 4.5 by using the above lemmas applied to the
analysis in the proof of Corollary 3.3. In that proof, we see that the connection of O to
O’ occurs in at most size(D) O(m) stages. We must find the computational cost of
each stage.

The work of one stage consists of two actions: (1) finding an MDS inside D and
(2) carrying out the reversal of the MDS. The computational costs of these actions are
O(m2) and O(mn) respectively, by Lemmas 4.7 and 4.8. Thus, the cost of one stage
is O(m2).

Because there are O(m) stages, the total cost is O(m3).
There are several places where we could attempt to improve this bound, but for our

purposes it serves to establish the computational feasibility of connecting orientations.

5. Concluding remarks. The space Strong(G) is quite large, containing at least 2 a

points, where d is the topological dimension or cyclomatic number of G. This is because
given a strong orientation, any subset of the handles in any handle basis specifies a
difference set. Thus, because the basis contains d handles, it can specify 2 a difference
sets. Because the topological dimension d m n + 1, where m and n are the numbers
of edges and vertices of G, we see that if m is large in comparison with n, then d and m
are comparable. In this case, the size of the space Strong(G) is at least on the order
of 2 m.

Finding paths in such a large space could reasonably take time exponential in m,
but by Theorem 4.5 it does not. Of course, by Corollary 3.3, we already knew that such
paths could be short, that is, logarithmic in the size of the point set involved. However,
the path finding construction also avoids all branching. The path in Strong(G) it finds
need not, however, be optimal, because it does not check whether a difference set is
already a path in G before looking for an MDS inside it.

We do not know a method for computing the size of Strong(G) in polynomial time.
Such a method would provide even more information about the apparent simplicity of
this large set.

As mentioned in the Introduction, one inspiration for the present work was the
paper of Irving and Leather [6 ], describing the space of solutions to the stable marriage
problem and showing, via that description, that counting that space is #P-hard. Other
work related to ours in purpose deals with the set ofacyclic orientations, which in Stanley
13] is shown to be counted by the chromatic polynomial evaluated at -1, and which

in Lineal [7] is shown, by arguments based on Valiant [14], to be #P-hard to count.
These arguments do not, however, depend on structural analysis ofthe space to be counted.
Instead, they use algebraic ideas and manipulation of the generating polynomial for
graph colorings. We do not know which style holds more promise for analysis of
Strong(G).
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Abstract. The tessellation of the plane given by square cells of equal size can be considered the Cayley
graph ofthe free abelian group ofrank 2. This group has polynomial growth. The theorems ofMoore [Symposium
on Applied Mathematics, Vol. XIV, American Mathematical Society, Providence, Rhode Island, 1962, pp. 17-
33 and Myhill Proceedings ofthe American Mathematical Society, 14 (1963), pp. 685-686 on the existence
of Garden of Eden configurations for an automaton defined on such a graph are extended to Cayley graphs of
groups whose growth function is not exponential. Examples are given ofCayley graphs ofgroups of exponential
growth for which these theorems do not hold.
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1. Introduction. In the classical theory of cellular automata l0 ], we consider au-
tomata on the lattice of integer points of Euclidean n-space. This "universe" is discrete
and homogeneous. Time is discrete, and the transition function is deterministic and local
(the state at time + at any point only depends on the states of its neighbours at time
t). For this structure, Moore 5 gave a sufficient condition for the existence of config-
urations, called Garden of Eden configurations, which can only appear at time 0;
that is, there is no configuration at time that will give rise to the given configuration
at time t. Moore’s condition (the existence of "mutually erasable patterns") was also
proved to be necessary by Myhill 7 ].

The lattice of Euclidean n-space is the Cayley graph of the free abelian group of
rank n. This group has polynomial growth (a concept due to Milnor 4 ]). The purpose
of this paper is to show that the theorems ofMoore and Myhill hold in the more general
case of automata for which the universe is the Cayley graph of a finitely generated group
whose growth is not exponential. In particular, this answers a question of Schupp, who
asked whether these theorems hold for groups of polynomial growth 9 ].

In we give a proof of Moore’s theorem. We modify the final part of the proof
to reveal the point that allows both theorems to be generalized. The theorems are then
proved in the more general setting. In the last section, examples are given to show that
when the growth is exponential the theorems need not hold.

2. The tessellation structure. Consider the Euclidean plane subdivided into square
cells of equal size; call this the Euclidean tessellation. Let A, AI > be a finite set (the
set of states), and let c be a map assigning to each cell ofthe tessellation one ofthe states
ofA; call c a configuration, and let cg be the set of all such maps c. For any cell v, a set
of nearby cells, the neighbourhood N(v) of v, is specified. Figure shows the neigh-
bourhoods of a cell v according to von Neumann [10] and Moore [5]. (Note that v is
included in N(v).) Assume now that the state of each cell changes with time in such a
way that the state of v at time depends only on the states of the cells of N(v) at time

1, and that this functional dependence, f, say, is the same for all cells of the plane.
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(a) (b)

FIG. 1. The von Neumann and Moore neighbourhoods ofa cell v.

An array F is a block of cells (perhaps the whole tessellation). A restriction c F of
a configuration c to an array F is called Garden ofEden (GOE) if, for any configuration
c* such that c* IF ClF, there is no c’ at time that will give rise to c* at time t.
The restriction of a configuration to a finite array will be called a pattern. Two patterns
p and P2 on an array F are said to be mutually erasable if they are distinct, and all pairs
of configurations cl and c2 that at time agree outside F and agree with p and P2,

respectively, on F, give rise at time + to the same configuration. A pattern p’ contains
rn copies of a pattern p if there exist rn disjoint subsets of the array of p’ and each of
these subsets contains a copy ofp.

THEOREM 1. Ifthere are mutually erasable patternsfor a nearest neighbour cellular
automaton on the Euclidean tessellation, then there are GOE patterns.

Proof. Without loss of generality, we can assume that all patterns are square. Let
n be an integer such that there is an array L of size n n, which is the support of two
mutually erasable patterns. Consider, for an integer k to be chosen later, a square array
B of size kn kn consisting of k2 copies of L. Let R be the equivalence relation defined
on the set of patterns on L as follows: Two patterns are equivalent if they are equal or
mutually erasable. By assumption, there are at least two mutually erasable patterns on
L, so that the number of equivalence classes is at most a- 1, where a AI and I is
the number of cells of L. This relation R induces an equivalence relation R* on the set
of patterns with support B: p and P2 are equivalent if each of the k2 patterns induced
on L byp has the relation R to the pattern induced by P2 in the corresponding location.

nThen the number of classes of R* is at most (a )k2. Let B- be the array obtained
by removing a border of cells from B of width 1. Now any pattern of the kind described
in the blocks L ofB can be changed to any other such pattern by a sequence ofexchanges
using equivalence R one block at a time, and by mutual erasability the output configu-
rations after each exchange coincide. Thus two patterns on B that are equivalent under
R* lead to the same pattern on B- at time + 1. The number of all possible patterns on
B- is a tkn- 2)2. Thus, at time + 1, there will be a pattern b on B- that is not a successor
of a pattern on B, and therefore a GOE pattern, provided that there exists a sufficiently
large k such that

a lcn-2)2 > (a" ).
By taking logarithms with base a, is equivalent to the following inequalities:

(kn 2)2 > k2 log (a "2 ),

(kn) 2 log(an2- 1)
(kn- 2)2 n 2

Now log (a n2 < log an2 n 2, and, a being greater than 1, log (a"2 is positive.
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n2Thus log (a )In 2 is positive and less than 1. However, limk- (kl)2/(kn 2) 2

1, so that such a k certainly exists where holds. [3

The converse of this theorem was proved by Myhill 7 ]: Ifthere are GOE patterns,
then there are mutually erasablepatterns. A proofofthis result is given in the next section
(Theorem 2, part (ii)).

Remark. The proof of Moore’s theorem given above used the following properties
of the Euclidean tessellation.

(a) Given a square L, it is always possible to find a sequence of squares B of
increasing size that are filled up completely by copies of L;

(b) For any sequence of squares (and, in particular, for a sequence of squares as
in (a)), the ratio between the number of cells of a square B of the sequence and that of
B- tends to as the size of the squares increases.

These two properties can be weakened; this will allow us to show that both Moore’s
theorem and Myhill’s theorem hold for universes more general than Euclidean tes-
sellations.

3. Cellular automata on Cayley graphs. Now consider as cells the vertices of a
graph (, and as neighbours of a vertex v the vertices connected to v by an edge. von
Neumann’s and Moore’s models are represented by Figs. 2 (a) and 2(b). These are ex-
amples of Cayley graphs of groups. Figure 2 (a) is the Cayley graph of the group Z Z,
with generators a and b and relation ab ba. Figure 2(b) is the Cayley graph of the
same group, with generators a, b, ab, and a-b, and the same relation.

DEFINITION 1. Let G be a group and X a set of generators for G. The Cayley graph
(g of G relative to X is the graph whose vertices are the elements of G, two vertices g
and g’ being joined by an arc if there exists x e X tAX- such that gx g’. The ball
B(v, n) with center v and radius n is the subgraph of f whose vertices are the vertices
of ( having (graph) distance at most n from v. For a subgraph f’ of (, the number of
vertices of (’ will be denoted by I’1.

Remark. If( is a Cayley graph ofG and gis a fixed element ofG, then multiplication
on the left by g is an isomorphism of (q. Thus Cayley graphs are translation-invariant.

The following definitions are motivated by the discussion of the previous section.
DEFINITION 2. A (deterministic) cellular automaton on a graph (q is a 4-tuple
(A, (q, N, f), where
(i) A is a finite set, AI a > 1, called the alphabet or the set of states;
(ii) ( is the Cayley graph of a finitely generated infinite group G;
(iii) For a vertex v of r, N(v) is the subgraph whose vertices are v and the vertices

of f connected to v by an edge (the neighbouring vertices of v). Note that
N(v) vN( ), where is the identity element of G;

(iv) f is a function Avt 1)
__

A. It extends to all N(v), v e f, by translating v to 1.
Such an f is called a local map.

DEFINITION 3. A configuration c is a map c" (q -- A that associates a state with
each vertex of (q. The set of all configurations will be denoted by . IfF is a nonempty
subgraph of f, then c le denotes the restriction of the configuration c to F; F is the
support of cle. If F N(v) for some v, then a restriction clto)is an element ofA).
IfF is finite, C lF is called a pattern; the number of vertices ofF will be denoted by FI.

DEFINITION 4. Given a cellular automaton , a transition map is a function on
configurations that applies one timestep of the cellular automaton; i.e., it is a function
r: c _. such that

(c)(v) =f(cl<o));
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(b)

FIG. 2

in other words, the state at v in the configuration z(c) only depends on the states of the
neighbours of v in the configuration c. This dependence, expressed byf, is the same for
all vertices of f.

DEFINITION 5. Let Fbe a finite subgraph of f, c a configuration, and z a transition
map. The restriction C lF is called a Garden ofEden (GOE) pattern if, for all configurations
c* such that c* IF ClF, there is no configuration c’ such that (c’) c*. A configuration
c is GOE if there is no configuration c’ such that z(c’) c.

Remark. If z is considered as time, and ifwe consider the sequence ofconfigurations
c, r(c), z(r(c)), as the sequence of the states of the universe as time passes, then a
GOE pattern is a restriction that can only appear in the initial configuration c.

DEFINITION 6. Two patterns Pl and P2 are said to be mutually erasable if, for all
pairs of configurations c and c* such that ClF Pl, C* IF P2 and cl \F C* I\F, we
have r(c) z(c* ). Note that, if F

_
E and if C IF and C’IF are two erasable patterns,

then so are c lE and c*lE.
DEFINITION 7. For F a subgraph of f, the subgraphs F/ and F- are defined as

follows:

e+= t..J (v);
vF

in other words, F/ is obtained by adding to Fthe subgraph whose vertices are neighbours
of some vertex of F. F-, below, is the union of the N(v), v F, that are contained in
F: - I..J N( v).

veF,N(v)_ F

The difference set F\F- is the boundary of F. Clearly, F
_
(F+)-. However, equality

does not always hold, nor do we always have F
_

(F-)/. Also, f\F
_
(f\F-)-.

DEFINITION 8. Let F1 and F2 be two subgraphs of f. A mapping a:Fl - F2
embeds Fl in F2 if

(i) It is one-to-one;
(ii) It commutes with N: O-(N(v)) No-(v).

An embedding map is also called an (injective) isomorphism. If O-1, O-2, O-m embed
F in F2, then F2 contains rn copies of Fl if O-i (FI) f’) 0"j( FI , for # j.

The latter definition extends to restrictions of configurations as follows.
DEFINITION 9. For O-, F, and F as in Definition 8, and c a configuration, define

O-(ClF,)( v) vF2.
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A restriction C’IF2 is said to contain m copies of C lF, if F2 contains m copies ofFl under
m isomorphisms al, a2,..., am, and ai(ClFl) C* I,,F.). all i’s.

It is clear that copies ofGOE or of mutually erasable patterns still have these prop-
erties.

LEMMA 1. Let c be a configuration and let F (. Then the restriction r( C lF- only
depends on C IF and not on c.

Proof. It is clear that, if c* is such that c* IF C IF, then r(c* IF- r(c) IF-.
LEMMA 2. Let F be a finite subgraph of(, and assume that F/ is not the support

oftwo mutually erasable patterns (that is, for all c and c* such that c F+ 4: C*IF/ and
1 f\F C* I\F we have r( c) 4: r( c* )). Iftwo configurations cl and C2 agree on F+ \F-
and disagree on F-, then their iterates z( ci disagree on F.

Proof. Suppose that there existed el and c2 that agree on F+ \F- but disagree on
F-, having z(cl and z(c2) agreeing on F. From a new configuration c3 that agrees with
c2 on F+ and with cl everywhere else. Then we claim that r(cl z(c3). Equality holds
outside F+ because cl and c3 agree on (\#" since el and c2 agree on F+ \F-. It holds
on F by assumption. Thus Cllr+ and C2]F are mutually erasable, since they differ only
on F-, a contradiction proving the lemma.

Consider now two finite subgraphs L and B of (, and assume that B contains m
copies of L under al, ti2 11m. Let l L I. b BI. a AI. and u B\B-I.
The following theorem includes Moore’s theorem and Myhill’s theorem as special cases
(Theorem 3).

THEOREM 2. Let L, B, and a be as above, and suppose that

(2) ab-u > (al- 1)mab-ml.
Then

(i) IfL is the support oftwo mutually erasable patterns, then B- is the support of
a GOE pattern;

(ii) IfL is the support ofa GOE pattern, then B+ is the support of two mutually
erasable patterns.

Proof. (i) The proof closely follows that of Moore’s theorem. Let R be the equiv-
alence relation defined on the set of patterns having support L by declaring equivalent
two patterns ifthey are equal or mutually erasable. The number ofR-equivalence classes
is at most a 1. R induces an equivalence relation R* on the set of patterns having
support B as follows: PlR*P2 ifpl(v) pz(t)) for v not in one of the copies of L, and,

-1 ’S.if 1171 (Pl IitL)) has the relation R with 11i (P2Ii(L)), all The number of equivalence
classes ofR * is therefore at most (a )mab-mr. It is easy to see that two patterns with
support B that are R*-equivalent are either equal or mutually erasable. Therefore, if
Cl BR* c2 B, then Lemma implies that Z(Cl )l- r(c2) I-. The number of patterns
having support B- that are ofthe form r(c) l- for some c is at most equal to the number
ofR *-equivalence classes. The total number of patterns on B- being ab- u, (2) implies
that there exists a pattern on B- that is not of the form r(c) l- for some configuration
c, that is, a GOE pattern.

(ii) Assume the contrary. Lemma 2 applied to B+ implies that the number ofdistinct
patterns with support B of the form (c) lB (and therefore not GOE) is at least equal to
the number of distinct patterns on B-; these are ab-u in number. On the other hand,
there can be no more than (a )mab-mt patterns on B not containing at least one
copy ofthe GOE pattern under one ofthe 11i’s. Since a pattern containing a GOE pattern
is also GOE, the number h of non-GOE patterns with support B satisfies the inequality

ab-u <= h <= (a- )mab-ml,
which contradicts (2).
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Taking logarithms, inequality (2) is equivalent to

(3)
b [ + ml (log (a’ )) ] <1

Now ml/b -< and log (at- )/1 < 1, so that the quantity in square brackets is positive
and less than 1. Suppose that ml/b >- q, for some real number q (0, 1]. Then

(lg(a’- 1) 1)=t<(4) + q

is an upper bound for the above quantity. This leads us to the following definition.
DEFINITION 10. A graph (g is tight if, for each finite subgraphs L of (g, there exist

a real number q (0, and an integer no both depending on L such that for all vertices
v (g and all n

_
no the ball B(v, n) contains at least mn >= (bn/l)q copies of L, where

b B(v, n)l and l ILl.
The next theorem generalizes the theorems of Moore and Myhill.
THEOREM 3. Let f be a tight graph, L a finite subgraph of (g, and let { Bi } be

a sequence of balls as in the above definition. Assume further that lim infi_.o bi/
(bi ui) 1, where ui Bi\B:, I. Then

IfL is the support oftwo mutually erasable patterns, then there exists an such
that B 7, is the support ofa GOE pattern;

(ii) IfL is the support ofa GOE pattern, then there exists an such that B is the
support oftwo mutually erasable patterns.

Proof. By Theorem 2, it is sufficient to show that (3) holds for some i. By tightness,
the upper bound (4) holds for all i, and the hypothesis on lim inf ensures the existence
of an such that b/(bi ui < s, where s 1/t > 1. [2]

The remainder of this section is devoted to showing that Cayley graphs are tight.
The following concept was introduced by Milnor [4 ].

DEFINITION 11. Let G be a group generated by a finite set X. The growth function
of G for X is the function

3"(n) {g GI Igl =< n};

that is, 3’(n) is the number of elements of G that can be expressed as words of length at
most n in the elements ofX and their inverses.

The notion of the growth of a group G becomes that of the growth of a graph when
we consider a Cayley graph ( of G. In this case, 3"(n) [B( 1, n)l. (Due to the translation
invariant character of (g, the ball can be centered at any vertex of (.) For instance, the
graph of Fig. 2 (a) has growth 3"(n) 2n2 + 2n + 1; that of Fig. 2 (b) has growth
3"(n) (2n + 1)2.

It is easily seen that the function 3"(n) satisfies the following inequality:

(5) 3"(n + m) <- 3"(n)3"(m).

LEMMA 3. Cayley graphs are tight.
Proof. Without loss of generality, we can assume that the subgraph L of Definition

10 is a ball of radius m. Consider B B(g, m), and let g2, g3, be the vertices at
distance m + from B. The ball centered at g2 and of radius m has no vertices in
common with B; we write B fq B . Let g3 (after renumbering) be the first vertex
such that B3 has an empty intersection with B tO B2,..., gi the first vertex such that Bi
has an empty intersection with B t.J B2" I,.J Bi- . When no vertices with this property
are left, we have a set of balls B, B2,..., Bt that are pairwise disjoint. Consider now
the set of vertices at a distance m + from the union of the above balls. Proceeding as
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before, we construct a sequence of balls that are pairwise disjoint and disjoint from the
balls of the previous step; let B, B2, be this sequence, and let g, g2, be the
corresponding centers. Any point g e ( has a distance < m from one of the B;’s, so that,
for some i, a point g belongs to the ball B(gi, 2m).

Now let B(h, n) be a ball of radius n, and let r be the number of copies of the ball
ofradius m contained in it. This number ris at least equal to the number ofgi’s contained
in B(h, n m). Now, if g B(h, n 3m), then, as seen above, g B(gi, 2m), some
i, and this gi is in B(h, n m). Since [B(gi, 2m)l 3"(2m), we have

3"(n 3m) B(h, n 3m)l -< {gi e B(h, n m)

As noted above, I{gi - B(h, n m)}l --< r, so that r >= 3"(n 3m)/3"(2m). Now
from (5) it follows that 3"(n) 3"((n 3m) + 3m) -< 3"(n 3m)3"(3m) and that
3"( n 3m >- 3"(n) / 3"( 3m ). Therefore

3’(n)
r >

3,(2m)3,(3m)
3,(m) 3"(n)

3"(2m)3"( 3m 3"(m)

With q 3"(m)/3,(2m)3"(3m) (see Definition 10), this proves that a Cayley graph is
tight. 3

Remark. In the remark at the end of 2, two properties of a Euclidean tessellation
were noted. For the Cayley graph of a group, Property becomes that of being tight. In
the theorem of Moore, the sequence of squares B is chosen in such a way as to have
q 1. Property 2 is weakened in the sense that the existence of the limit is not required.
It is sufficient that lim inf 1.

4. The main theorem. It follows from inequality (3) that 3"(n) =< 3"( )n; that is,
3’(n) /n =< 3"( ). The sequence 3"(n)/n is not only bounded; the limit

lim ,(n) /" a

always exists (see 4 again). If a > 1, then, for all sufficiently large n,

3"(n) >_- a n,
and we say in this case that G is of exponential growth. If a 1, two cases are possible.
Either G is of polynomial growth, that is, 3"(n) is bounded above by a polynomial in n
for all sufficiently large n, as follows:

3"(n) _-< p(n);

or G is of intermediate growth; that is, 3"(n) grows slower than any function of the form
an, a > and faster than any polynomial in n.

Remark. The fact of being of a given type of growth is a property of the group; it
does not depend on the choice of a set of generators 4 ]. Groups of all three types exist.
Typical examples are the free group of rank r, for which 3"(n) (r(2r n / r

), which has exponential growth. The free abelian group of rank r, for which 3"(n)
]=o 2i()(), has polynomial growth, with p(n) 3"(n), of degree r. Groups of inter-
mediate growth are much more difficult to find. Their existence was proved by Grigorchuk
[2 ], who gave examples of groups whose growth function has the bounds

2 n’/ -< 3"(n) _-< 2 n",

where t log32 31.
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From Lemma 3 and Theorem 3, we have the main result of this paper.
THEOREM 4. Let (a be the Cayley graph ofafinitely generated group whose growth

is not exponential. Then,for a cellular automaton on (a, there exist GOE patterns ifand
only ifthere exist mutually erasable patterns.

Proof. Let 3’(n) be the growth function of fa. Since the quantity 3"(n)/3"(n is
greater than or equal to 1, so is its lim inf as n -- . If this limit is greater than 1, then
3"(n) is exponential. Moreover, (a is tight. Thus all the hypotheses of Theorem 3 are
satisfied, and the result follows.

If the growth is exponential, neither Moore’s theorem nor Myhill’s theorem nec-
essarily hold. This is shown in 6.

5. The topology of . As in the classical case of Euclidean tessellations (see [3 ],
for instance), we can introduce a topology on the set of all configurations on the
Cayley graph of a group G. Among other things, this topology can be used to show that
the existence of GOE patterns is necessary and sufficient for the existence of GOE con-
figurations. The latter result is known in the case of Euclidean tessellations (see 8,
Lemma ]). The purpose of this section is to show that it also holds for a Cayley graph
of a group G, independently of the growth of G.

Let the set A of states be given the discrete topology. Then the set

=A= II Av

is endowed with the product topology. An element of the subbasis

p-(U), vC, U___A,

where Pv is the projection on the vth component, is the set of all configurations for which
the value at the vertex v is restricted to the elements of U. If U { i, j, k }, then

pl(U) p-l(i) tO p-I (j) tO t3 pl(k).

The basic open sets are thus finite unions of sets of the form

(6) pv,- (il) p1(i2)2 fq f-) p-,l (i,), v fa, ik cA.

IfF is the finite array whose vertices are v, v2,..., v,, then a basic open set of type (6)
consists of all configurations that agree with a pattern on F. A basic open set is then
determined by considering a finite set of patterns p on arrays F and taking all the
configurations whose restriction to at least one ofthe F’s is p;. This topology is induced
by the metric d defined as follows. If c c’, then d(c, c’) 0. If c 4: c’, let n be the
smallest integer such that the restrictions of c and c’ to the ball B, G fa with center and
of radius n are different, and define d(c, c’) 1/(n + ). If o is a nonnegative real
number and c a configuration, then the ball of center c and radius p

B(c, O) {c’ld(c, c’) <= p}
consists ofthe configurations c’ that agree with c at the vertices of fa whose distance from
the vertex is at most n, where n is the smallest integer such that /(n + _-< p.

Here are a few properties of this topology. Let c c, and let U be an open set
containing c. Then c Ul

_
U, where U is a set of type (6) and U contains an infinite

number of configurations. Thus every point of is an accumulation point, and is
perfect. Moreover, since A is a discrete space, cg is totally disconnected, and since A is
compact, by Tychonoff’s theorem is compact.
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Consider now the transition map
B(c, 0). Consider all configurations c* such that c* agrees with c’ at B( 1, n)/, where n
is the smallest integer such that 1/(n + <

B(c, ), and they constitute the ball B(c’, /( n + 2 )). Thus the inverse image ofthe ball
B(c, ) is open, and is continuous.

The next lemma characterizes the accumulation points of sequences.
LEMMA 4. A configuration c is an accumulation pointfor the sequence c, c2, if

and only ifevery pattern that agrees with c also agrees with ci for infinitely many i’s.

Proof. Let c be an accumulation point of the sequence c, c2 and let p be a
pattern agreeing with c. If v, v2,..., vn are the vertices of the support of p, and the
value of p at vk is ik, then the open set (6) contains c, and so infinitely many ci’s.
Therefore these ci’s agree with p. For the converse, let U be an open set containing c.
Then U is a union of sets of the form (6), so that c belongs to a set of this form. Let p
be the corresponding pattern; then c agrees with p, and by hypothesis so do infinitely
many ci’s. Therefore the latter belong to the same set of type (6) as c, and so also to U.
Thus every open set containing c contains infinitely many c;’s, and the result is
proved.

The above lemma leads us to the following theorem.
THEOREM 5. Let 1 be a cellular automaton on a Cayley graph f. Then the existence

ofGOE configurations is necessary and sufficient for the existence ofGOE patterns.

Proof. Necessity is clear. For the converse, assume that there are no GOE, and let
c be a configuration. Let F F_ be a sequence of subgraphs whose union is the
whole graph f. By assumption, each restriction c le is in the image of some ci under
as follows:

ClFi ’(Ci)lFi.

Let F be a finite subgraph of f. Then F
_
F, some k, and therefore, for >= k,

7"(i)1F

Thus every pattern that agrees with c also agrees with z(ci for infinitely many i’s. By
Lemma 4, c is an accumulation point for the sequence z(ci ), 1, 2, Therefore a
subsequence of it converges to c as follows:

(c;,), (c;), c.

’SSince z is continuous, the sequence of the co, also converges, to c’, say, and the limit
being unique (the space c is Hausdorff), we have z(c’) c. Thus no configuration is
GOE, and the theorem is proved.

Remark. The existence of GOE configurations means that r is not surjective. The
above theorem says that nonsurjectivity ofr is equivalent to the existence ofGOE patterns.
The noninjectivity of r, however, is not equivalent to the existence of mutually erasable
patterns; this is easily seen. See for a discussion about the various connections between
surjectivity and injectivity of r and the existence ofGOE configurations and ofmutually
erasable patterns in the case of Euclidean tessellations.

6. Cayley graphs of exponential growth. This section exhibits cellular automata on
graphs of exponential growth for which the theorems of Moore and Myhill do not hold.
Examples of such graphs were first given by Muller 6 ]. Our counterexample to Moore’s
theorem will use a Cayley graph of the modular group. The counterexample to Myhill’s
theorem will be that ofMuller. The Cayley graph ofthe modular group I’ with presentation

(7) I’=(x,y x2=y3 1),
(the free product of the cyclic groups of order 2 and 3 is given in Fig. 3, below.
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FG. 3

Let/(k) be the number of points whose distance from is exactly k. We have

3- 2 (k- 1)/a if k is odd,
(k)

2(k+ 2)/2 if k is even, k > 0.

Now -y(n) + 6 (k), so that

10.2("- )/2 6 if n is odd,
"y(n)

7.2"/2 6 if n is even.

Clearly, ,(n) is exponential.
Remark. In this example the limit of ,(n)/,(n does not exist. For n even,

this ratio tends to 7/5; for n odd, to 10/7. However, for other presentations of P (for
instance, F (x, y x2 (xY)3 ), this limit exists. Thus the existence of the limit
if not a property of the group but of (the Cayley graph relative to) a given presentation
of the group.

Consider now the automaton (A, (, N, f), where
(i) The state set A { 0, }
(ii) ( is the Cayley graph of F for the presentation (7);
(iii) N(v) is the set that contains v and the three vertices connected to it;
(iv) The state transition function fis defined as follows: (a) If the value at v is 1,

then f(N(v)) if exactly two of the vertices connected to v have value 1;
otherwise f(N(v)) 0; (b) If the value at v is zero, then f( N(v)) 0 if the
three vertices around v all have value zero or all have value l; otherwise,
f(N(v)) 1.

For this automaton there are two mutually erasable patterns; these are shown in Fig.
4, below.

That no GOE patterns exist can be seen as follows. Consider the array of Fig. 5.
For any choice of a and b, and of b’, c’, and d’ in { 0, }, there exists a pattern p on
the above array such that p(A) a, p(B) b and "r(p)(B) b’, "r(p)(C) c’, and
(p)(D) d’. This is shown in Fig. 6.

Now let p be a pattern on an array X. We prove by nduction on the number of
vertices ofX that p is not GOE. If X 1, there is nothing to prove. Let X > and
let v be an element of X at maximum distance from 1. By induction, there exists a
configuration c such that r(c) Ix\ o P Ix\ . Now v can be considered one of the
vertices B, C, D of Fig. 6. Assign an arbitrary value to a vertex B, C, or D not belonging
to X, and the value it has in p if it belongs to X. Now the configuration c* agreeing with
c except possibly at C, D, E, and F, and having at these points the values given according
to Fig. 6 is such that C’ix P.
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0 0

\ /

1

FIG. 4. Two mutually erasable patternsfor the automaton

FIG. 5

b’=1

a=0

b=0

a=l

b=0

a=0

b=l

a=l

b=l

1/1

1\1

b’-I

0/1

{i" 0

b’=O

0
1 0 0 0/0

1"1, 0

1/1! 1
0 0\1

b’=O

CI

01..10

b’=l

c’=0

d’=0

b’=0

0 1
00/ 0

0 (i’- o
o2o o

0 1"0

1"1 \

1/0 1/0 1/

i\1 ,,1i\ 1

FIG. 6. A pattern at the entry i, j) gives rise to the values at B, C, and D that are on top ofcolumn j, given
the values at A and B that are at the left ofrow i.
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FIG. 7

We now describe Muller’s counterexample to Myhill’s theorem. Consider the group

G (x, y, z X2 y2 Z2 ),
the free product of three copies of the cyclic group of order 2. The growth function
of G is 3’(0) 1, "r(n) 3.2 n- if n > 0. Part of its Cayley graph is depicted below
in Fig. 7.

In this picture, we use the convention of drawing only one edge for a generator if
this element has order 2. With this convention, the graph of G is a tree. The automaton

has A { 0, 1, 2, 3 } as set of states. Define an operation on A by + 0 and +
j k if i, j, and k are not zero and are all different. (This makes A a Klein group. For
a neighbourhood N(v) { v, vx, vy, vz } (in this order), the local map is defined as
follows:

(i) f(0, 1, 0, 0) f(0, 2, 0, 0) =f(0, 0, 1, 0) =f(0, 0, 3, 0) =f(0, 0, 0, 2)
f(0, 0, 0, 3) 1;

(ii) f(0, 3, 0, 0) =f(0, 0, 2, 0) =f(0, 0, 0, 1) O,f(i, 0, 0, 0) 0, all i’s;
(iii) f(l, i,j, k) f(l, O, O, O) + f(O, i, O, O) + f(O, O,j, O) + f(O, O, O, k).

Since the range of fis { 0, } any pattern for which the value at a point is 2 or 3 is GOE.
We now prove that there are no mutually erasable patterns. First, the addition ofA allows
us to define an addition between configurations as follows:

(c + c)(v) c(v) + c(v).

Thus, if (Cl + c2)(v) 0, then c(v) c2(v). It follows from this definition that the
parallel map is additive, shown below:

(c + c) (c) + (c).

Assume that p and P2 are two mutually erasable patterns on an array X and let c
and c2 be two configurations such that ci agrees with pi, 1, 2, on X, they agree outside
X, and r(c) r(c2). Thus (c + c2)(v) 0 for v gX, and r(c + c2) r(c) + z(c2)
0. Now if c + c2 is zero at all points of X, then c c2, contrary to assumption. Thus
there exists a point v at maximum distance d from such that (cl + cz)(v) 0. Now,
of the three vertices vx, vy, and vz, two are at a distance d + from 1, and therefore
c + c2 is zero at these points; let h and k be these vertices. Both have a neighbour,
namely, v, at which cl + c is not zero, the two other neighbours being zero. A case-by-
case check using the definition of fshows that either "r(c + c:z)(h) or z(c + c2)(k) is
not zero, a contradiction.

Acknowledgment. The authors are grateful to the referee for his or her helpful sug-
gestions.
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THE WEIGHTED SPARSITY PROBLEM:
COMPLEXITY AND ALGORITHMS*

S. THOMAS McCORMICK’f AND S. FRANK CHANG

Abstract. Many optimization algorithms involve repeated processing of a fixed set of linear constraints.
If the constraint matrix A is preprocessed to make it sparser, algebraic operations should become faster. In
many applications there is a priori information about the likelihood that each column will appear in a basis,
which can be expressed as weights on the columns. This leads to considering the weighted sparsity problem
(WSP): Find a row-equivalent constraint matrix with as small a weight of nonzeros as possible. The WSP is
shown to be NP-hard even with a nondegeneracy assumption, and even if restricted to instances with at most
three nonzeros per both row and column. WSP is shown to have a polynomial algorithm when the number of
nonzeros per either row or column is limited to at most two. This contrasts with previous results that, assuming
only nondegeneracy, the unweighted version of WSP does have a polynomial algorithm (this has proven to be
practically useful in tests on real data). The polynomial algorithm for WSP with at most two nonzeros per row
or column is based on solving one-row problems via minimum cut calculations, together with a sufficient
condition for piecing these one-row solutions together into a global solution.

Key words, computational complexity, sparse matrices, bipartite matching

AMS(MOS) subject classifications. 65F50, 05C70, 68Q25

Introduction. Many optimization algorithms involve repeated processing of a fixed
set oflinear constraints. When the constraint matrix is sparse (has a very small proportion
of nonzero entries), as is often the case in practice, algebraic operations become much
faster, and consequently very large problems can be solved. Because the speed of such
algorithms depends strongly on the degree of sparsity in the input, it is natural to ask
whether a constraint matrix can be preprocessed in order to make it sparser.

A typical application for such a procedure is to the Simplex Algorithm for linear
programming (projective algorithms require a somewhat different view ofsparsity, which
we plan to address in the future; see also Adler et al. ]). In Simplex, the processing
consists of maintaining a factorization of a changing basis matrix B chosen from the
columns of the constraint matrix .4. If.4 is sparser, then on average the various B’s will
be sparser.

In many applications, however, the modeler will have some a priori idea of which
columns of.4 are more likely to appear in a basis than others. For example, some activities
may seem economically more attractive than other activities. Alternatively, imagine that
we keep a log ofactual residence time in the basis for each column in a long optimization.
We could then use the residence times as empirical predictions of the likelihood of each
column appearing in a basis. (In a similar vein, Freund [9] considers solving central
trajectory problems with weights on constraints, which measure their likelihood ofbeing
active.) This leads to consideration of the following problem.

Weighted sparsity problem (WSP). Given A e 9 n, b e 9m, and w 9n, which
define constraints Ax b with weight wj on column j, find a nonsingular T e m
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such that .4 TA minimizes

wj" (number of nonzeros in column j ofA).
j=l

Note that since T is nonsingular, defining b Tb yields that { x 1n]Ax b }
x e n lAx b }. Thus such an Ax b would be an optimally sparse equivalent set

ofconstraints with respect to weights w. We assume that all wj are strictly positive (columns
with zero weight can be ignored, and negative weights do not make sense in this appli-
cation). We also assume for convenience that A has full row rank. Theorem 3.4.1 from
McCormick 18 implies that the results herein still hold without the full rank assumption.

Of course, in many applications there is no information about the columns, so the
best that we can do is to make all column weights equal and consider the (unweighted)
problem.

Sparsity problem (SP). Solve WSP with all w 1.

For WSP, note that ifwe can make every row ofA individually as sparse as possible
among all linear combinations of rows that include row i, then certainly A as a whole
will be as sparse as possible. This suggests that we initially restrict our attention to the
following problem.

One-row weighted sparsity problem (ORWSP). For a fixed row i, find multipliers
til, k =b i, such that

Ai. Ai. -Jr- tikAk.
ki

has a minimum weight of nonzeros.

(We have normalized the multipliers so that the coefficient on row is one.) When
all weights are one, we analogously have the one-row sparsity problem (ORSP).

The main results of this paper concern the complexity of the weighted problems.
We review previous results on the unweighted versions of the problem in where we
present a necessary nondegeneracy assumption, called the matchingproperty (MP) (MP
is necessary since all four problems are NP-hard without some "nondegeneracy" as-
sumption on the numerical values of the nonzero entries ofA). We also recall some of
the techniques that were used to get a polynomial algorithm assuming MP in the un-
weighted case because they will be used again for the weighted case. These techniques
are used to cast the objective of WSP into a more combinatorial form in 2. Section 3
then uses this form to prove that WSP is NP-hard even assuming both MP and that
every row and every column of A has at most three nonzeros. Section 4 then answers
the natural question of whether a polynomial algorithm exists for WSP if we restrict
either rows or columns to have at most two nonzeros each by constructing polynomial
algorithms in those cases. The complexity results in this work and quoted from previous
work (Hoffman and McCormick [15]) are summarized in the table below (it turns out
that ORWSP and WSP always have the same complexity, as do ORSP and SP). Table

lists the theorems establishing the most restrictive NP-hardness results and most general
polynomial algorithm results. Finally, 5 has some concluding thoughts on heuristic
algorithms for WSP.

We note that variants of the polynomial algorithm for SP have been implemented
in McCormick 19 and Chang and McCormick 3 ], 4 and produced very good results
on the real-life linear programming problems in NETLIB (see Gay 12 or Lustig 17 ).
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TABLE

Assumptions

ORSP, SP
ORWSP, WSP

None

NP-hard, Thm. 1.2
NP-hard

MP
MP, at most

3 nz/row and col

NP-hard, Thm. 3.1

MP, at most
2 nz/row or col

, Thms. 4.1, 4.2

1. Review of previous results. The methods that we use to analyze WSP involve
bipartite matching theory and network flows (see, e.g., Lawler 16 or Ford and Fulkerson
[7 ]). There is a simple correspondence between bipartite graphs and sparsity patterns of
rectangular matrices. Given the sparse matrix A, define the bipartite graph by setting
the left nodes of { rows of A }, the fight nodes of { columns ofA }, and the
edges of t { j[aij :/: 0 }. This correspondence allows us to refer to sparsity patterns
and bipartite graphs interchangeably. We display sparsity patterns as matrices, but use
the language of bipartite graphs to describe them.

A subset P ofthe nonzeros ofA, such that no two elements ofP lie in the same row
or column, is classically known as a partial transversal (see Welsh 25, 7.1 ). A partial
transversal corresponds to a (not necessarily maximum) matching (see, e.g., Lawler [16,
Chap. 5 ]) in a bipartite graph (i.e., a subset of edges with no common vertices). In the
example below, the circled transversal corresponds to the heavy matching in the bipartite
graph 3:

A= 0 (R) 0 ,=
x 0

(When we write a sparsity pattern, zero is represented by "0" or a blank and a nonzero
by "".) We favor the term matching even though it is historically inappropriate for
matrices.

A matching in A is called row-perfect if all rows ofA are matched; column-perfect
is defined similarly. A matching is perfect if it is both row- and column-perfect. A max-
imum matching is one with a maximum number of nonzeros. IfR { 1, 2,..., m } and
C
_

{ 1, 2 n } then ARC denotes the submatrix of A indexed by rows in R and
columns in C and M(Anc) denotes the size of a maximum matching in ARC; M(AIc) is
sometimes called the term rank ofAnc (see Ryser 23, Chap. 5 ).

We will solve one case of WSP with minimum cuts in maximum flow networks.
Recall that, in a maximum flow network G (N, A) with source s and sink t, a cut is
defined with respect to a node partition N S U T with S fq T ,, s S, and T.
We call S the s-side of the cut. Ifx* is a maximum flow in G, the s-side of the standard
min cut is defined by S* { e N there is an augmenting path from s to with respect
to x* } (this is the usual way to compute a min cut from x*). We shall assume that all
of our minimum cuts are standard minimum cuts, and we record the following fact,
which we will need in Lemma 4.5.

PROPOSITION 1.1 (see 7, p. 13 ). S* defines the unique minimum cardinality min-
imum cut.

It turns out that even SP is too hard to solve in general because it is too hard to
predict where the numerical values in A might cancel each other out during row arithmetic
(we call this unexpected cancellation). This is formalized below.

THEOREM 1.2. SP is NP-hard to solve in general.
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Proof. This was proved by Stockmeyer [24 ]; his proof is quoted as Theorem in
Hoffman and McCormick [15].

COROLLARY 1.3. WSP is also NP-hard to solve in general.
Because predicting unexpected cancellation makes analyzing sparse matrix problems

very difficult, sparse matrix workers have traditionally assumed that unexpected cancel-
lation will not happen, a "nondegeneracy" assumption (see Coleman [6 ]). A typical
justification is that numerical entries are subject to measurement errors, which are equiv-
alent to independent infinitesimal perturbations. This is similar to perturbation schemes
for resolving degeneracy in linear programming (see Charnes [5 ]) and does rule out
unexpected cancellation.

Unfortunately, this justification is invalid in practice because real matrices have
many entries that are small integers (which are not subject to measurement error) and
can lead to lots of unexpected cancellation. (See Murota and Iri [21 for an approach to
matrices that treats "small integers" differently from "real numbers.") However, algo-
rithms that are developed under such an assumption work very well in practice despite
the failure of the assumption to hold. Thus, making such an assumption can be seen as
a heuristic device for deriving good algorithms.

Corollary 1.3 forces us to make some sort of assumption to try to get a polynomial
algorithm. We will use the same assumption that was developed in Hoffman and
McCormick 15 ], which has indeed worked well in practice. (See Chang and McCormick
3], [4 ], or McCormick [19]; see also Adler et al. [2] for a heuristic approach to SP

that does not assume nondegeneracy and in fact tries to take advantage of unexpected
cancellation. Chang and McCormick 4 show that the present approach does not work
as well on practical problems as the nonassumption approach of Adler et al. [2 ].) Our
assumption is motivated by the expectation that if a submatrix can be permuted so that
it has a nonzero diagonal, then it should have full rank. More formally, we assume that
A has the following property.

Matching Property (MP). A has MP if rank ARC M(Anc) for all row subsets R
and column subsets C.

In classical terminology, MP states that term rank and numerical rank are the same
for every submatrix ofA. We shall assume that MP holds in the rest of this paper.

The Matching Property now allows us to make some strong statements about the
structure of a solution to ORWSP. For a solution ti. (with t;i of ORWSP define
U { k 4 i[ tik 4 0 } the set of rows of A used by ti., and G { j[ dij 0 and aks. =/= 0,
some k e U LI } }, the set of columns of A affected in a good way by ti.. That is, if
a0. =/= 0 but d0. 0, then we say that a0 was hit, and then j e G. If aij 0 and as. 4 0 for
some k e U, then we would expect that di =/= 0; if instead dj 0, then ai is avoidedfill-
in, and again j G.

Intuitively, lack of unexpected cancellation means that ifwe use uI rows, then we
cannot affect more than UI columns in a good way; i.e., al -< UI. It does not pay
to choose UI > G I, so UI a[. The following theorem formalizes this argument.

THEOREM 1.4 (McCormick [18, Cor. 3.2.3 ]. When MP holds, there is an optimal
solution to ORWSP where Ava is a square, nonsingular matrix.

Note that t. determines U and G, and conversely, given a U, G with Aa square
and nonsingular, we could compute t. via

tiu -AiGA -I
UG

(1.1) ti=O,kUCJ {i},

lii 1.
Thus we can equivalently search for an optimal U and G in solving ORWSP.



THE WEIGHTED SPARSITY PROBLEM 61

This structure is already almost enough to show that a polynomial algorithm for
solving ORSP exists, and indeed Hoffman and McCormick [15] give such an algorithm
based on computing minimum cuts.

However, if we solve the m ORWSPs, we still face the question of whether we can
put all these local solutions together into a global solution to WSP. Minimizing per-row
sparsity minimizes global sparsity, but it is not clear that pasting together the one-row
solutions from 1.1 would result in a nonsingular T.

In fact, ORWSP solutions often yield a singular matrix T when pasted together.
Consider the example with w 10, w_ 1, and

( )
The optimal one-row solutions are UI ( 2 ), U2 ( ), and GI G2 ( ), leading to

(0 )(1.2) A=
0

Because T causes to lose rank, T is singular. It is too tempting for the individual
ORWSP solutions to zero out high-weight columns like the first one in 1.2), although
we globally need to retain at least one of the high-weight nonzeros to maintain rank.

This quandary was resolved when solving SP by finding a sufficient condition on
the one-row solutions, which guarantees that they can be pasted together into a global
solution, which we shall need in 4. Suppose that Ui, Gi, 1, 2,..., m are a set of
feasible solutions to ORWSP for each row and define U; U t_J { i). We say that
{ U, G; } are transitive if:

1. There is a fixed, row-perfect matching ’ in A such that Gi equals the columns
matched to rows Ui under /for all i, and

2. Ifj Ui, then Uj U.
THEOREM 1.5 (Hoffman and McCormick [15, Thm. 7]). Assuming MP, if

{ Ui, Gi } are transitive, then the T defined by 1.1 is nonsingular.
For SP, the ORSP solutions from Theorem 1.4 as sewn together by Theorem 1.5

yield the following theorem.
THEOREM 1.6 (Hoffman and McCormick [15, Thm. 8 ]). There is a polynomial

time algorithm that solves SP under MP.

2. Combinatorializing the one-row objective. To find a more combinatorial expres-
sion for the objective of ORWSP for row under MP, consider choosing an optimal U,
G pair as a two-stage process. First we choose the set of rows U that we shall use, then
we choose the best G with respect to U. In choosing U, we are allowing potentialfill-in
in the columns P(U) { j[ a0 0 and akj : O, some k U}. That is, given U, the
nonzeros in di. can potentially appear in either Y { j a/4 0 ) or it. P(U). We want
to choose G as the subset of the ]U[ heaviest columns from Y U P(U), subject to G
having to perfectly match to U (so that Av will be nonsingular, by MP). However, any
G perfectly matching to U must be a subset of Y k9 P(U), so it must be optimal to choose
G as a set of columns matching to U that maximizes g wj (since weights are only on
columns and are positive, [GI will always equal U[ ).Thus, if we define M(U) as such
a set of maximum-weight, perfectly matchable columns, ORWSP is equivalent to

2.1 min w(P(U) w(M(U) ).
u

Note that for a given U, P(U) and M(U) are easy to compute. In fact, since weights are
only on columns, M(U) can be computed by the Greedy Algorithm (because subsets of
columns hit by a matching form a transversal matroid, see Welsh [25]).
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Because P( U U V) P(U) U P(V) we have that w(P( U)) is submodular. Less
trivially, it can be shown that w(M(U)) is submodular (see Chang [2 ], Thm. 2.3.1 ).
Unfortunately the difference between two submodular functions is in general neither
sub- nor supermodular, and it is easy to construct examples of each in this case, even if
we restrict ourselves to at most two nonzeros per row and column:

wj 100 100 wj 100 100
row 0 0 row 0 X

x x 0 0 S{ x x 0S
0 x x 0 T{ 0 x 0

T| 0 0 X 0

The example on the left shows that w(P(U)) w(M(U)) is not submodular, while the
example on the fight shows that it is not supermodular.

When minimizing a set function f 2E ._, , if f is submodular a polynomial
algorithm must exist (see Grftschel, Lovfisz, and Schrijver 14 ). Iff is not submodular,
the problem is often NP-hard. Indeed, we shall prove that WSP is NP-hard in the next
section.

However, note that for (the unweighted) SP, w(//(U)) U], a modular function,
and the one-row objective is now

min P(U)} }U}.
U

It is still true that P( U)I is submodular, but since UI is modular, the difference is
submodular. This explains why there is a polynomial algorithm for SP but not WSP.

3. WSP is NP-hard, ORWSP is NP-comlflete. In this section we prove that WSP
is NP-hard, even assuming that MP holds and that ORWSP is NP-complete. We do not
know how to prove that WSP is in NP because it is difficult to bound the size of the
entries in the transformation matrix T.

THEOREM 3.1. WSP is strongly NP-hard even with MP, and even ifwe restrict to
instances with at most three nonzeros per row and per column.

The restriction to at most three nonzeros per row and per column is not surprising.
There is a simple folklore method (see Megiddo [20 ]) to transform any Ax b into an
equivalent (but larger) A’x’ b’ in polynomial time, where A’has at most three nonzeros
per row and per column.

We reduce the following known NP-complete problem to WSP.

Cubic Node Cover CNC ).
Instance: Undirected graph f# (N, E) with each node having degree exactly three

(a cubic graph), and an integer k =< NI.
Question: Is there an H N such that every edge i-j e E has e H or j 6 H (H is

a node cover) with HI < k?

A proof of CNC’s NP-completeness is in Garey and Johnson 11 ].
Proofof Theorem 3.1. Given instance , k of CNC, set n NI, m EI, and

construct an instance ofWSP as follows: A has n + 4m + columns divided into n node
columns indexed by nodes, each with weight 1; m edge columns indexed by E, each with
weight 2m(n + + 1; 2m incidence columns indexed by pairs (i, j-k) where j
or k, each with weight n + 1; m setup columns indexed by E, each with weight
m(2m(n + + + 1; and one enforcer column with weight m(m(2m(n + + +

+ M. A has 3m + rows divided into row 1, 2m incidence rows indexed like
incidence columns, and m setup rows indexed by E.
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TABLE 2

Row

Incidence
i,i-j

Setup
i-j

Node k Edge k-l Incidence k, k-l Setup k-l Enforcer

0 always

iff
k=i

0 always

0 always

iff
i-j k-I

x iff
i-j k-l

0 always

Xiffi k,
i-j k-!

0 always

X in first entry only

0 always

X if on diagonal or
first super diagonal

0 always

0 always

The nonzeros in A are as in Table 2.
Thus the incidence-node submatrix is the arc-node incidence matrix of (q with every

row split into two parts, the incidence-edge submatrix is a row-doubled identity, incidence-
incidence is an identity, setup-edge is an identity, setup-setup is a diagonal with one
superdiagonal matrix, and all other entries are zero except for the row 1-enforcer and
first row 1-setup entries. Note that every row and column does have at most three nonzeros,
because (q is cubic. Also, all weights are polynomial in n and m, so this is a strongly
polynomial reduction.

Now we claim that WSP has a solution in which Jl. has weight at most M +
m(n + + K if and only if CNC has a node cover H of size at most K. Consider any
optimal solution to WSP on A. Because M is so large, row will not be used by any
other row. Thus we can process row without worrying about the nonsingularity of T
(solving WSP on A must solve ORWSP on row ). Note that it always pays to use all
setup rows for row to hit the first setup nonzero in row and to keep any other setup
columns in row from filling in. However, then all edge columns fill in, and it will pay
to use m of the 2m incidence rows, exactly one from each pair (i, i-j), (j, i-j), to hit all
the fill-in in the edge columns. Define H { e NI indexes a used incidence row } note
that H is a node cover and that the weight of fill-in in the node columns is HI. It will
never pay to hit any of the fill-in in node columns, because doing so would cause much
greater weighted fill-in in the incidence columns, fill-in that cannot be subsequently
removed.

Because m of the incidence columns get filled in while hitting the edge column fill-
in, the final weight ofAi. in any optimal WSP solution is M + m(n + + HI for node
cover H. Given a node cover H, the construction can be reversed to obtain such a
solution to ORWSP for row 1. Thus no polynomial algorithm for WSP with at most
three nonzeros per row and per column can exist unless there is also a polynomial al-
gorithm for the NP-complete problem CNC.

COROLLARY 3.2. ORWSP is strongly NP-complete even with MP and at most three
nonzeros per row and column.

Proof. For the A constructed in the proofofTheorem 3. l, WSP reduces to ORWSP
for row l, so ORWSP is NP-hard. Theorem 3.1 and (2.1) show that U is a (polynomial-
length) certificate for ORWSP (see Garey and Johnson [10 for the definition of certif-
icate), so ORWSP is NP-complete.

Note that the proofs of Theorem 3.1 and Corollary 3.2 also happen to include the
restriction that there are at most five distinct weights.

4. WSP is polynomial for at most two nonzeros per row or per column. Theorem
3.1 naturally raises the question of whether WSP with MP is still NP-hard if we further
restrict to at most two nonzeros per row or column. (Other linear programming problems
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become easier with this restriction; see, e.g., Megiddo 20 ].) Despite the lack of sub-
modularity in this case exhibited in the examples in 2, we will prove that WSP with
MP will now have a polynomial algorithm.

Matrices with at most two nonzeros per column are called generalized network
matrices (see Odin 22 ), and they occur fairly often in practice. Thus it may seem that
the column result would have some practical applications. However, the following example
shows that minimizing weighted sparsity can destroy the generalized network structure
of the matrix (the weights are given above the columns):

0

X X -- X X
0 X 0 x

Good, special-purpose generalized network algorithms exist (see Goldberg, Plotkin, and
Tardos 13 ]), so it is probably better in practice to leave these matrices alone. Matrices
with at most two nonzeros per row have such a special structure (as we will see) that
they can be dealt with better by ad hoc methods.

THEOREM 4.1. Assuming MP, WSP e ) when restricted to at most two nonzeros
per row.

Proof. We consider A as the sparsity pattern of an edge-node incidence matrix of
a graph (, with each singleton row representing a self-loop. The row-perfect matching
ofA assures us that there exists no more than one self-loop for each node in (. We can
assume without loss of generality that ( is connected, with m edges and n nodes.

Because A has a row-perfect matching, m =< n, and because f is connected, we
havem=norm=n- 1.

Case (m n). Then is a 1-tree (i.e., a tree plus either an edge or a self-loop),
and A is square and nonsingular (by MP). Thus A can be reduced to an identity via its
inverse; and that is optimal.

Case 2 (m n ). Now the graph fg is a tree. Let B be the m m submatrix
consisting of the n heaviest columns ofA. B is nonsingular since (g is a tree, and by
MP. We multiply A by B-1 to get the matrix in Fig. l, which has the lightest total weight
among all matrices equivalent to A. See Fig. 1.

The major work involved in Case or Case 2 is simply Gaussian elimination.
Therefore, the total time in processing the whole matrix A is bounded by O(m3). [-]

THEOREM 4.2. Assuming MP, WSP ) when restricted to at most two nonzeros
per column.

To prove the theorem we need to prove four lemmas. We consider the sparsity
pattern ofA as the node-edge incidence matrix ofa graph f, with each singleton column

n- 1 heaviest columns

FG.

lightest column
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representing a partial edge whose other end is dummy node 0. We can again assume
without loss of generality that the nonpartial edges of (q form a connected graph. For
row set U and column set G, let f U, G) denote the subgraph induced by the nodes in
U and edges in G.

LEMMA 4.3. There is an optimal solution U, G) to ORWSP for row with
( U, G) a tree.

Proof. Let U be the smallest cardinality optimal solution. Suppose that j e G has
only one nonzero in A, say in row i. If 1, then Avj 0, contradicting the nonsin-
gularity ofAv. If 4: 1, then U\ { i}, G\ { j } is a better solution than U, G). Thus
( U, G) induces no partial edges. Note that UI al / 1, so all that is left to show
is that fq U, G) is connected.

Suppose ( U, G) is not connected. Then there exists at least one connected com-
ponent not able to reach node 1, say on node set V and edge set X. Therefore X must
be a subset of the zero columns in row (else X couM reach row ). Moreover, XI
must be equal to IVI, for if not, then Avx and Av\v,\x cannot both have complete
matchings, implying that Av cannot have a complete matching, a contradiction. Figure
2 below shows our situation. Now U\ V, G\X) has ORWSP objective value at least as
good as U, G) (it might cause less fill in than U, G)) and has smaller size. []

Using this lemma, we can give a graphical interpretation of the objective function
(2.1) for the class of matrices we are dealing with. The optimal solution to ORWSP for
row is a tree rooted at node 1. We have that U is the "nodes" or "set of nodes"
spanned by -, and M(U) is a maximum spanning tree of U. By the optimality of -,
the arcs of- form M(U). Finally, Y t_J P(U) is the set of arcs incident to U. Thus -minimizes

obj - Z w,2 w,2.
j hitting nodes in " j -(including edges in ’)

Because the optimal solution to ORWSP for row uses a maximum weight spanning
tree- for a subset ofnodes (rows) containing 1, it is natural to ask about the relationship
between " and a fixed maximum spanning tree " * for the entire graph f.

LEMMA 4.4. There is an optimal tree "for ORWSP that is a subtree of" *.
Proof. Let " be an optimal ORWSP tree with a minimum number of non-T *

edges. If there is an edge i-j -\" *, let 6e’ and " be the two subtrees of we get
when i-j is removed, where nodes 1, e -’, and j e if". Let (if", "’) denote the cut

G

x x x x x 00 0 0 0

(R) 0
(R)

(R)

(R)

(R)

(R)

FIG. 2

row

V
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{ u-v e (qlu re’, v e "}. Now i-j ’* implies that there is a unique cycle
Q -* t.J i-j. Because Q has already crossed the cut (if", -’) once (at i-j), it must
cross again in some edge k-I with k e re’, re’. By optimality of- * we must have
that

(4.1) Wkt >- Wij.

Case 1. (1 ") See Fig. 3. Note that " U k-I \ i-j is again a tree spanning
all the nodes in -. Now (4.1) implies that obj (-) =< obj (-); but " has fewer non-

* edges than -, which is a contradiction.
Case 2. (1 7") See Fig. 4. Now consider tree "’ versus tree -; obj (-) includes

Wkt but not wij, whereas obj (-’) includes wi but not wk. Any other edge included in
obj (") is also included in obj (-), so by (4.1) obj (-) >= obj (-’). But ’has fewer
non-" * edges than ’, which again contradicts the assumption on ’.

Call a node subset U not containing node connected to if U U { } induces a
(connected) subtree of" *, and define Cl to be the family of node sets connected to 1.
Now is closed under union and intersection and so is a ringfamily (see Frank and
Tardos 8 ]). For node j 4:1 set w(j) equal to the weight of the first edge on the -*
path fromj to (the predecessor arc ofj). Then for U e c the edge subset M(U) forms
a subtree of- * and w(M(U)) v w(j) w(U), a modular function. Thus ORWSP
in this case becomes

(4.2) min w(P(U)) w(U),
Ue

a submodular function defined on a ring family. Thus, although (as we saw in 2) the
objective is not submodular on all sets, it is submodular on , which is enough to imply
that ORWSP with at most two nonzeros per column is in (see Grrtschel, Lovisz, and
Schrijver 14 ]).

To get a more reasonable polynomial algorithm than the ellipsoid-based one in
Grrtschel, Lovhsz, and Schrijver 14], we solve (4.2) via a minimum cut calculation.
For row define a maximum flow network ,A/I as follows. Make node the source, node
0 the sink, and direct all edges j-k of * away from with capacity ck w. Replace
edge j-k " * by a new node ej with arcs j -- ek and k -- ek with capacity , and
arc ejk -’ 0 with capacity Wk. Finally, direct each partial arcj-0 fromj to 0 with capacity

c0 w0.
Suppose that (S, T) is the standard min cut in I/’1 with e S and 0 e T. We claim

that the row nodes U1 in S induce a subtree -(S) of- *. If not, then there would be a

FIG. 3
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FIG. 4

connected component ( of the subgraph induced by different from the component
C1 containing 1. There are no arcs in 4/ connecting a row node in C to a row node in
t, so that deleting the row nodes in t from could only improve the min cut, contra-
dicting that (S, T) is the minimal min cut.

Now define U 1 \ } and G1 as the set of predecessor arcs for all UI, so
GI [Ull. If UI and i-j is a non-* edge incident to with j v O, ei must be

in S (because Ci,e ). Thus if i-j is a non- * edge with j :/: 0, arc ei -- 0 is cut
by (S, T), whereas ifj 0, then arc j -- 0 is cut by (S, T). Thus cap (S, T)
obj (-(S)). This construction is reversible, which shows that this tree algorithm solves
ORWSP in this special case.

To get around the difficulty in pasting together these one-row solutions illustrated
in (1.2), let /* be a fixed, maximum weight row-perfect matching in A with row
matched to column d/at *(i), and call the column set it hits M. (Note that d//* matches
row node to edge d//* (i) incident to in fa.) Then MP implies that A.M is nonsingular,
and the nonsingularity ofa WSP solution T implies that.m TA.M is also nonsingular.
By permuting the rows of Twe can assume that has matching * in exactly the same
positions as in A. To ensure that d//* is preserved in we consider the following problem.

Global ORWSP (GORWSP). For row i, find U and G with *(i) G, which
minimize the weight ofthe nonzeros in A.. That is, solve ORWSP with the extra constraint
that column d///*(i) does not get hit.

GORWSP is easy to solve: just temporarily delete column /*(i) from the matrix
and use the Tree Algorithm to solve the modified ORWSP. We call this the global tree
algorithm.

We want to prove that the resulting (Ui, Gi) pairs are transitive in the sense of
Theorem 1.5 to get global optimality. To do this we need to analyze the relation between
our globally fixed d//* and the maximum weight-spanning tree -, which we fix for
solving row i’s GORWSP. Define (ai as (a with edge d///*(i) removed.

Consider the subgraph of (a induced by the nonpartial edges in * and let { Ck }
be the set of its connected components. Note that each Cg must have either one fewer
edge than its number of nodes (so that Ck is a tree, and one node in Cg is matched to a
partial edge under d///*; we consider this partial edge to be part of Ck), or the same
number of edges and nodes (so that C is a 1-tree). Suppose that row node is in
Then there exists a maximum spanning tree " for (ai, which contains every edge in
d///* except for d///*(i) from Ct and a lightest weight edge from the unique cycle in each
Ck, which is a 1-tree (possibly including Ct \ { d///* (i) } ), else d///* would not be optimal.
This is the " 7that we will use to solve GORWSP for row with the global tree algorithm.
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LEMMA 4.5. The tQi resultingfrom the global tree algorithm using is a subset
ofG.

Proof. Denote the cut induced by subtree - by cut (’). Lemma 4.4 says that the
global tree algorithm will produce an optimal Oi, which is a subtree big of"’. If,big
is not contained in Ct, then there is an edge u-v "big\ * with, say, i, u e Ct and
v Cr, r 4: l. Define ’small as ,"big minus the subtree rooted at u. Edge u-v contributes
wuv to cap (cut ("small)), which is missing from cap (cut (’big)). Now cut (big) must
cut some edge a-b in Co, for if all nodes of Co are in ’big and Co is a 1-tree, then
cut (’big) cuts the lightest edge in Cq’s cycle; if Co is a tree, cut (-big) cuts Cq’S partial
edge. This edge a-b does not contribute to cap (cut (’-sml)). Any other edges contributing
to cap (cut (’"small)) also contribute to cap (cut (-big)).

But it must be true that Wuv <= Wab for all a-b in Co (including the partial edge, if
any), otherwise we could swap u-v for a-b in *, contradicting its optimality. Thus,
cap (cut ("small)) cap (cut (’big)); by Proposition 1.1, the Global Tree Algorithm
prefers ’-small to ’-"big. [’-’1

LEMMA 4.6. The Ui Gi resultingfrom the global tree algorithm are transitive in
the sense of Theorem 1.5.

Proof. Because Ui
_

Cl by Lemma 4.5, the predecessor arc of each j Ui is edge
/* (j) (directed into j). Thus, Gi is indeed picked as the set ofcolumns that match into
Ui with respect to /*, which is condition of transitivity.

For condition 2 of transitivity, Lemma 4.5 says that j e Ui implies that and j are
in the same Ct. Suppose that U\U 4: . Note that U fq U is a candidate for j’s min
cut, but that the global tree algorithm picked U U f) U) ID U\ Ui instead, so that
adding U\ Ui must have made the objective value for Ui U strictly decrease. But then
adding Uj\ Ui to Ui to get Ui U would also strictly decrease the objective value for
U, contradicting its optimality. Thus Uj

_
U. ffl

ProofofTheorem 4.2. By Lemma 4.6 the { U, Gi } from the Global Tree Algorithm
are transitive, so by Theorem 1.5, the transformation matrix T is nonsingular. We showed
above that any nonsingular T must preserve /’ *, and the global tree algorithm ensures
that the GORWSP solutions attain the minimum weight ofnonzeros in every row subject
to this constraint. Thus T solves WSP. [--]

5. Conclusions and extensions. We have seen that the weighted sparsity problem
is generally very difficult, even for quite restricted instances, even if we make the non-
degeneracy assumption MP. It is easy if we further restrict to at most two nonzeros per
row or column, but this is apparently of mostly theoretical interest. Of greater practical
interest is that WSP does become easy if all weights are equal and MP holds. Practical
algorithms exist for SP that have been applied to real LPs that violate MP with good
results. We report on two implementations in McCormick [18 ], [19] and Chang and
McCormick 4 ]. The computational results so far indicate that solving SP can significantly
speed up solving linear programs. Note that SP can in fact handle any set of 0,1 weights,
because columns of weight zero can be deleted from consideration.

The polynomial algorithm for WSP with at most two nonzeros per column in 4
suggests a reasonable heuristic for (unrestricted) WSP: Let ’ * be a maximum weight
matching in A, and extend w to rows via w(i) =- w.(i). Now construct bipartite network
; for A as was done in solving SP via the parallel algorithm (PA) in Hoffman and
McCormick 15 ], except that csk w(k) and cjt wj if aij 0, cj.t 0 otherwise. Selecting
Ui as the rows in a minimum cut in i and Gi with respect to /’* should produce a
reasonable answer to WSP in a weighted PA algorithm. A more realistic heuristic would
be to apply the same idea to Hoffman and McCormick’s [15] sequential algorithm or
Chang and McCormick’s 3 hierarchical algorithm, which have more desirable properties
in practice. However, //* might have to be recalculated at some rows ifa matched entry
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gets hit. We must also be careful to select Gi as a high-weight subset with desirable
numerical properties.
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EXACT FORMULAS FOR MULTITYPE RUN STATISTICS
IN A RANDOM ORDERING*

MACDONALD MORRIS:[:, GABRIEL SCHACHTELf, AND SAMUEL KARLIN

Abstract. Exact formulas are developed for the probability that a random ordering of a fixed collection of
letters contains any specified collection of runs. These results are particularly useful for short sequences and
other cases where asymptotic formulas cannot be trusted. Computer programs to evaluate these formulas are
available.

Key words, run tests, clusters, arrangements, orderings, sequences
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Introduction. A variety of run tests are presently used to identify nonrandomness
in sequences. Many of these tests are based on models in which the letters are generated
independently or with Markov dependence. Tests based on a shuffling model in which
the pool of sequence elements is fixed include results on the total number of runs (of
any length) and on the length ofthe longest run. In this paper, we present exact formulas
for the probability that a random ordering ofa fixed pool ofletters contains any minimum
collection of runs of specified lengths and letter types.

A multinomial model that has been used to investigate the significance of runs in
sequences allows each letter type Li to be chosen with probability Pi independently at
each position in the sequence. This model and more general models in which the com-
position ofthe sequence is not fixed in advance are known as unconditional models. The
probability of success runs in the independently and identically distributed (i.i.d.) model
was investigated early by Mood (1940) among others. Asymptotics for this model have
been studied by Erd6s and R6nyi (1970), Guibas and Odlyzko (1980), and Deheuvels
and Devroye (1987), among others. A model in which the letters are generated as a
Markov sequence has been studied by Samarova 1981 and Foulser and Kadin 1987 ),
who obtained asymptotics for the longest success runs of a single letter, multiple letters,
and certain repeated patterns of letters. The related problem of clusters is the subject of
a large body ofliterature (see, for example, Glaz (1989), Leung (1989), Wallenstein and
Neff 1987 ), and the bibliography of Naus 1979 )).

Models in which the numbers ofletters ofeach type are fixed are known as conditional
models. Although some researchers have considered the case in which arrangements of
the fixed pool ofletters have different likelihoods ofoccurrence (see, for example, Bateman
(1948 )), we will be considering only the model in which all arrangements are equally
likely (the shuffling model). This model was studied by Mood (1940), who developed
formulas for the distribution of the total number of runs (of any length) and for the
expectation and moments of the number of runs of a given exact length. Bateman de-
veloped a formula for the probability of at least one run exceeding a given length. The
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elegant proof of this result presented in Bradley (1968) was the point of departure for
the derivations herein. This paper derives a formula for the number of arrangements of
a given pool of letters having any specified set of runs of any number of different letter
types and lengths (see 3). To aid in computation and illustrate the methods of proof,
we derive two simpler formulas, which are restricted to runs of only one letter type:
multiple runs of one minimum length (see and any number of minimum lengths
(see 2).

When analyzing data generated by an unknown process for a tendency to form
runs, the conditional model is preferable because it makes fewer assumptions about the
process. Ifthe unconditional model is used with probabilities Pi taken from the observed
frequencies, there is a tendency to underestimate the significance of uncommon events,
even when the underlying process is, in fact, independent. (This results from the facts
that the observed frequencies vary about the actual generating frequencies and the prob-
ability of an uncommon run is a convex function of the frequency.) Tests based on the
unconditional model are true to their significance threshold, provided only that the un-
derlying process is order-independent. Although the conditional and unconditional models
are identical in the appropriate asymptotics, differences between them can be quite pro-
nounced for shorter sequences, and for more uncommon events. The results presented
herein, because they are exact and conditioned on the sequence composition, are thus
particularly useful for problems involving relatively short sequences and other cases where
the asymptotics cannot be relied upon. A computer program to calculate run probabilities
based on these formulas has been implemented in the language C and is available from
the authors.

The probabilities we are investigating can be stated in terms of the order statistics
giving the lengths ofthe runs of each letter type in order of size (the length ofthe longest
run, the length of the second longest, and so forth). For example, the probability of
obtaining at least s separate runs of length at least r, and s_ additional separate runs of
at least rE A’s (rE =< r ), is Pr {R >-_ r, Rs + ->- r2 }, where R is the run-order statistic
giving the length of the jth longest run of A’s. Problems involving runs of two or more
letter types involve the multidimensional order statistics R, where R is thejth longest
run length of letter type L. The probability of observing at least s0. separate runs oflength
r or greater for each letter type i, and length index j, is Pr { RIo >= ro." i=1, 2, ..,p;
j 1, 2 qi }, where tro ,= si,. Determining the probability of observing the
specified runs and determining the number of arrangements containing those runs are,
of course, equivalent problems, since the total number of arrangements is known.

The original motivation for this work comes from the study of nucleic and amino
acid sequences, especially the study of runs of charged amino acids in protein sequences.
Statistically significant runs, clusters, and patterns of charged amino acids have been
shown to be associated with several classes of regulatory proteins and to be useful in
identifying sequence features ofbiological interest (Karlin et al. 1989 ), Karlin (1990)).
Many sequences, while having no single run ofstatistically significant length, have multiple
runs (either ofone charge or ofboth positive and negative charge), which, taken together,
appear highly nonrandom. The formulas presented below provide a statistical basis for
this distinction. We can, for example, compute the probability that a random ordering
of 400 amino acids, of which 50 are positively charged and 40 are negatively charged,
contains a run of at least four positively charged amino acids and an additional run of
at least five negatively charged amino acids. When applying these formulas to a collection
of sequences, it is important to remember that the criterion for significance of each
sequence depends on its individual length and composition. As a result, in some sequences,
relatively short runs may qualify as statistically significant, while in other sequences
much longer runs will not.
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The results we obtain can be applied equally well to the problem ofspacings, which
are regarded as runs of the complementary type. For example, the question of whether
the occurrences of a particular letter or set of letters in a sequence are unusually evenly
or unevenly spaced can be approached by investigating whether there are unusually
many or unusually few long spacings. Applications of spacing formulas to molecular
biology include evaluating the nature ofinhomogeneity in DNA and protein sequences
and assessing the distribution of sites in physical and genetic maps (e.g., Karlin and
Macken, 1991 ).

Results. For convenience, all the results are listed here together. The function A,
which appears in the results, is defined as

(--1)i+s(i-])s- ifs> 0,

A(i,s)= ifs-<0andi=0,-,

0 otherwise.

(This is a natural value for the negative binomial.) Proofs are given in the following
sections.

Result 1. Given N letters, n A’s, and n2 (N- n B’s, the number of orderings
with at least s separate runs of at least r A’s is

h_s h n2

Result 2. Given N letters, n A’s, and n2 (N- n B’s, the number of orderings
with at least s separate runs of at least r A’s for 1, 2, q, where 3" (s, s2,

Sq) and -: (r, r2 rq) with r > r2 > > ru, is

HaS Hq n2 i=1 hi[

where Hi and Si are the partial sums of ] and 3" (e.g., Z hi Ho O) H >

S’Hi >Siforalli andt=n
q
i= hiri.

Result 3. Given N Z" n letters, n ofeach letter te Li, the number ofordefings
that have at least si separate runs of at least r letters Li, for 1, 2 p and j 1,
2,..., q, where si and r are positive integers and r > r2 > > rq, is

ozz

(a(i’l ( )(di) ((ho, S
i,
-")-

-(i,

))di tt H i) di 6i = hi)

where ti ni i E U, hiro, H i) a, ho e(j= j= i= 6i, 0() = (H(i)

H’}, (J i’and)di is the vector whose ith component is if H(i) and 0 .= 0,
--H) }) Sj for allare paial sums (e.g., sJi) Z {=, si, Si) 0), and H S
and j.

COROLLARY TO RESULT 3. The number ofarrangements ofn, A’s, n2 B’s, and n
C’s that contain a run ofat least r, A’s and a run ofat [east r2 B’s is given by

(-I)<"’+’> (n + t, + t + z)t
,,,,, [H= u,(i)u(i)v,(i)v(i)t]t, tttnt
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where

t n , iru i) + ir + 1)v i),
i=1

t2 n2 irzu2( i) + ir2 + 1)v2(i),
i=1

z= ul(i)+u2(i)+vl(i)+v2(i),
i=1

and the summation is over all combinations of nonnegative integer vectors -, 2, -,
-2 such that nl > tl >= 0 and n2 > t2 >= O.

This corollary with proof can be found as Result 4 in Morris (1990).

Preliminaries. Let be a pool ofN letters from a p-letter alphabet: n of letter LI,
n2 of letter L2 np of letter Lp(N >

i= ni, P 2). Define the orderings of &t’ to
be the distinguishable arrangements of all members ofletterpool &t’, and let the sequence
Z (zl, z2,..., ZN) be one such ordering. We define a run within Z as a subsequence
consisting of only one letter type bounded at either end by a letter of different type or
by a boundary of the sequence (i.e., in our context, only maximal runs are considered).
By this definition, the sequence BAAAABBB has runs of B’s only of lengths and 3. We
will sometimes refer to runs of the same letter type as separate to emphasize that they
must be separated by intervening letters of a different type.

Let " represent the set of conditions describing the required runs (i.e., their number,
length, and letter type). The ordering Z is said to be acceptable (or -acceptable) if, for
each run specified in ’, there exists in Z a run ofthis letter type and at least the specified
length. Each run within Z may be used to satisfy only one run within the condition ,
e.g., a run of length 4 does not satisfy the requirement for two runs of length 2, since
they would not be separate.

To count the number of acceptable orderings, we will first count the number of
distinguishable arrangements of a modified pool called the -pool. For each run specified
in , replace these letters with a new type of object called a chunk. Each chunk is an
indivisible unit having the "length" and letter type attributes of the letters it replaces.
The resulting pool of letters and chunks is called the chunkpool or -pool. Arrangements
of the -pool are called configurations to distinguish them from orderings of the full
letterpool, 9. There is an obvious mapping ofconfigurations to orderings, which replaces
each chunk by its component individual letters. Although each acceptable ordering has
at least one corresponding configuration (as we will show), the map is not one-to-one
because some configurations map to unacceptable orderings and different configurations
often map to the same ordering. For example, suppose we have a two-letter alphabet and
a letter-pool, ? ofn 7 A’s and n2 3 B’s, and we desire at least two separate runs of
three or more A’s. In a simplified notation, we will write this condition as " { at least
two runs(A) >- 3 }. We use six of the A’s to construct two chunks of three A’s each,
denoted by x’s. Our -pool thus consists of two x chunks, one remaining A, and three
B’s, and each arrangement of this -pool is a configuration. The configuration (x, B,
A, x, B, B) corresponds to the ordering (A, A, A, B, A, A, A, A, B, B), which is ’-
acceptable since it has runs of lengths 3 and 4. The configurations (x, B, x, A, B, B)
and (x, B, A, x, B, B), are different, but correspond to the same ordering. Another
configuration (x, x, B, A, B, B) corresponds to an ordering that is not -acceptable,
since it contains only one run of three or more A’sin this case, a run of length 6.
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As the above example shows, the natural correspondence between configurations
and the orderings they determine is not one-to-one nor is it surjective over all orderings,
since there are many nonacceptable orderings that have no corresponding configuration.
Consider the mapping that takes an ordering to its corresponding configurations. Intu-
itively, this can be visualized in terms ofplacing each chunk on a run ofthe correct letter
type within the ordering without overlapping any two chunks. We say that each ordering
is counted as many times as there are configurations corresponding to it. Since each
acceptable ordering has, by definition, a collection of runs large enough to fit all of the
chunks in the ’-pool, it is counted at least once. The number ofconfigurations therefore
exceeds the number of acceptable orderings, and this overcounting can be attributed to
three mechanisms: (1) multiple ways of positioning a chunk within a longer run, (2)
multiple occupancy of two or more chunks within a single long run, and (3) multiple
ways for assignment of a number of chunks to a greater number of available runs.

To determine the number ofacceptable orderings, we stepwise eliminate these three
sources of overcounting as follows (see also Table ).

(i) Positioning. An acceptable ordering containing a run longer than required is
counted multiple times corresponding to the number ofways the chunk can be positioned
within the actual run. For example, if an x corresponds to a chunk of three A’s, the
ordering (91 (A, A, A, A, B) is counted by the configurations Cl (A, x, B) and
cg2 (x, A, B). To avoid this source of overcounting, we count only configurations in
which no chunk is adjacent on its fight to an individual letter of the same kind. We call
these configurations endplaced (in our example, 1 is endplaced; cg2 is not).

(ii) Occupancy. Some nonacceptable orderings have corresponding configurations
in which more than one chunk is placed within a single run. For example, if two runs
ofthree A’s each are required, the ordering (Y2 (A,A,A,A,A,A,A, B) is not acceptable
because it has only one separate run of length 3 or greater. However, (92 is counted by
the configurations 63 (X, X, A, B), (d4 (x, A, x, B), and cg5 (A, x, x, B).
Configurations in which no chunk is adjacent to another chunk of the same letter type
are called separate. Configurations that are both endplaced and separate are called disjoint.
Disjoint configurations cannot have more than one chunk to a run (we speak of runs in
configurations, although technically we are referring to the runs in the corresponding
ordering). If more than one chunk were placed on a run, the leftmost chunk would be
adjacent on its fight to an individual letter of the same type (in which case, it would not
be endplaced) or to another chunk (in which case, it would not be separate). It follows
that the ordering corresponding to a disjoint configuration must have a separate run for
each chunk in the -pool and is therefore acceptable. Furthermore, an acceptable or-
dering, because it has a separate run for each chunk in the ’-pool, must have at least
one corresponding disjoint configuration. We have thus shown that the set of disjoint
configurations counts all acceptable orderings (one or more times each) and only ac-
ceptable orderings. The unacceptable ordering (92, for example, has no disjoint orderings
cg3 and cg4 are not endplaced, and q is not separate).

(iii) Assignment. Ordefings with more than the required number of separate runs
are counted by as many disjoint configurations as there are ways of assigning the chunks
to the runs. If, for example, two runs of three A’s are required, the ordering (A, A, A,
B, A, A, A, B, A, A, A) is counted three times corresponding to the configurations
cg6=(x,B,x,B,A,A,A), rd7=(x,B,A,A,A,B,x),and rd8=(A,A,A,B,x,B,
x). A judiciously weighted sum of the numbers of disjoint configurations eliminates
overcounting oftype (3) and gives the number ofacceptable orderings. In the construction
of this sum, we make use of the following standard equality:

(1) A(i, s)(kl for k >= s and k >_- 0,
i_s \
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(--1)i+S(is-) ifs > O,

where A(i,s)- ifs=<Oandi=O,

0 otherwise.

In some ofthe derivations below (see and 2), it is possible to eliminate all nondisjoint
configurations in a single step. In the general case, however, we will first discard all
nonendplaced configurations, and then in a second step we will discard the remaining
nonseparate configurations.

1. Multiple runs of one letter with one minimum length. In this section, we wish to
determine the number of arrangements ofN letters, n A’s, and n2 (N- n B’s that
contain at least s separate runs of A’s, each of length >= r (where sr <= n t, and s =< n2 +

). In other words, given a letterpool with n A’s, n2 B’s, and a condition { at
least s runs(A) -> r}, what is the number of ’-acceptable orderings?

We will proceed in two steps, first counting the number DC(h, r) of disjoint
configurations of a generalized -pool containing h chunks and then determining
the number AO(s, r) of acceptable orderings through a weighted sum of the form
h_s w(h, s)DC(h, r).

1.1. The number of disjoint configurations (DC). DC(h, r) is the number ofdisjoint
configurations of a pool of letters and chunks corresponding to the letterpool &’ and
containing h chunks(A) of length r, (nl hr) remaining A’s, and n2 B’s. It is called the
generalized ’l-pool because it is a generalized version ofthe o1-pool: While the length
and letter type of the chunks remains the same, their number h is allowed to vary over
the range h >- s.

The number of disjoint configurations is the number of ways of carrying out the
following two-step construction process:

(i) Order the individual letters (excluding the chunks) from the pool. Since there
are a total ofN- hr individual letters, of which n2 are B’s, there are a total of

N- hr

ways to do this;
(ii) Insert the h chunks into this ordering. For the configuration to be endplaced,

it is necessary and sufficient that no chunk precede an A, leaving as possible insertion
points n locations preceding B’s and one location at the right end. For the configuration
to be separate, it is necessary and sufficient that no more than one chunk be inserted at
any of these locations. This step can be carried out in

n2+

ways.
The product from steps (i) and (ii) gives us the following total number of disjoint

configurations with h chunks:

Remark. The restriction hr <= n simply specifies that A’s required for the chunks
cannot exceed the number available. Clearly, there are no configurations for larger
h, since the ._-pool cannot be constructed; the purpose of the limit is to prevent (2),
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which can have nonzero and even negative values for hr >= N, from being evaluated
in these cases.

1.2. The number of acceptable orderings (AO). Following an argument similar to
that used by Bradley (1968), we now determine the number AO(s, r) of acceptable
orderings as a weighted sum of the numbers of disjoint configurations.

Let Gm denote the number of orderings with exactly m runs(A) >= r. Then AO(s,
r) can be rewritten as the sum over all Gm with m => s as follows:

(3) AO(s, r) Gs + Gs+ + Gs+2 +
As noted previously, DC, the number of disjoint configurations, overcounts the

number of acceptable orderings by different assignments of chunks to runs (see Prelimi-
naries). Recall the process of "placing" chunks on runs of the ordering to generate the
different corresponding configurations. When the resulting configuration must be disjoint,
there is no choice of how many chunks may occupy each run (no more than one), nor
is there any choice of where the chunk may be positioned in the run (it must be placed
at the right-hand end). The only choice is ofwhich runs will be assigned chunks. Therefore,
the number of disjoint configurations of h chunks corresponding to an ordering with
exactly m runs(A) >= r is the number of ways of choosing h of the m runs into which to
place the chunks, or (’).

For each m, there are Gm orderings with exactly m runs(A) >= r and ()Gm corre-
sponding disjoint configurations of h chunks. Recalling that each disjoint configuration
corresponds to exactly one acceptable ordering, we can write

(4) DC(h, r) Gm
rn_h h

The desired number of acceptable orderings can now be calculated as a weighted sum of
the DC(h, r) values of (2) for h -> s.

Result 1. Given N letters, n A’s, and n (N- hi) B’s, the number AO(s, r) of
orderings with at least s separate runs of at least r A’s is

AO(s, r)= ]has A(h’s)(n2 + l)(N- hr)n2

where the function A(h, s) is defined in ).
Proof. Using )-(4) leads to the following stated result:

AO(s,r)= l’Gm= , [ A(h s)(m)] (m)m_s m_s h_s h
Gm A(h, s)

h
Gm

h_s m>=s

Remarks. If the number of A’s in required runs exceeds the number of available
A’s (st > n 1), or if there are not enough B’s to separate the s chunks (s >
n + ), the sum is zero, as it should be.

2. Multiple runs of one letter with multiple minimum lengths. We now generalize
Result 1, to allow for more than one minimum length; i.e., the letterpool 2 with n A’s
and n2 (N- n B’s will remain the same as 0, but the condition 0 will be replaced
by 2 { at least s runs(A) >= r, at least s2 additional runs(A) >= r2, and at least
Sq additional runs(A) >= re; where r > r2 > > rq }. In vector notation, ’2 { at
least runs(A) >= }, where - s, s2, Sq) and - r, r2, rq).
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An approach analogous to will provide us first with the number DC(, ) of
disjoint configurations of a generalized ’2-pool with ) chunks and then, by a weighted
sum, with the desired number AO(’, -)of 2-acceptable orderings.

2.1. The number of disjoint configurations. Use the notation for the jth paial
sum ofthe vector (’= i: hi H0 0), for the paial sum of, and so foh.
The generalized 2-pool contains h chunks(A) of length r, hE chunks(A) of length
rE,..., h chunks(A) of length r, t (n qi=l hiri) remaining A’s, and n2 B’s.

We determine DC(, ) by applying steps (i) and (ii) of the constction process
in 1. In step (ii), however, since we are now dealing with chunks of q different sizes,
we have not one but H/H- (hi) ways to order the H chunks before inseing them
in the chosen locations, ving us

(5) DC( )= Hi= (hi) Hq n

2.2. The number of acceptable orderings. Consider now an ordering ofthe A’s and
B’s with exactly m ns(A) r, m addition ns(A) r,..., mq addition ns(A)
of length re. By analogy to 1, we may now ask what is the number of disjoint con-
figurations with chunks(A) of lengths that coespond to each ordering with exactly
ns(A) . We will call this number RC(, ). Since the h chunks(A) of length

r can be assigned to the M m ns(A) r of each of the ordefings in () ways,
and the h chunks(A) of length r can then be assigned to the M H m + m h

M2- Hiremaining runs(A) r in h: ways, and so foah, we obtain

hi
It is clear from this derivation that an ordering coesponds to one or more disjoint
configurations with chunks if and only if Mi Si for all i, which we will denote by

An ordering is 2-acceptable if and only if it coesponds to one or more disjoint
configurations of chunks (see Preliminaries). Therefore an ordering with ns is
acceptable if and only ifM S. If Gm is the number of different ordefings with exactly
ns(A) , then we can rewrite AO(, ) by analogy to (3) as

(7) AO(, )= Gin.
MS

Since there are RC(, ) different disjoint configurations for each of the Gm ordefings
with exactly runs(A) , and since each disjoint configuration coesponds to exactly
one ordering, which must be acceptable,

(8) DC(,)= RC(,)Gm (Mi-Hi-1)G.MH MH hi

The desired number of acceptable ordedngs can now be calculated as a weighted sum of
the DC(, ) values of 5 ).

Result 2. Given Nletters, n A’s, and n2 (N- n) B’s, the number AO(, Y) of
ordefings with at least si separate runs of at least r A’s for l, 2,..., q, where Y
(s, s2,..., Sq) and (r, rE r) are positive integer vectors with r > r2 >

> r, is

AO(, )= Hq
h;ns nq n2 i=
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where Hi and Si are the partial sums of and " (e.g., Hj E j
i= hi, Ho 0), and

M > S" Mi > Si for all i, and t n ,- hr. The function A is defined in ( )
Proof. For ease of notation, define

-’- ( )f(i) a(h, S H_)
M H_

h h= s-n_ hi

Recall that Mi H_ hi Si Hi- Mi Hi Si. From ), we know that

Eh f(i) for M H S 0. Using this, along with (7), (8), and then (5), leads
to the following result:

AO(,) 1.Gin
MS

MS MHS hi

A(hi, Si Hi-1)
hiHS i=l MH

E (h,s -g_ll .c(,l
HS i=l

nzs/= ((hi,Si-Hi_))hi,. .Hq,(n+l)(n+t)Hqn

Remarks. Terms for which Si Hi- <= 0 and hi 4:0 can be ignored, since A 0
for these values; e.g., if 3" (2, 1, 2) and h >= 5, then we can ignore terms where h2 and
h3 are nonzero. Ifthere are insufficient A’s to construct the desired runs (n < 7 q

siri )
or insufficient B’s to separate the desired runs of A’s (n2 < Sq ), the formula gives
zero, as it should.

3. Runs of multiple lengths and letter types. The problems treated in the previous
sections are restricted to the case of runs of only one letter type. We now drop this
restriction and allow runs of any number of different letter types. Formally, we state the
problem as follows: Given a letter pool ftu3 with ni letters of types Li, (i 1, 2, p)
and a condition ’3 { at least sij runs(Li) >= rij; ri > ri2 > ri3 > > riqi; 1,
2,..., p;j 1, 2,..., qi ), find the number of 3-acceptable orderings of&’3, AO( IIsi ll,

rijll, ). (Here [ISij and r0ll are ragged arrays. The vector gives the total number of
each letter type in q3.)

Where runs of only one letter were desired, we used a two-step construction process
to determine the number of disjoint configurations. When runs of more than one letter
are desired, this method is no longer feasible. Instead, we calculate the number of un-
restricted configurations UC( [Ih/ll, Ilrll, , 3, )ofa generalized ’3-pool and use this
value to compute first the number of endplaced configurations Ef(llh;ll, Ilroll, , )
and then the number of disjoint configurations DC( IIhll, Ilri[I, ).

To determine the numbers of endplaced and disjoint configurations, a given set
of unrestricted (respectively, endplaced) configurations is first considered as a subset of
a much larger set of configurations of generalized ’-pools. This larger set is then par-
titioned into three subsets, 9, +, and -, where o is the set of endplaced (respec-
tively, disjoint) configurations whose cardinality we wish to know. Through a properly
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defined bijection, we show that / and - contain equal numbers of elements, and
hence by counting / positively and - negatively, we will be left with the cardinality
of 0. The number of acceptable orderings is then determined by a weighted sum as in

and 2. The following arguments involving extended chunks and megachunks are
intended to familiarize the reader with the methods that will be used in the proof.

3.1. The method of extension. The method of extension, which is central to the
calculation of the number of endplaced configurations in the general context, is best
illustrated by a simple example: Consider an r-pool with a certain number ofindividual
letters and with two chunks, x, of the same length and letter type. What is the number
EC(x, x) of endplaced configurations of this ’-pool? We define an extendable chunk
as one that is adjacent on its fight to an individual letter of the same type. The total
number UC(x, x) of unrestricted configurations can then be rewritten as the sum ofthe
number (EE) of configurations where both chunks are extendable (e.g., xAxAB), the
number (EN) ofconfigurations in which one chunk is extendable and the other is nonex-
tendable (e.g., xABAx), and the number (NN) of configurations in which both chunks
are nonextendable (e.g., AABxx):

UC(x, x) EE + EN + NN.

Now consider an "-pool that is identical to the original 3r-pool, except that one
of the two chunks has been lengthened by one letter, and the pool of remaining letters
has been likewise reduced. A chunk that has been lengthened by the addition of a single
letter is called an extended chunk. The ’-pool thus contains, in addition to the individual
letters, one extended chunk x’ and one unextended chunk x. We claim that the number
UC(x, x’) of unrestricted configurations of the "-pool is

UC(x, x’)= 2EE + EN.

Note that each configuration of the "-pool can be "converted" to exactly one config-
uration ofthe ’-pool by disconnecting the rightmost letter ofthe extended chunk. Each
nonendplaced configuration ofthe -pool can be converted to one or more configurations
of the "-pool by connecting an extendable chunk with the individual letter to its fight.
(By arbitrary convention, such conversions always extend chunks to the fight and not
the left.) ’-pool configurations with only one nonextendable chunk (ofwhich there are
EN) can each be converted to one configuration of the "-pool, whereas those with two
extendable chunks (of which there are EE) can each be converted into two 3’ config-
urations, depending on which of the chunks is extended. The claim follows.

Lengthening both chunks to obtain an ’"-pool containing two extended chunks
x’ and using the conversion argument given above, we find that

UC(x’, x’) EE.

The configurations we wish to count (i.e., those we call endplaced) are configurations
of unextended, nonextendable chunks. Hence the number of endplaced configurations
is

EC(x, x) NN UC(x, x) UC(x, x’) + UC(x’, x’).

As will be seen later, this approach can be generalized to obtain the number ofendplaced
configurations of any number of chunks of any number of letter types and lengths.

3.2. The rightmost extension site. An extension site in a configuration is a boundary
between letters that can be connected to extend a chunk or disconnected to make it
normal length. The boundary between an extendable chunk of normal length and the
letter to its fight is an unconnected extension site; the boundary between the rightmost
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two letters of an extended chunk is a connected extension site. By this definition, a
configuration is endplaced if and only if it has no extension sites.

Each nonendplaced configuration u has a unique rightmost extension site RES(u).
Consider two nonendplaced configurations u and a, which are identical, except that u
has an unconnected RES, whereas in it is connected (i.e., a normal-length chunk
followed by a single letter of the same type in u has been replaced by a single extended
chunk in t). We call u and an RES-conjugated pair, and each is the RES-conjugated
partner of the other. For example, ifA and B are individual letters, if a and b are unex-
tended chunks of A’s and B’s, and if a’ and b’ are the corresponding extended chunks,
then u (b’BAaaAaAAaBb) and (b’BAaaAa’AaBb) are partners. There are three
extension sites in u, ofwhich one (within b’) is connected and two aA are disconnected;
the rightmost extension site is an aA, which has been connected to an a’ in . Every
nonendplaced configuration has a uniquely defined RES-conjugated partner. Let e(u)
be the number of connected extension sites (the number of extended chunks) in config-
uration u. Since the number of extended chunks differs between partners by one, e(u)
is always even in one partner and odd in the other (this will be important in the proof).

3.3. The method of fusion. The method of fusion, which is central to the calculation
ofthe number ofdisjoint configurations, is also well illustrated by the following example:
Consider an 3-pool with three elementary chunks x of the same length and letter type,
and some set of individual letters. What is the number of disjoint configurations of this
-pool? Recall that a configuration is disjoint if it is endplaced and if the chunks are
separate (not adjacent). The total number EC(x, x, x) of endplaced configurations with
three chunks can be rewritten as the sum of the number X IXI X of endplaced configu-
rations in which all three chunks are separate, the number XXIX of endplaced config-
urations in which two chunks are adjacent and one is separate, and the number XXX of
endplaced configurations in which all three chunks are adjacent

EC(x, x, x) xlXlX + XXlX + xxx,

A megachunk is a "chunk of chunks"ma group of chunks that is treated as an
indivisible unit. To distinguish them from megachunks, regular chunks will sometimes
be called elementary chunks. Consider an 3*-pool, which is identical to the original
’-pool, except that two ofthe three elementary chunks have been fused to form a single
megachunk, denoted 2x. We claim that EC(2x, x), the number of endplaced configu-
rations of the " *-pool, is

EC(2x, x) XX X + 2XXX.

Indeed, endplaced configurations of the original pool can be "converted" to endplaced
configurations of the *-pool: in this case, by connecting two adjacent chunks of an
configuration to form a single megachunk. Configurations of the original pool with two
adjacent chunks (of which there are XXIX) can each be converted to megachunk con-
figurations in one way, whereas the XXX configurations with three adjacent chunks can
be converted in two ways. The claim follows.

Joining all three elementary chunks to obtain an * *-pool with one large mega-
chunk 3x, we find by similar reasoning that EC(3x) XXX.

We call a configuration disjoint if it is an endplaced and separate configuration of
the elementary chunks. Hence the number of disjoint configurations is

DC(x, x, x) XlXlX EC(x, x, x) EC(2x, x) + EC(3x).

As will be seen later, this approach can be generalized to obtain the number of
disjoint configurations ofany number ofchunks ofany number ofletter types and lengths.
In this more general situation, the chunks comprising a megachunk must be ofone letter



82 M. MORRIS, G. SCHACHTEL, AND S. KARLIN

type, but they may vary in length, and their order is significant: Two megachunks are
identical if and only if they have the same letter type and are composed of the same
length component chunks in the same order.

3.4. The rightmost fusion site. Afusion site is the boundary between two elementary
chunks of the same letter type. If the two elementary chunks are part of a megachunk,
the fusion site is said to be connected, otherwise it is unconnected. By this definition, the
disjoint configurations are those endplaced configurations with no fusion sites.

Each endplaced nondisjoint configuration u has a unique rightmost fusion site
RFS(u). Consider two nondisjoint configurations u and g, which are identical, except
that u has an unconnected RFS, whereas in g it is connected (i.e., an unconnected pair
ofelementary chunks in u has been replaced in g by an equivalent megachunk). We call
u and g an RFS-conjugated pair, and each is the RFS-conjugated partner of the other.
For example, ifA and B are individual letters, if a and b are elementary chunks of A’s
and B’s, and if 2a is a megachunk composed of two a chunks, then u (bbAaaBaaBb)
and t7 (bbAaaB2aBb) are partners. Every nondisjoint configuration has a uniquely
defined RFS-conjugated partner. Let o(u) be the number of connected fusion sites in
configuration u. Since the number of connected fusion sites differs between partners by
one, o(u) is always even in one partner and odd in the other (this will be important in
the proof).

3.5. The number of unrestricted configurations. Condition 3, as stated in the
beginning of this section, requires s runs of minimum lengths r and letter types L, for

1, 2, p andj 1, 2,..., q. The corresponding 3-pool consists for each letter
type L of&/elementary chunks oflengths ri/ and of ti ni ,.= s r/ remaining letters,
and it is denoted by si , ri [, ).

We will generalize this 3-pool in three ways: by allowing the number ]lhi/l] of
elementa chunks to va, by fusing some chunks to fo megachunks, and by extending
some of these chunks and megachunks with the addition of a single letter. Those ele-
menta chunks that are not fused will be called megachunks also for simplicity; thus,
generalized 3-pools consist only of megachunks and individual letters. Define Hi) :=
q/= h/to be the total number of elementa chunks of letter type L. Let (dr,
d2,..., dp) and (, ,..., 6) describe a generalized 3-pool in which there are
exactly di megachunks of letter type L, of which exactly 6i are extended, d and are
constrained by bg di Hi) and 0 di, where is the vector whose ith component
is if Hi) and zero if H ) 0 (i.e., when there are no desired runs of this color).
Note that a single choice of and can specify more than ongeneralized 3-pool,
since it is usually possible to arrange the elementa chunks into d megachunks in more
than one way. The following lemma gives the total number UC( [[hij[], [[rij[[, , , ) of
unrestricted configurations generated from generalized -pools characterized by Ilh0
d, and .

LEMMA 1. The total number of unrestricted configurations generated from gener-
alized 3-poo[s with IIhil elementary chunks that have been fused to form i extended
and di unextended megachunks ofletter type Li 1, 2 p) is

H)I
H<i) d

(9) UC(l[h0[I, [Iril[, , , ) (di + ti)
i= ".= di tti tfL hi)

This equality applies to only those values of hi and for which the number t ni
i hi ri ofremaining &tters of&tter type Li is nonnegative.
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Proof. For letter type Li determine first the number of orderings of the available
elementary chunks: this is H(i)!/1-Ij (ho)!. Next, choose for each of these orderings
H i) di fusion sites out of the H(i) possible ones: this can be done in

ways and creates di megachunks. Then choose 6i of the di megachunks for extension,
which can be done in

de

ways. This results altogether in

H(i) di i "/
ways to obtain the required megachunks and to order the megachunks of each letter
type. We then arrange the megachunks and remaining letters of all types together, noting
that the order of the d; megachunks of each type has already been established. This can
be done in Y, (di + ti ))!/Hi (di !ti!) ways.

3.6. The number of endplaced configurations. We wish to count the number of
endplaced configurations EC( Ilhijll, Ilr011, , 3)of the generalized 3-pools containing
di megachunks of letter type L, none ofwhich are extended. To do this, we must consider
a much larger set of configurations: In particular, we consider the set A( Ilhi[I, Ilr0ll, ,
d) of all configurations generated from generalized 3-pools in which any number of
the 3 megachunks of each type have been extended. Let UC( II011, IIr011, , 3, ) be the
set of all unrestricted configurations in which exactly i of the d megachunks have been
extended. We define

A([lhil[, Ilri[I, n, 3):= U UC(llholl, Ilrg>ll, n, 3,-g).
o__

The next lemma provides us with a partition of A, which will be useful in deriving
a formula for the number EC( IIh0ll, IIr/ll, , ) of endplaced configurations.

LEMMA 2. The set A A( IIh/ll, Ilr011, , 3) can be divided into three disjoint subsets,
A, A +, and A-, such that (i) A Ao t_J A + t.J A-, (ii) u is endplaced ifand only if u
A, and (iii) A + A- (i.e., there exists a bijection c: A + - A-).

Proof. Recall that e(u) := Z p
i= i is the number of extended chunks in u. Define

A { u e A u is an endplaced configuration ), A + { u e A\A" e(u) is even }, and
A- { u e A\A" e(u) is odd }. Clearly, this definition satisfies conditions (i) and (ii).
Consider the bijection that takes each nonendplaced configuration to its RES-conjugated
partner. As previously noted in 3.2, this is well defined and one-to-one on the set of
nonendplaced configurations and maps A/ to A-, and vice versa, thus satisfying the
conditions of the lemma.

LEMMA 3. The number EC( Ilhijll, Ilrijll,_. , 3) ofendplaced configurations ofgen-
eralized o-pools in which there are exactly d megachunks is

(10) EC(llh0ll, IIr0l[, , 3) (-1)(g)Uf(llh0l[, IIr011, , 3, ),
oz-g=<3

where e(- p
i is the number of extended megachunks and UC( Ilho.ll, Ilroll, ,

d, is the number ofunrestricted configurations as given in Lemma 1.
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Proof. From the previous lemma, we conclude that the sets A / and A- have equal
numbers of elements (13_+1 IA-I). Noting that e(u) 0 for u e A (an endplaced
configuration has no extended chunks), we obtain

Ef(llh0.l[, Ilr/l[, , 3)- IAI- IAI / IA+I- IA-I
[{ueA’e(u) iseven}[ [{ueA’e(u) isodd}[

Z (-1)()uf(llhill, Ilrvll, , 3, ).

3.7. The number of disjoint configurations. Now we wish to count the number
DC( IIhll, IIrll, ) of disjoint configurations of generalized ’3-pools in which IIhll is
allowed to vary, but where no chunks are fused or extended. Since disjoint configurations
are by definition endplaced, we may use the sets A of endplaced configurations as a
starting point. Let

ft(llhill, IIr01l, )"- LJ A(llhill, IIr0ll, , 3).

The set ft includes all the endplaced (disjoint as well as nondisjoint) configurations in
which no chunks have been fused (when r), and a whole class of nondisjoint
endplaced configurations in which some of the chunks have been fused to form larger
megachunks (when q: r). Lemma 4 uses an argument parallel to that used in Lemmas
2 and 3 to determine the number of disjoint configurations of elementary chunks.

LEMMA 4. The number DC( hij II, ro II, ) ofdisjoint configurations ofthe elementary
chunks with the remaining letters is

(11) DC(llhijll, Ilrijl[, ) (-1)’(-3)Ef([lhij[I, I[rijll, , 3),

where ,(-3) Y-_ (n(i) di is the total number ofconnectedfusion sites within all
the megachunks, H is the total number of elementary chunks of each letter type, and
EC( IIhll, IIr/ll, , ) is the number ofendpla_.ced configurations as given in Lemma 3.

Proof. Partition 2 ft( IIh;l[, IIr/l[, , d) into the following three subsets: ft :=
{ u s ft’u is a separate configuration }, 2 + { u f\2" (u) is even }, and ft-

{ u 2\ ft" (u) is odd }. Since a configuration is disjoint if and only if it is endplaced
and separate, ft is the set of disjoint configurations. Consider the transformation that
takes each nondisjoint configuration to its RFS-conjugated partner. As previously noted
in 3.4, this is well defined and one-to-one on the set of nondisjoint configurations, and,
since it either increases or decreases the number ofconnected fusion sites by exactly one,
maps ft / to ft-, and vice versa, establishing the equal cardinality ofthese two sets. Noting
that the value of() is even for configurations in 2 and 2 / and odd for those in f-,
the proof proceeds as in Lemma 3.

3.8. The number of acceptable orderings. We determine the number AO(lls/ll,
ri2 I[, ) of’3-acceptable orderings in a manner similar to 2, by summing the numbers
DC( lihill, IIr/ll, ), of disjoint configurations and adjusting for overcounting by proper
weights. The approach is somewhat more tedious than in 2 because of the increased
dimension of the problem.

Use the notation i (Sil, Si2,..., Siq for the ith row of matrix Ilsill, and S)

for the partial sum of the first j elements of ’i" S!i) E j si,, Soi) O. If, for two
matrices IIhijll and IIs0.11, the inequality Hi) >-_ i!i holds for all j, we write H >_- S.
Previously, we introduced Gm as the number of orderings containing exactly ff
runs(A) >= ?; here we generalize this, taking Giimll as the number of orderings of the
letterpool 3 with exactly ffi runs(Li >= -i for all i.
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Let RC( Ilm0ll, Ilh/[I) be the number of different disjoint configurations with Ilhll
chunks(L/) >= Ilr0ll that correspond to a single ordering with exactly IIm011 runs(L/) >-

Ilrill. RC( IImll, IIh011 can be generalized from (6) by simply taking the product over
the different letter types as follows:

p

fi qjil (Jill!i) (i))RE(llm0.ll, Ilh/ll) I-[ RE[fhi, i] ,j n)-i

i=1 i=1 ho
Now DC hij II, r, II, ) can be expressed as a linear combination of all GIImoll with M >=
H as follows:

DE([Ihijll, I[ril[, n) RE([[moll, Ilholl)allmijll
(12)

M)i)- ni)
M

_
H j ho GIImll"

We are now able to express AO( Ilsij II, Ilro 11, ) as a weighted sum ofthe known DC( IIh0ll,
r0 [I, ) values from 11 ).

Result 3. Given N Z/P.= ni letters (ni ofeach letter type Li ), the number AO( [Is0.1[,
r, II, ) of orderings that have at least so separate runs of at least ro. letters Zi (for 1,

2,..., p and j 1, 2,..., qi), where s0 and r0 are positive integers and ril > ri2 >
> Fiqi, is

H-S 3-_ i=1

P (n(i’l (a(i’-1 )(di)fi ( m(hij si,- ni,-)
di ]ti! Hi) di i j= (hij)!

where Si) and Hi) are partial sums (e.g., Si) Z =1 si, Soi 0); H >- S = Hi >=
Si for all and j; H(i) .= hi is the total number of elementary chunks of letter
type Li" e(-)"= i--1 iSi is the total number of extended chunks (connected extension
sites)" () Zp Hi)

i= di is the total number of connected fusion sites; is the
vector whose th component is ifH(i >= and 0 ifH 0; and ti ni
i .qi--1 h0 r0 is the number of remaining letters of type Li. The function A is defined
in(l).

Proof. Define
M Hj_ H)_

We know from (1) thin X0 f(i, j) 1. Using this, along with (12) and the multidi-
mensional equivalent to (7), AO( ]]sij]], ]lro][, H) Zips Gttm0tt, we obtain

AO( )lsoll,

l’Gllmoll

M_S hll hlz
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H- 1) GIImoll"J hijH_s i=lj=l M_H

E I-I 1-I A(h, S .._) "DC(llh011, IIr0.11, ).
lt_s i=lj=l

Applying (9)-( 11 leads to the result.
Remarks. For computational purposes, H is bounded above by the constraint ti >=

0 for all (the summand is zero if the chunks require more letters than are available),
and the number of terms is additionally limited by the fact that A 0 when hij 4 0 and

j!i) HJi) < 0. Ifthere are insufficient letters oftype L to construct the desired chunks
or if there are insufficient elements of other types to separate the desired chunks of type
L, the formula of Result 3 gives zero, as it should. Note that, if there are no required
runs of letter type L,

H( -di 0
1.
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CHARACTERIZATION OF THE HOMOMORPHIC PREIMAGES
OF CERTAIN ORIENTED CYCLES*

HUISHAN ZHOU’}"

Abstract. The classes of digraphs that can be homomorphically mapped to certain oriented cycles are
characterized by the forbidden homomorphic preimages. This characterization can be used to prove the mem-
bership of the corresponding decision problems in the class NP f3 coNP.

Key words, digraph, basic cycle, homomorphism, homomorphic preimage, NP, coNP

AMS(MOS) subject classification. 05C

1. Introduction. In this paper, we will only be concerned with digraphs with neither
loops nor multiple arcs. Let G be a digraph. Then the vertex set and the arc set are
denoted by F(G) and E(G), respectively. A homomorphism fofa digraph G to a digraph
H is a mapping of F(G) to F(H) for whichf(u)f(v) E(H) whenever uv E(G). G
is called the homomorphic preimage of H under f. If f is onto, then H is called the
homomorphic image of G underf. The existence, respectively, nonexistence, of a homo-
morphism from G to H will be denoted by G -- H, respectively, G -/ H.

Homomorphism is a very useful concept. There is an interesting link between lan-
guage and graph theory by homomorphisms and language interpretations 10 ], 18 ].
Many classes of graphs can be described by means of homomorphisms 8 ], 9 ], 16 ],
2 ], 22 ], 24 ], 28 ]. Therefore, the problem ofthe existence ofgraph homomorphisms
has attracted considerable attention ]- 4 ], 7 ], 9 ], ]- 13 ], 17 ], 9 ], most of
which also concentrated on the computational complexity of recognizing the homo-
morphism of any graph to a fixed-target graph. Another source of interest in homo-
rnorphism is Hedetniemi’s conjecture 5 ], 6 ], 8 ], 10 ], 20 ], 23 ], which states that
the chromatic number of the categorical product of two n-chromatic graphs is n. This
led to the definition of a multiplicative directed or undirected graph W 8 ], 2 ], 24 ],
[29 ]. W is multiplicative if the categorical product of two graphs G and H cannot be
homomorphically mapped to W whenever neither G nor H can be homomorphically
mapped to W. Hedetniemi’s conjecture simply states that complete graphs are multi-
plicative. Some multiplicative or nonmultiplicative graphs and digraphs were given in
8 ], 21 ], 22 ], 24 27 ], 29 ]. In particular, oriented paths (cycles) have been com-

pletely characterized with respect to multiplicativity in 25 (see also 14 ], 15 ], 27 ).
A major step in proving the multiplicativity or nonmultiplicativity of a graph W is to
analyze the forbidden homomorphic primages of IF, either completely in the case of
multiplicativity, or at least partially in the case of nonmultiplicativity.

In 28 we listed the graphs we knew at that point, the homomorphic preimages of
which can be characterized by the forbidden homomorphic preimages. We also char-
acterized the classes of graphs that can be homomorphically mapped to certain special
basic paths by the forbidden homomorphic preimages.

For further consideration, we are naturally concerned about oriented cycles. The
simplest oriented cycle (except directed cycles) in this regard are basic cycles. A basic
cycle [15], [26] is a closed cycle generated by concatenating some number of directed
paths one by one, alternatively, forward and backward, with all the backward-directed
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paths having a fixed length. The smallest basic cycle is an oriented cycle of three arcs,
with two arcs directed forward and one arc directed backward, which is also the smallest
transitive tournament. The class of digraphs that can be homomorphically mapped to it
is characterized by the digraphs with the directed path oflength 3 as the forbidden homo-
morphic preimage 8 ]. In this paper, we consider two kinds ofbasic cycles "next" to the
above-mentioned smallest basic cycle, i.e., C2,1,:, and C3, as illustrated in Figs. and
12, state the results for them, and give the proof only for C2,1,:,. Surprisingly, the proof
is not easy.

The directed path Pn has a sequence of different vertices v0, v l, vn, and arcs
vOVl, vlv2, v_ lV. An oriented path P[xo, x, x] has a sequence of distinct
vertices x0, x, x and arcs (x0, Xl), (x, x_), (xn-1, xn), where (xi, xi + 1)
denotes either XgXi / or x; / lXg. We often use the same notation P[xo, Xl, x] to
denote the vertex set ofP[x0, x, x]. In the notation P[xo, x, x], we usually
take the order of traversal from x0 to xn. The subpath of an oriented path P[xo, x, ,
x] induced by the vertices Xi, X +1, Xj-1, and xj is denoted by P[xi, xi +1,
xj_ , x] or simply P[ x;, xj]. Let PI and P2 be two oriented paths with the specified
orders of traversal. Then the concatenation of P1 and P2, denoted by Pl P2 (or PvP2), is
the oriented path obtained by identifying the last vertex of P1 and the first vertex of P2
(the vertex v is used to denote both the last vertex of P1 and the first vertex of P2). An
oriented cycle C is an oriented path P with the first vertex and the last vertex identified.
We denote C vPv, where v is the first as well as the last vertex of P. Thus Cn vP,v
is a directed cycle of length n.

The level of a vertex x in an oriented path P (or cycle) with respect to a chosen
vertex a of P, denoted by Le,a(X) (or simply L(x) with L(a) =- 0 if no confusion will
result) is the difference between the number of edges directed forward and the number
of edges directed backward on the subpath from the chosen vertex a to x. In the case of
an oriented cycle, we should also specify the order of traversal.

2. Characterization of the homomorphic preimages of C2,L2a. Let C2,1,2,1 be the
oriented cycle given in Fig. 1.

Let be the class of all digraphs, the class of all oriented cycles, and the class
of all oriented paths.

Let 01 and 0 be the classes of digraphs defined as follows:

0 { C e : C contains no 3, C contains odd number of 2’s },

0 u 0,.

Then we can characterize the homomorphic preimages ofC2,,2, as stated in the following
theorem.

THEOREM 2.1. For any digraph G, thefollowing statements are equivalent:
G can be homomorphically mapped to C2,,%;

(2) for any digraph P in O, P cannot be homomorphically mapped to G;
and

(3) G contains no subgraph that is isomorphic to 2, 3, or any digraph P in O.
Remark. Equivalently, we can state this theorem as follows:

{ G e : G -- C2,1,2,1 } { G ( : for any P e 0, P G }

{ G : G contains no subgraph

that is isomorphic to :, 3 or any digraph P in 0} or
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u u uo 2

FG.

{ G E " G -It C2,1,2,1} { G e : for some P e O, P-- G }

{ G E : G contains some subgraph

that is isomorphic to 2, 3 or a digraph P in 0}.
In proving the nonmultiplicativity of C2,1,2, 26 ], we did not perform the exhaustive

search of the complete obstructions of C2,,2,1 as stated above. We simply chose G P3
and H I)P2PII) from 0, then G C2,1,2,1, H - C2,1,2,1, but G H - C2,1,2,1.

Before giving the proof, we introduce the notion of cluster and some related results.
An oriented path P is called a cluster if

max { L(v)" v P} min_. { L(v)" v e P} 2; and
(2) P starts and ends with a P2.
In general, a cluster can have the following forms:
(a) 2pel Sp2peZp2 pe(2k- 1)2pe(Zk)?2 (for an illustration, see P[b, l] in

Fig. 2);
(b) 2Pel 2pe22 pe(Zk-1)2pe(Zk)p2 (for an illustration, see P[f, i] in Fig. 2);
(c) ’2pe’SP2pe2’2 PzPetZk-l)2 (for an illustration, see P[b, i] in Fig. 2); and
(d) P2Pel 2pe22 P2Pe(zk- 1)2 (for an illustration, see P[f, l] in Fig. 2),

where each pei (i 1, 2, 2k or 2k) is an oriented path with an even number
of alternating backward and forward (or forward and backward) arcs (may be empty).
In the following, pe and pei (i 1, 2, always represent oriented paths consisting of
an even number of alternating backward and forward (or forward and backward) arcs;
po and poi (i 1, 2, always represent oriented paths consisting of an odd number
of alternating backward and forward (or forward and backward) arcs. Usually, we use
P, to denote a directed path of length n and do not care about the order of traversal.
However, when we want to specify a directed path oflength n as a subpath ofan oriented
path in the representation ofconcatenation, we use P, to denote a directed path oflength
n directed forward, and P to denote a directed path of length n directed backward, as
we have seen in (a)-(d) above.

FIG. 2
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A subpath Q of an oriented path P (or an oriented cycle C) is called a maximal
cluster in P (or C) if Q is a cluster and if Q is not contained in a cluster with more
vertices.

In Fig. 2, P[ d, k] is not a cluster; P[ b, c, d] and P[f, l] are clusters, but not maximal
clusters. P[ b, l] and P[ m, o] are maximal clusters in the oriented path P[ b, o]. For our
convenience, when we speak of a cluster in an oriented path (or an oriented cycle) we
always mean a maximal cluster, unless otherwise specified. We say that the cluster
P[ b, l] is neighboring to the cluster P[ m, o] with joining arc ml. In general, when we
say that two different clusters A and B are neighboring clusters in an oriented path P,
we mean that there are no clusters between A and B. Obviously, we have the following
observation.

LEMMA 2.2. Let A and B be two neighboring clusters in an oriented path P with no
P3. Then there is an odd number ofalternatingforward and backward (or backward and
forward) arcs between A and B.

The oriented path ofan odd number ofalternating forward and backward (or back-
ward and forward) arcs between A and B is called the connection of the two clusters A
and B.

We also make the following convention that the oriented cycle

C 192eel 2ee22"’" P2ee(2k -1 )2ee(2k)l)

contains zero clusters. Note that

C l)2eel P2ee2p2 P2e(2k- )l)

contains one cluster. See Fig. 3 for oriented cycles containing zero, one, and two clusters.
The reader may note that the digraph in Fig. 3(a) is not a core; the digraphs in Figs.
3 (b) and 3 (c) are cores. A core is a (di)graph that cannot be homomorphically mapped
to its proper subgraph.

LEMMA 2.3. Let C 4: 2, 3 be an oriented cycle containing no P3. Assume that C
contains n P2’s and k clusters. Then n and k have the same parity.

Proof. We prove the lemma by induction on n. Ifn 1, then C v2Pv. Obviously,
C has one cluster. If n 2, then either C VpzPepzpeZv, which has zero clusters, or
C v2PzPZv, which has two clusters. Now suppose that the lemma is true for
smaller n. We prove that the lemma is true for n according to the following three cases.

Case 1. There exists a cluster B in C such that B contains more than two 2’s,
C vCBC2v and B Bie2eee2B2 (or B BP2pep:zB2).

Then, by deleting P:zpep2 (or P2pep2) from B and identifying the two end vertices in C,

(a) zero cluster (b) one cluster (c) two clusters

FIG. 3
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we obtain that

C* vCB*C2v and B* Bl B2 (B* is a cluster).

C* has k clusters, which is the same number as C has, and has n 2 P2’s, which is two
less than the number that C has. By the induction hypothesis, n 2 and k have the same
parity, so n and k have the same parity.

Case 2. There exists a cluster B in C such that B contains exactly two Pa’s,
C- vCPBp3C2v and B 02pe02 (or B o2pea).

Then, by deleting all of B and identifying the two end vertices in C, we obtain that
C* lCpopo3c21 where pol po3 is an oriented path with an even number ofalternating
backward and forward (or forward and backward) arcs. If C and Ca are in one cluster,
then C* contains zero clusters and C contains two clusters. Since C* contains n
2 a’s, which is even by the induction hypothesis, C contains even (n) 2’s. IfC and Ca
are not in one cluster, then the last cluster of Ct and the first cluster of C2 are distinct;
they will be combined to become one cluster in C*. C* has n 2 P2’s and k 2 clusters.
Applying the induction hypothesis to C*, n and k have_, the samearity.

Case 3. Every cluster in C contains exactly one P2; then all P2 are in one direction
along the order of traversal of C. We have that

C 1)Cl BC21) and B po)2po22po3 (or B po2po22po3).
By deleting 2p22po3 (or 2P22po3) from B and identifying the two end vertices in
C, we obtain C* vC plc21). C* will have n 2 2’s and k 2 clusters. Applying the
induction hypothesis to C*, n and k have the same parity.

LEMMA 2.4. Let C 4: C2, Ca be an oriented cycle containing no P3. Then C --C2,1,2,1 ifand only ifC contains an even number ofPE’S.
Proof. If C contains no 2, then C -- ; hence C -- C2,,2,1. If C contains some

2’s, but Ccontains zero clusters, then C- 2; hence C- C2,,2,. (This is the important
reason why we define C v’2peEpe2’2 P2Pe(Ek- )YPEpe(2k)v to have zero clusters.)
If C contains one cluster, then C - C2,,2,

Next, we consider the general case. Let us call the subpath Uo, u, u2 back and the
subpath u3, u4, us]front in the oriented cycle C2,,2,1. When we try to map an oriented
cycle C to C2,,2,, any sub_,path P2 of C should either be mapped to the back or to the
front; accordingly, all the PE’S in one cluster should be mapped either to the back or to
the front. It is impossible that some P2’s of the cluster are mapped to the front, and some
P2’s of the same cluster are map_,ped to the back. A cluster is said to be mapped to the
front (back) if all the subpaths P2 of that cluster are mapped to the front (back). If a
cluster is mapped to the front (back), then the neighboring clusters must be mapped to
the back (front). Therefore, C -- C2,,2, if and only if C contains an even number of
clusters if and only if C contains an even number of 2’S. [-’]

Proofof Theorem 2.1. Let P e 0. Obviously, P - Ca,,a, for P 3. If P e 0, then
P -/ C2,l,a, by Lemma 2.4.

implies (2). Let G e be such that G -- C2,1,2,. We prove that for any P e 0,
P -/ G. Suppose, on the contrary, that there exists P e 0, P - G. Then the same P e 0
will satisfy P -- C2,1,a,l by a composite mapping, a contradiction.

(2) implies (3). The proof is obvious.

3 implies ). Let G e be such that G contains no subgraph that is isomorphic
to C2, Ca or any digraphs P in 0. We prove that G -- C2,,2,. Obviously, G contains no
3, and for any oriented cycle C (C contains no 3 either) in G, C 4: a, C 4: 3, C
contains an even number ofPa s. Hence any oriented cycle in G can be mapped to C2,1,a,1
by Lemma 2.4.
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If G contains no P2, then any vertex in G is either a source or a sink; hence we can
homomorphically map G to C2,,2, by mapping all the sources to Uo and all the sinks
to Ulo

If G contains only one P, say P a0, al, a ], then G\ { al } has two components
G and G, where G contains a0 and G contains a2. Otherwise, there will exist an
oriented cycle containing one P, a contradiction. Thus we can map ai to ug for 0,
l, 2; map sources in G to u0, sinks in G to Ul (or u), sinks in G to u, and sources in
G to u (or u3). It is easy to see that this map is a homomorphic map.

Now we assume that G contains more than one . For any vertex v e V(G), let

O(v)= {x V(G)’vxE(G)}andI(v)= {x V( G)" xv E( G) }.
Obviously, for any vertex v such that O(v), I(v) 4: , any vertex in O(v) is a sink and
any vertex in I(v) is a source, since there is no in G. There is no arc between the
vertices of O(v) U I(v) since there is neither nor cycle containing one 2.

Now we construct the graph G* from G by the following subgraph replacement
operation. For any v V(G) with neither O(v) nor I(v) , let I(v) {x,
X2, X[l(v)[ } and O(v) { ZI, Z2, Z[o(v)[ }. Let the subgraph induced by { v } U
O(v) tA I(v) be replaced by the following subgraph B (see Fig. 4 for the illustration)"

V( Bv) O(v) I(v) {Yll, Y12, YllO(v)l’, YZl, Y22, Y210(v)l’,

Yl(v)ll, YlI(v)12, Yl(v)llO(v)l }
E(Bo) {xly, ylz, xYl2, Y12Z2, xylo(v)l, Ylo(v)lZio(v)l, x2Y2, y2z, x2Y22,

Y22z2, X2Y210(v)I, Y210(v)l zlo(w)l Xii(v)l, Yl(v)l, Yl(v)l z,

XlI(v)lYlI(v)12, YlI(v)12z2, Xli(v)lYli(v)llO(v)l, Yli(v)llO(v)lzlo(v)t }.
Obviously, we have the following observations.

FACT 1. G -- C2,,2,1 ifand only ifG* C,1,2,.
FACT 2. Any oriented cycle in G* contains an even number ofPz’s, as well as an

even number ofclusters.
FACT 3. For any vertex v V(G*), if v is neither a source nor a sink, then

IO(v)l- II(v)l- 1.
We now prove that G* -- C,,,. Take one P2 from G*, say P2 [ao, a, a2]. We

map [ao, a, a] to the back, i.e., f(ai) ui (i O, 1, 2).
For any x e V(G*), there exists an oriented path P connecting x with a0, a, a_ ].

P is either

P CIJIC2J2 Jk- 1Ck or P C1JIC2J2 Jk-1CkJk,

(a) v and its neighborhood

FG. 4

(b) Bv
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where C. (i 1, 2, k) are clusters, Ji 1, 2, k are connections between
two clusters. [a0, a, a2 is contained in C, since O(a)l I(a)l in G* by Fact
3, and x is the end vertex of Ck (in the first case) or the end vertex of Jk (in the second
case). Jk is an oriented path consisting ofalternating forward and backward or backward
and forward) arcs. Let L be the level function ofC (or C.J) with 0 =< L -< 2. Now we
define the following map (which depends on P).

If k is odd, then

u0 if L(x) 0 and x is a source,

u4 if L(x) 0 and x is not a source,

u2 if L(x) 2 and x is a sink,

f,(x) u4 if L(x) 2 and x is not a sink,

u3 if L(x) and x is a source,

u5 if L(x) and x is a sink,

u if L(x) and x is neither a source nor a sink,

where when we say that x is a source (sink), x is a source (sink) in G* (the same remark
holds for k being even). If k is even, then

u3 if L(x) 0 and x is a source,

u if L(x) 0 and x is not a source,

u5 if L(x) 2 and x is a sink,

fp(x) u if L(x) 2 and x is not a sink,

u0 if L(x) and x is a source,

u2 ifL(x) and xis a sink,

u4 if L(x) and x is neither a source nor a sink;

see Figs. 5 and 6 for the illustrations.
In Fig. 5, we have that

fp(Xi)

0 2 3 4 5 6 7 8 9 10 11

In Fig. 6, we have that

fp(Xi)

0 2 3 4 5 6 7 8 9 10

//3 //4 //5 //0 //5 //4 //3 //2 //3 U2 //1

If we can prove that, for arbitrary two oriented paths P and P2 from [a0, a, a2] to
x, J,(x) j2(x), then we have uniquely defined a map from G* to C2,,,.

Let PI and P be two oriented paths from [ao, a, a] to x. We prove fe,(x)
fe2 (x) by the induction on the number of common parts shared by P and P2. Suppose
first that P and P_ have two common parts: one part is the singleton x, and the other
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a.o

X3e2

4

X5/ J6 X

X
lO x

11

FIG. 5

part is an oriented path containing ao, a, a2]. Then P and P2 will form an oriented
cycle C in three possible ways, as described in Fig. 7.

We count the number of clusters starting from the cluster to which [a0, al, a2]
belongs. For each cluster C* in the cycle C, we have two numbers n and n2; ni is the
number of clusters that is obtained by counting along the Pi side first (i 1, 2).

CLAIM. n and n2 have the same parity.
Proof. For the case in Fig. 7 (a), in which ao, a, a2] is part of the cycle C, the

proof is obvious, since C contains an even number of clusters by Fact 2. For the case in
Fig. 7 (b), ao, a, a2 is not part of the cycle. We write

el [ao, al, a2]QoAoBoyBIAIQIX

and

P [ao, a, a2]QoAoBoyg2A2Qx,

where each Bi (i 0, 1, 2) is the oriented path consisting of alternating backward and
forward arcs (may be empty), each A (i 0, 1, 2) is a P2, each Qi (i 0, 1, 2) is an
oriented path (may be empty), and y is either a source or a sink in Pi (i 1, 2). Let/3i
be the number of arcs in Bi (for 0, 1, 2). Then

A and A2 are in the same cluster along ABIyB2A
+/2 even

/3 and/32 have the same parity.
Under this circumstance, by the parity argument, we have

Ao and A are in the same (different) cluster(s) along P
/30 and/3 have the same (different) parity

FIG. 6
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a a a ao a a-
,1 ,.z

y

(

(a) (b) (c)

FIG. 7

0 and 2 have the same (different) parity
Ao and .42 are in the same (different) cluster along P2,

which is consistent with the following direct argument: If A and A2 are in the same
cluster, and ifAo and A are in the same (different) cluster(s), then Ao and A2 are in the
same (different) cluster(s). This also implies that n n2 by applying the fact that there
are an even number of clusters in C.

(2) A and .41 are in different clusters along AB yB2A2
1 -+- 2 odd

and 2 have different parity.
Under this circumstance, by the parity argument, we have

A0 and A are in the same (different) cluster(s) along P
/o and 1 have the same (different) parity

B0 and fiE have different (the same) parity
A0 and .42 are in different clusters (the same cluster) along P2,

which is consistent with the following direct argument: If A and .42 are in different
clusters, and if Ao and A are in the same (different) cluster(s), then A0 and .42 are in
different clusters (the same cluster). This again implies that n n2.

Similar analysis can be applied to Fig. 3 (c). The proof of the claim is completed.
Assume first that x is in a cluster Cx of C. If Cx is counted in the nth cluster along

P, and the n2th cluster along P2, then n and n_ have the same parity as proved above.
Therefore, fv (x) fv2 (x). Assume now that x is not in a cluster of C. Then x is in a
connection that connects two clusters C ofP and C2 of P2. If CI is the nlth cluster in
P, and C2 is the n2th cluster in P2, then n and n2 have different parity. Assume that n
is odd and n2 is even; see Fig. 8(a) for the illustration. We have, by the definition of
fv (i 1, 2),

fp, (x) j:(x) u3 if x is a source,

j(x) =2(x) Ul ifxis not a source,

j, (y) (y) u2 if y is a sink,

fp, (y) fp(y) u4 if y is not a sink.

Therefore, f,,(x) j(x) for any vertex x in the connection between C and C2 for the
case illustrated in Fig. 8 (a). Similarly, we can check that ,(x) j(x) is true by the
definition of fp (i 1, 2) for the remaining three cases: In Fig. 8 (b), n is odd and n2
is even, as is the case in Fig. 8 (a), but the relative location ofthe connection with respect
to C and C2 is changed. In Figs. 8(c) and 8(d), n is even and n2 is odd. In Fig. 8, a
rectangle represents a cluster.
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(a)

P1

(b)

P1

even

P1

(c) (d)

FG. 8

We still assume that P and P2 have two common parts but the part containing x
is not a singleton; see Fig. 9. We use the same analysis for z as we used for y in Fig. 7 (b).
The location of P2’s around z with respect to the odd or even number of clusters must
be consistent without contradiction. We again obtain that J,(x) fp2(x).

Now assume that P and P2 are two oriented paths connecting a0, a, a2] and y;
P3 and P4 are two oriented paths connecting y and x; Pi (i l, 2) have no common
vertex except a0, al, a2 and y at their two ends; Pi (i 3, 4) have no common vertex
except y and x at their two ends; and Pi (i l, 2) and Pj (j 3, 4) have one common
vertex y at their end. We prove that J,P3(x) J2p,(x).

By Fact 3, y must be either a source or a sink. Let

P ABy, P2 A2B2y, P3 yB3A3 "’’, P4-- yB4A4"",

where each Ai (i 1, 2, 3, 4) is a P2 and each Bi (i 1, 2, 3, 4) is an oriented path
consisting of alternating forward and backward (or backward and forward) arcs. Let i
be the number of arcs in Bi (i 1, 2, 3, 4). If/3 and/32 are odd, then A1 and A2 are in
one cluster. If3 is odd, then A and A3 are in one cluster along the path AByB3A3 and
A2 and A3 are also in one cluster along the path A2B2yB3A3. If/4 is odd, then A and A4
are in one cluster along the path A B1 yBaA4; A2 and A4 are also in one cluster along the
path A2B2yBaA4", and A3 and An are also in one cluster along the path A3B3yBaA4. This
case is illustrated in Fig. 10(a). The detailed practical illustrations are in Figs. 10 (b) and
10(c). There are altogether 2 4 16 cases. Four other cases are illustrated in Fig. 1. The

X

FIG. 9
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(a) (b) (c)

FIG. 10

notation is explained as follows: Each rectangle represents a P2. Each straight line rep-
resents an oriented path consisting of alternating forward and backward (or backward
and forward) arcs, the letter 0 (respectively, e) near the line means that the number of
arcs in this oriented path is odd (respectively, even). Let A1 be in the specified cluster.
Then the letter n near the rectangle means that the P2 represented by the rectangle is in
the neighbouring cluster. Otherwise, they are in the same cluster as A. Therefore, ev-
erything is consistent here. We will never have the following problem: A3 is in the same
cluster as A along ABlyB3A3, but in the neighbouring cluster when analysed along
AIBlyB2A2 followed by along A2BzyB3A3. IfA is mapped to the back (front), then At
(i 2, 3, 4), marked n, must be mapped to the front (back); otherwise, Ai (i 2, 3, 4)
is mapped to the back (front). Applying the same argument as before to the oriented
cycle circled by P3 and P4, we can then obtain that fete3 (x) fe2e, (x).

In the more general case, that is, for arbitrary two oriented paths P and Q from
[a0, a, a2] to x, P and Q may intersect in several different places, we can use induc-
tion on the number of maximal common subpaths of P and Q and, applying similar
analysis as above from the nth common part to (n + )th common part, obtain that
f,(x) fe(x).

Therefore, we have uniquely defined a map ffrom G* to C2,,2,.
Now let xy be an arc of G*. We must prove that f( x)f(y) is an arc of C2,,2,. We

must only prove that for some oriented path P connecting [a0, al, a2] and xy,fe(x)fe(y)
is an arc of C2,1,2,1 It is a routine work to check by the definition offe.

e o e 0 e
e

e

(a) (b) (c) (d)

FIG. 11
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u U.o U U

FIG. 12

3. The homomorphic preimages of some other oriented cycles. Next, we may think
of the oriented cycle C3,1 given in Fig. 12.

Let

02 { P #: P contains no 4. P begins and ends with 3, and contains no 3
anywhere else. There are odd number of ’s in P},

(L) u o, u
Then we can characterise the homomorphic preimages of C3, as stated in the following
theorem.

THEOREM 3.1. For any digraph G, thefollowing are equivalent:
G can be homomorphically mapped to C3,1; and

(2) For any digraph P o, P cannot be homomorphically mapped to G.
The proofs of this theorem will be the subject of another paper. Therefore, we omit

the proofs here.

4. Computational consideration. As applications of our results, we prove that the
following two decision problems are in NP f’3 coNP.

Instance: A digraph G.
Question: Is G homomorphic to C2,1,2, (respectively, C3,)?

We only prove the result for C2,1,2,1 Similar arguments can be applied to C3,
It is easy to see that the problem is in NP. In fact, we may guess a partition of V(G)

into six parts V0, Vl, Vs, and then check the mapping of the vertices in V. to
ui (i 0, 1, 5) to see if it is a homomorphism. To prove that it also belongs to
coNP, we note the equivalent version of Theorem 2. l" For any digraph G, G cannot be

homomorphically rnapped to C2,1,2,1 if and only if G contains some subgraph_, that is
isomorphic to C2, Ca or an oriented cycle C co_.ntaLning an odd number of P2’s. Checking
if any given sub_graph of G is isomorphic to C2, Ca, or an oriented cycle C containing
odd number of P2’s, can be done in polynomial time.
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MATCHINGS IN THE PARTITION LATTICE*
E. PODNEY CANFIELDt

Abstract. Within the lattice of partitions of a finite set, the kth level consists of partitions having k blocks.
A matching between levels kx and k2 is a one-to-one function assigning to each partition in the smaller level
another in the larger level, which is related to the first by refinement. It is shown that matchings between adja-
cent levels of the partition lattice fail to exist precisely for k in an interval. The endpoints of the matchingless
interval are shown to equal asymptotically n log 2/log n and n log 4/log n.

Key words. Spemer, partition, matching, lattice
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1. Introduction. The subject of this paper is the existence of matchings between
consecutive levels of the partition lattice l-I,,. (See 2 for formal definitions.) We solve a
problem posed by Kung [8, 7] and obtain an analogous result for the "other half" of
not considered in the latter work. We describe the main results of [8] in connection with
our Theorem 3.4 later in this introduction, but the reader is urged to consult the original
preprint for the interesting details concerning the Sperner property in geometric lattices.
The work [4] is also highly recommended as an excellent survey of the various Sperner
properties, especially in the context of partition lattices, including further background
and a large bibliography.

Recall that a ranked partially ordered set is Spemer when its width and largest Whit-
ney number agree. The Whitney numbers ofthe partition lattice are the Stirling numbers
of the second kind, and the location K, of the largest, S(n, K,), is given asymptotically
by K, n/log n [6]. Letting IIn,k denote the class of partitions having k blocks, our
main results are summarized in the following statement. All logarithms are natural.

THEOREM. There are monotone increasing sequences Ln and R,,, defined for n >_ 3,
such that (1)for k < Ln there is a matching of IIn,k into IIn,k+l; (2)for k > Rn there is a
matching of II,,k into IIn,k_l; (3) there are no other matchings between consecutive levels
of II,. Moreover, as n --, o, Ln/Kn --’ log 2, and R/Kn - log 4.

The role played by previous research in establishing the above results is an interest-
ing story. In [1] it is shown that II,Kn- cannot be matched into II,,Kn, and it is stated
that "with virtually no change" the same method demonstrates that no matchings exist
for O(Z/(log)3/2). In [10] it is stated, without details, that no matching
of II,, into II,,k_l is possible even for k as large as (1 6)K, log 4. Essentially, two
methods, [1] and [11], have been known for proving the impossibility of matchings in
II,. It is a surprise that pushing these two techniques to their apparent limit, the one
being used for k < K, and the other for k > K,, yields results that are asymptotically
the best possible. That is, for those values of k for which the methods fail, matchings, in
fact, exist.

The information of the previous paragraph is asymptotic, the precise statement be-
ing that, given 6 > 0 and large n, matchings from II,, into II,,+ exist when k <
(1-d;)K, log 2, and do not existwhen k > (l+6)K, log 2 (similarly for k > K, with log 4
replacing log 2). Given only this asymptotic information, we could imagine the transi-
tion to be chaotic; that is, for some range of k having length o(n/log n), located around
K, log 2 and K, log 4, we find matchings existing and not existing in an unpredictable

*Received by the editors January 21, 1992; accepted for publication (in revised form) March 12, 1992.
This research was supported by National Science Foundation grant DMS-9021113.

tDepartment of Computer Science, University of Georgia, Athens, Georgia 30602.
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manner. The result, however, is that the transition is abrupt: we have the sequences
L, and/ described in the above theorem. The major part of the existence proof for
L, and R, is implicit in the work of Mullin [9], one of the earliest papers dealing with
matchings in the partition lattice.

The rest of the present paper is organized as follows. In 2 we give definitions and
some preliminary results. Section 3 contains the main proofs. The theorem stated above
is broken down into three parts. The existence of L, and R, is shown in Theorem 3.1,
the two limits in Theorems 3.2 and 3.3.

Our Theorem 3.4 bears a curious, but possibly only coincidental, relationship to
the main theorem of [8]. In the latter, Kung has shown that the incidence matrix of
the refinement relation between IIn,k and IIn,k-1 is nonsingular when k > n/2. This
implies the existence of matchings in that region. Theorem 3.4 states that a particularly
appealing method of finding matchings in the partition lattice has the same natural limit
of applicability (k > n/2) as that found in [8] for the Radon transform method. It
would be interesting to know if any incidence matrices are singular at a level for which
matchings exist.

A condition that implies the Hall criteria, less obvious than the one presented in
Lemma 2.2, was originally used to prove Theorems 3.2 and 3.3. Although this condition
has proved in the end to be unnecessary for this work, it may be useful elsewhere and is
recorded in Theorem 3.5.

2. Notation and preliminaries. The set {1, 2,..., n} is denoted [n]. A partition
is a set of nonempty blocks, pairwise disjoint, whose union is all of In]. We say that
refines 7r2, written 71"1 71"2, provided that each block of 7rl is contained in some block of
7r2. The set of all partitions of n, ordered by refinement, forms a lattice II, called the
partition lattice. We define the kth level of II, to be those partitions 7r having k blocks
and denote it by II,,k; that is,

The cardinality of II,,k is the Stirling number of the second kind S(n, k). Note that as a
lattice the discrete partition {{1}, {2},..., {n}} is the bottom element, and the coarse
partition {{1, 2,..., n}} is the top. Hence the elements of rank n- k are those that we
have decided to call the kth level, and the (n k)th Whitney number of the lattice is

Let (X, Y, E) be a triple in which X and Y are disjoint finite sets, and E is a subset
ofX x Y. For S _c X, we define the E-degree of S, d(S), to be I{ Y (z, /) E for
some z S}I, and we write d(z) for d({z}). For T c_ Y, d(T) is defined similarly.
We say that E is a matching, provided that d(z) <_ 1 for z X t3 Y, and d(z) is
identically I on at least one of X or Y. If d is identically I on X, then we say that X
is matched into Y by E. We say that E contains a matching, provided that there exists
a matching E’ c_ E. Our notion of matching is sometimes called a complete matching.
Let us recall the famous condition of Hall [5] for the existence of a matching.

THEOREM 2.1 (see Hall [5]). Let E C_ X Y. Then the set E contains a matching of
X into Y ifand only if, for all subsets S c_ X,

(2.1) IS’l < d(S).

As is well known, it follows from Theorem 2.1 that, if IXl IYI and if E c_ X Y is
regular, that is, d(z) is constant for z X and d() is constant for Y, then there is
a matching ofX into Y. Equally easy is the following result, which we prove as a lemma.
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LEMMA 2.2. Let E C_ X x Y. IfdE(x) > O]’or all x X and

(2.2) min{dF(X) X e X} > max{d(y) y e Y},

then there is a matching ofX into Y.
Proof. Let S c_ X. Since

ISlmin{d(x) x e X} < I{(x,y) e E" x e S}I
< d(S)max{d(y)’y e Y},

the desired conclusion follows, after division, from Theorem 2.1. l-1
When we speak of the matching problem between two levels kx and k2 of the par-

tition lattice, we mean the triple (X, Y, E), where X is H,,, Y is H,,., and E is the
set of ordered pairs (Trx, 7r2) E X x Y such that 7rx and 7r2 are related by refinement.
Another convenient notation is H,,, ,--. Hn,k, meaning that Hn,k can be matched into
H,,.. We also use "gz" to indicate that a matching is not possible. Unless specified
otherwise, when we use the function d( for a matching problem in the partition lat-
tice, the set E consists of all pairs determined by the refinement relation. In the second
half of Theorem 3.3, and in Theorem 3.4, the set E is a proper subset of the refinement
relation.

The second lemma of this section is a special case of [2, Thm. C] adequate for our
present application. First, we provide some notation. If g(x) is a nonzero polynomial
with nonnegative coefficients,

then, for each positive real number r, we associate with g(x) a random variable Xr by
declaring that Xr equals j with probability cjrJ/g(r). The mean, variance, and absolute

2 and tg, respectively. The latter notationthird moment about the mean ofX are #, a,
has the advantage of conciseness, but it suggests, misleadingly, that # depends only on
g(x), omitting reference to the parameter r. This hopefully will cause no confusion.
Even when two polynomials g(x) and h(x) are involved, the notations #, a, and so
forth imply an underlying real parameter; this parameter will be the same for both g and
h, and it will be denoted always r. The degree of g(x) is deg(g), and the smallest integer
j for which the coefficient cj of g(x) is strictly positive is called the order of g, ord(g).
The coefficients of g(x) areproperly log concave, provided that, for ord(g) < j < deg(g),
cj > 0 and cff > c_c+.

There is an obvious relation between the coefficients of the power g(x)k and the
probability, call it p(n, k), that the sum Z of k independent copies ofX equals n. Sums
of independent variables are the object of interest in the central limit theorem, and, in
particular, the remarkable Berry-Ess6en inequality [3, p. 521] gives a universal bound
on the difference of Z’s distribution function from the normal distribution, in terms of
the third absolute moment about the mean tg. Information about this distribution, the
values ofwhich are sums ,,<, p(n’, k), can be converted to information about a partic-
ular p(n, k), (that is, a local linqit theorem), provided the p(n, k) have adequate "smooth-
ness." An example of inadequate smoothness is the situation of every other p(n, k) being
zero; no local limit theorem is possible in such a situation, although a central limit the-
orem may hold. On the other hand, an example of adequate smoothness is proper log
concavity. Proper log concavity, moreover, is preserved under the taking of products
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[7, Chap. 8]. The derivation of the local from the central limit theorem in the presence
of log concavity is a routine, albeit somewhat tedious, calculation. We simply state the
needed result and refer any reader interested in the proof to [2]. As usual, the operator
[z’] applied to a power series f(z) yields the coefficient of z’ in f(z).

LEMMA 2.3. There are absolute constants cx, c2, and ca such that ifpolynomials g, h
have properly log concave coefficients and the integers l, 12, n, and the real parameter r
satisfy the two relations

(2.3) _< 0.01,

where

llg + 12lZh,

then

arn(27r)/2 (1 + e),

with

c2 max(tgla2, thla) + c3

The final lemma of this section is a technical calculation, which will be needed later.
LEMMA 2.4. Let m be a positive integer, r m/2, g(x) ’jm=l xj/j!, and h(x)

2m 2 r, #h 2r, anda -- 2,j=m+l xJ /j!. Then, in the notation defined above, Ig r, ag

Proof. All the O( bounds in this proof are as m . Using a geometric series as
an upper bound, -]j=,+l rJ/j! O(r’/m!). Estimating r"/m! by Stirling’s formula,
for some constant c > 1, we have that

m

g(r) ZrJlj! er(1 + O(c-r))
j--1

m

jrlj! re(1 + O(c-))
j--1

m

Zj2rJ/j[ (r2 + r)e(1 + O(c-r)).
j=l

2From these three relations, we obtain the desired formulas for/zgand ag.
Now we proceed to the polynomial h(x). Again using a geometric series and Stir-

ling’s formula, we find the bound (since 5 log 2 > 3)

j>m+5 log m

rm
rj/j! . O(m-3)
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Let 81 and 89. be the functions of an integer argument h defined by 81 1 + 2 + h
and 89. 19. + 29. +... hg.; then, for Izl < 1,

E SlZ
h z(1 z) -3,

h=l

E(s + s2)zh 2z(1 + 2z)(1 z)-h=l

Taking z 1/2 and truncating the sums, we find that

(2.)
l<h<5 log m

Sl/2h 4 -I- O(m-3),

( + )/eh 6a + o(.-).
1<h<5 log m

As m o we have, uniformly for h O(log m),

(. + )(. + ) (. + h) .( + ./m + ( )/.= + O(h/.)).
and so

(2.7) rh/(m+l)(m+2) (re+h) (r/m)h(1--sl/m+(s+s2)/2m2+O(h6/m3)).
Combining (2.4) through (2.7),
(.8)

2m

r/J! -. 1(. + 1)(m + 2)... (m + h)+
j=m+l l<h<5 log m

rm

m--[ (1 -4/m + 32/m2 + O(m-3)).
m+5 log m<j<_2m

Since r2"/(2m)! is exponentially small in comparison to r’*/m!, we can deduce from
(2.8) that

(2.9)

2m 2m ?,m, j/j r( /j m (m))
j=md-1 j=m-I-1

2r-l. (1 2/m + 16/m2 + O(m-3)),

and similarly, after first calculating ’=m+l J(J 1)r/J!,

(2.10) /j! 4(+/. + o(,-)).
j--m+l

From (2.8)-(2.10), the desired assertions about #hand a follow.
Remark. A referee noted that a bound of the form a O((log r)a) is obtainable

by similar, but less detailed, analysis and suffices for what follows.
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3. Proofs.
THEOREM 3.1. There are monotone increasing sequences Ln andP definedfor n >_ 3

such that, for k < Ln, we have II,k II,k+l; for k > P, we have IImk -. Ilmk_l;
and, for all other k, IIn,k can be matched into neither of IIn,k+l. Moreover, both L and
I grow by at most I when n increases by 1.

Proof. The proof is by induction on n. For n 3, both Ln and P are equal to
K,. The inductive step requires four facts, and the more difficult two have been given
by Mullin; see our remark below. First, by [9], if II,, - II,k+l for k < Ln, then
IIn+l, II,+l,k+l for k < L,. Second, by [9], if II,, IIm,k-1 for k >
and m _< n, then II,+l, II+l,k-1 for k > R + 1. To these two facts we add
two additional observations of a more elementary nature. Third, if II,,k 9z. II,k+l,
then II,,+1,+1 9z* II,+1,+2, because any set S c_ IIm whose refinements in
constitute a smaller set T gives rise to a set S’ c_ II+l,k+l with the same property:
simply take S’ to be all the partitions of S with the singleton block {n + 1} added on.
Indeed, the refinements T’ of S’ are obtained from T by the same process of adding on
a singleton block. Fourth, if II,k II,k_l, then II+1, II,+l,k_l. For now, any
set U c_ II,, whose co-refinements in II,,_1 constitute a smaller set V gives rise to a
set U’ c_ IIn+l,k with the same property: U contains all partitions that can be obtained
from some partition in U by adding the element n + 1 to some block. Thus IU’I
The co-refinements V’ of U’ are obtained from V by the same process of adding element
n + 1 to each block. Hence IV’I (k 1)IV I, and our fourth assertion is established.

The net effect of the preceding four facts is this: Given that L and P have the
property within II, claimed by the theorem, then the status of where matchings exist
within II+l is completely determined, except for k Ln and k R, + 1. Whatever
may be the status of these two values of k, however, L,+I and R,+I exist and have the
stated growth condition. This completes the induction.

Remark. Mullin [9] states his main theorem this way: If for all n it is the case that
II,,g._ IIn,g. and also that II,,r,+1 ’--* II,,r., then, in fact, for all n it is the case
that matchings exist between every pair of consecutive levels in II,. Despite this "all or
none" statement, his proof is an explicit construction of matchings leading to the first
two of the four key assertions above.

THEOREM 3.2. For n > 5 and k < n log 2/log n, there is a matching of IIn,k into
H,,k+1. Moreover, the constant log 2 is the bestpossible in that, for each > O, there is an
integer no depending on 6 such that, for n > no and k > (1 + 6)n log 2/log n, there is no
matching ofH,,k into H,,k+l.

Proof. We will show that condition (2.2) for a matching is satisfied. Let x H,,k;
then

Bx

>_ k(2’/-1 1),

since ] 21BI is minimized when all IBI are equal. However, n/k > log n/log 2, and so
2’/k > n. On the other hand, for each y H,,k+l, we have dE(y) (k2+1); hence (2.2)
follows, provided only that n is so large that n/2 1 > (k + 1)/2. The latter is true for
n > 6, and for n 5 the assertion of the theorem is easily checked by inspection.

Next, we want to see that log 2 is the best possible constant. Fix 6 > 0, and consider
a sequence of pairs (n, k) for which n cx and k Sn/log n with/3 > (1 + 6) log 2. We
may assume that k < K,, since otherwise, of course, H,,k # IIn,k+l. Hence, without
loss,/3 < 1+. For each pair (n, k), we will define a collection ofpartitions A c_ H,,k and
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show that, for all sufficiently large n, it fails the Hall condition (2.1). The collection A will
depend on two parameters and m and specifically will consist of all partitions 7r II,,
that have exactly blocks whose sizes lie in the range 1 to m, and k blocks whose
sizes lie in the range m + i to 2m. Let #(z) and h(z) be the polynomials ,’ z/j! and

2rn,,+x x/j!, respectively. With a(n, k, l, m) IAI, we have by a standard generating
function argument (see, for instance, [12, 3.6]) the identity

Our plan is to estimate IA with Lemma 2.3. We start with the following three definitions:

log n jm
(1+6)1og2

r m/2,
klZh --hi.

2 r, #h 2r, andBy Lemma 2.4, we have the following four relations: #g r, aga 2. Were the floor function "[ J" omitted from definition (3.1) of l, the left side
of (2.3) would be exactly zero. Note that 1/k - 2(/3 (1 / 6)log 2)//3, and, by our
assumption that (1 + 6) log 2 </3 < (1 + 6), the limit of 1/k lies strictly between 0 and
1. This implies that az f(kr), and so we find that (n #)/a O((r/k)/z). Thus,
for all large n, condition (2.3) holds. By a crude estimate, max(t/a, th/a) O(m),
and so e O(r/k/4). From Lemma 2.3, then, as n c, with k n/log n and m,l
chosen by (3.1), we have that

IAI a(n, k, l, m)
n! g(r)th(r)k-t

t!(k

How large is the collection of all refinements of partitions in A ? Define C and
C c_ H,,k+ in the same manner as A, but with parameters (l + 1, m) and (1 + 2, m),
respectively. Certainly, all refinements of A are found among C t_J C. A key point in
our argument is that the same parameter r used in estimating IAI will serve to estimate
ICI a(n,k + 1,1 + 1,m) and IC a(n,k + 1,1 + 2,m); that is, condition (2.3) will
hold for both C and Cz. Moreover, the two values of a arising in the estimation of ICll
and IC21 are asymptotic to that arising in the estimation of AI, and the two values of e
again tend to zero; in short, we arrive at the rather simple equation

(3.2) IAI \l] h(r)"

Recall that both and k are ft(k). Because g(r) < e and h(r) > rm+/(m +
1)!, it is easy to see that both fractions on the right side of (3.2) tend to zero. In fact,
using Stirling’s formula for m!, g(r)/l O((logn)/nP) and (g(r)/l)((k 1)/h(r))
O ((log n)3/2/n ) withp andp2 equal to 1 1/ 1+6) log 4 and 6/ 1+6). This concludes
our proof.

THEOREM 3.3. F/x 6 > 0. There is an integer no depending on 6 such that, for all
n > no, (1) there is no matching ofH,, into H,,_for k < (1 6)n log 4/logn, (2) and
there is a matching ofH,,k into H,,k_ for k > (1 + 6)n log 4/log n.
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Proof. Let m [(1 + 6)logn/log 4J and consider the set S of 7r E II,,k at least
nx-6/2 ofwhose block sizes equal 2m, at least n1-/2 ofwhose block sizes equal or exceed
3m, and all ofwhose block sizes belong to the set {m, 2m, 3m, 3m+ 1,...}. Note that, for
sufficiently large n, the set S is not empty. Some reflection shows that each y E II,,k_ 1

refined by at least one 7r S is, in fact, refined by many; precisely, for each y II,,_,

1(2mm)nl-6/2
(n log 4/log n)2, implying that the Hall condi-For n sufficiently large, 1/2 (m’)n-’/ >

tion (2.1) fails for this set S, and there can be no matching of H,,k into H,,k-1.
Proceeding now to assertion (2), we will show that the triple (H,,k, H,,k-1, E), with

E a suitably defined proper subset of the refinement relation, satisfies condition (2.2) for
a matching. Assume that k > (1 + 6)n log 4/log n, and define e and b by the equations

e (1 + 6) log 4/log n,

4.

Without loss, we take 6 < 1/2. Let E be the set of pairs (Th, 7r2) such that 7rl refines 7r2
by splitting a block B whose size is no more than 2b into two blocks B1 and B2 each of
whose sizes is no more than b. We now check condition (2.2).

Suppose that x II,,k. Since k > en, we have (1/be)kb > n, which implies that the
fraction of blocks in x whose size exceeds b is no more than 1/be. Hence

/ x )I{B x "lBI < b}l _> 1- k.

Let n be sufficiently large that 5k > 30. Since be > 1 + ti/2 > (1 5/3) -1,

(3.3)
dE(x)>_ (6k2/3)

>

Next, suppose that y IIn,k-1. Since it must be a block of size 2b or less that is split
to create an E-relation,

(3.4) k22b >_ dE(y).

Let n be sufficiently large that 62e > 20n-e/3; then, since 22b n1-e/3, conditions (3.3)
and (3.4) imply that

dE(x) > dE(y),

and the proof is complete, rl
Remark. The construction of set S used to prove assertion (1), above, is a trivial

modification of the one used by Shearer [11]. Shearer has stated [10, p. 15] that, for all n
sufficiently large, something even stronger than (1) is true: namely, that every maximum-
sized antichain in H, includes partitions 7r the number of whose blocks satisfies I rl >
(1 6)n log 4/log n.

The next theorem states that a particular sublattice of the partition lattice contains
a matching for k in the range covered by [8].
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THEOREM 3.4. Let E1 be the set ofallpairs (71"1,7r2) E 1-In X IIn such that 71 refines
r2 by creating one new block ofsize 1. Then, E1 contains a matching of IIn,k into IIn,-I
for k >_ n/2 + 1.

Proof. We rely on Lcmma 2.2 once again. Let x E IIn, and s be the number of
singleton blocks in x. Then d, (x) () + s(k s), and the latter is an increasing
function for 0 _< s _< k 1/2. If k n, the theorem is trivial, and for k < n we must
have s <_ k 1. Because k >_ n/2 + 1, we have s _> 2. Taking s 2,

d (x) >_ 2k- 3.

Now let y IIn,k-1. Clearly, ds (y) is the number of blocks in y of size 2 plus the
number of elements belonging to blocks of size 3 or more in y. It is easy to show that
dl (y) can be maximized when n k is even by a partition having blocks of sizes I and
3 only, and when n k is odd by a partition having one block of size 2 and all others of
size I and 3. These need not be the only maxima, but at least we know that

d (y) <_ 3(n k)/2.

For k in the stated range, we see that ds (x) _> ds, (y), and this completes the
proof.

Our last theorem says that the condition ofLemma 2.2 for verifying the Hall criteria
may be relaxed to the extent that d(x) >_ dE(y) is not required of all pairs (x, y), but
only those pairs belonging to E. The proof given here is due to Griggs.

THEOREM 3.5. Let E c_ X Y. fidE(x) > Oforall x X and

(x, y) e E = dE(x) >_ dF(y),

then E contains a matching ofX into Y.
Proof. The proofis by induction on IXI, the casewhere IXI 1 being trivial. Assume

that IX n + 1, and that the theorem holds for smaller sets X. Note that whenever
E satisfies the hypothesis of the theorem, so does the restriction of E to any subset of
X. By induction, for any S c X, S X, E contains a matching of S into Y, so that
dE(S)

_
IS I. Thus it suffices to show that dE(X)

_
IXl. Let xo X, and, using

induction, find M c_ E a matching ofX x0 into Y. We can extend M to a matching of
all of X into Y, provided only that x0 is adjacent to some point of Y not in M. If this is
not the case, since dE(xo) > O,

dE(y) [E[
yY

.’(,)e

dE(X)

dE(y),

which implies some other vertex in Y is adjacent to X; that is, dE(X) >_ ]MI + 1 [X[.
As noted above, this completes the induction. [3

Acknowledgments. The author thanks Jerry Griggs for several valuable comments
and for the above proof of Theorem 3.5. The author also thanks an anonymous referee
for several corrections and helpful suggestions.



MATCHINGS IN THE PARTITION LATHCE 109

REFERENCES

[1] E.R. CAFmLO, On aproblem ofRota, Adv. in Math., 5 (1977), pp. 1-10.
[2] ,Application ofthe Berry-Essen inequality to combinatorial estimates, J. Combin. Theory Set. A,

28 1980), pp, 17-25.

[9]
[10l

[11]
[12]

[3] W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley, New York,
1966.

[4] J. R. GRIGGS, The Spernerproperly in geometric andpartition lattices, in The Dilworth Theorems, K. P.
Bogart, R. Freese, and J. P. S. Kung, eds., Birkhiiuser, Boston, 1990, pp. 298-304.

[5] E HALL, On representatives ofsubsets, J. London Math. Soc., 10 (1935), pp. 26-30.
[6] L.H. HARPER, Stirling behavior is asymptotically normal, Ann. Math. Statist., 38 (1967), pp. 410-414.
[7] S. KARLIN, Total Positivity, Stanford University Press, Stanford, CA, 1968.
[8] J. P. S. KUNG, The Radon transforms ofa combinatorial geometry. II. Partition lattices, Adv. in Math., to

appear.
R. MULLIN, On Rota’sproblem concerningpartitions Aequationes Math., 2 (1969), pp. 98-104.
J. B. SHEARER, Some problems in combinatorics, Ph.D. thesis, Massachusetts Institute of Technology,

Cambridge, MA, 1980.
.,A simple counterexample to a conjecture ofRota, Discrete Math., 28 (1979), pp. 327-330.
H. S. WILF, generating/hnctionology, Academic Press, New York, 1990.



SIAM J. DISC. MATH
Vol. 6, No. 1, pp. 110-123, February 1993

() 1993 Society for Industrial and Applied Mathematics
OO9

COMMUNICATION COMPLEXITYAND QUASI RANDOMNESS*
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Abstract. The multiparty communication complexity concerns the least number of bits that must be ex-
changed among a number of players to collaboratively compute a Boolean function f(:c,..., x), while each
player knows at most inputs for some fixed t k. The relation of the multiparty communication com-
plexity to various hypergraph properties is investigated. Many of these properties are satisfied by random
hypergraphs and can be classified by the framework of quasi randomness. Namely, many disparate proper-
ties of hypergraphs are shown to be mutually equivalent, and, furthermore, various equivalence classes form
a natural hierarchy. In this paper, it is proved that the multiparty communication complexity problems are
equivalent to certain hypergraph properties and thereby establish the connections among a large number of
combinatorial and computational aspects of hypergraphs or Boolean functions.

Key words, multiparty protocols, discrepancy, lower bounds

AMS(MOS) subject classifications. 05, 68, 94

1. Introduction. Many problems arising in interactive and distributive computation
share the general framework that a number ofprocessors wish to collaboratively evaluate
a Boolean function while each processor has only partial information. We are interested
in determining the minimum amount of information transfer required, under the as-
sumption that each processor has unlimited computational power and that the messages
are transferred by a "blackboard," viewed by all processors.

One of the most interesting examples is the round-table model, proposed by Chan-
dra, Furst, and Lipton [CFL], involving k players each having a number X on his/her
forehead (so that the ith player knows all numbers except for X). For k 3, they proved
a tight lower bound for the minimum number of bits to be exchanged to compute the
sum of X’s. For general k, the lower bounds were further improved by Bahai, Nisan,
and Szegedy [BNS], who gave a lower bound of f(m2-) for computing some explicit
functions on k strings m-bits each.

When only two players are involved, it is just the usual model for communication
complexity, which was first proposed by Yao [Y] and has been studied extensively by
many researchers [BFS], [HMT], [L], [LS], [MS], [PS], [Th]. In this paper, we consider
the following model generalizing both the round-table model and Yao’s model: A num-
ber of players wish to cooperatively determine a Boolean function f(z,..., z), which
accepts k inputs each m bits long. Suppose that each player knows at most t inputs. We
are interested in minimizing the number of bits C,t(f) to be exchanged to compute f.

Determining the communication complexity C,t(f) could be a difficult problem
for a general function f. The main purpose of this paper is to demonstrate the relation
of communication complexity to several hypergraph properties. Consequently, lower
bounds for C,t can then be established. These hypergraph properties arise in the study
of random-like graph properties, called quasi-random.

Quasi randomness was first introduced in [CGW] by showing that a large number of
disparate graph properties are mutually equivalent, in the sense that any graph satisfying
one of the properties must of necessity satisfy all of them. More recently, in [C] it was
shown that several equivalence classes A form a hierarchy of classes of properties for
k-uniform hypergraphs (or k-graphs, for short) and for Boolean functions with k input
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Visitor, DIMACS Center, Rutgers University, P.O. Box 1179, Busch Campus, Piscataway, New Jersey
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arguments (also called k-functions). The quasi-random class Ak, introduced in [CG1],
consists of graph properties such as: "For any fixed s >_ 2k all k-graphs on s vertices
appear almost equally often as induced subgraphs of G." On the other hand, in A0 there
is the property that the number ofedges in G is approximately the same as the number of
nonedges in G. The detailed description of the equivalence classes Ai and the hierarchy
A0 D ,41 D Ak are described in 2.

Among various properties in the equivalence class dli, there are two interesting
invariants--the/-discrepancy and the/-deviation (see 2 for definitions). Intuitively, the
/-deviation provides a quantitative indication as to how much the graph deviates from
random graphs. Discrepancy is useful in various contexts, in particular, corresponding
to various statistical tests arising in complexity analysis. Roughly speaking, discrepancy
is a "global" property that is often hard to compute, while deviation is a "local" property
that is easy to compute. The quasi randomness results imply that the/-discrepancy of
a function is small if and only if its/-deviation is small. Furthermore, the/-discrepancy
can be used to characterize the communication complexity Ck,i. Using the results of
[BNS], this further leads to explicit construction of functions fk,, with communication
complexity Ck,, lower bounded by fl(rnc-*). One of the consequences is a simple proof
of the lower bound of Q(m2-k) on the communication complexity of the "generalized
inner product" function, as described in 3.

The communication complexity Ck,, corresponds in a natural way to the complexity
of a t-head Turing machine that computes Boolean functions with k inputs (as discussed
in 3). As an immediate consequence, lower bounds for time-space trade-offs can be
obtained. We prove that, for any fixed t, any (t 1)-head TM computing the function
fk,, on m-bit strings requires a time-space trade-off of TS >_ f(m2).

Discrepancy can also be interpreted in terms of a game of switches and lights (also
discussed in 3). Apart from being interesting, this interpretation yields a short proof
that the communication complexity Ck,i of a random k-function f is at least ((k i +

In 4we conclude with some open problems and remarks about the relations ofcom-
munication complexity to other complexity issues. The quantitative quasi-random classes
for k-graphs with edge density a and various expansion properties are also mentioned.

2. Quasi-random classes.

2.1. Notation. We use () to denote the set of k-element subsets of a set X of car-
dinality _> k. A k-graph G (V, E) consists of a set V V(G), called the vertices of G,
and a subset E E(G) of the set (), called the edges of G. Throughout this paper, G
denotes a k-graph on n vertices unless otherwise specified.

For X c_ V, G[X] denotes the subgraph of G induced by X, i.e., G[X]
(X,E C] ())). Let H denote an/-graph, where < k and V(H) V(G). The set

E(G, H) of edges of G induced by H is defined as

For 1, the edge set of H is just a subset of V(G) and E(G, H) E(G[H]). We
denote e(G) =1 E(G) and e(G, H) =l E(G, H) I.

Discrepancy. For i _> 2, the i-discrepancy of G, denoted by disci(G), is defined as
follows:

e(C, H) e(C, H)
disci (G) max

n:(i-1)-graph IV(G) 1
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where ( denotes the complement of G with edge set {z (v) z E(G)}.
We remark that disc2 is often called discrepancy in the literature, disc can be viewed

as a natural generalization of discrepancy.
We let #" (v) __, (_ 1, 1} denote the edge function of G; i.e., for z (v),

f

( 1

1 if xE,

otherwise.

Let Vk denote the set of k-tuples (Vl,..., v), vi V, where the v’s are not necessarily
distinct. Let I-[( Vk+i {-1, 1} denote the following function of G:

where e E {u2j-1, u2j} for j < i. Note that I-l( is a product of 2 terms, each ofwhich
is an edge function. For i 0, we define I-I

Deviation. The i-deviation of G, denoted by dev (G), is defined as follows:

1
devi(G) hie+

(i)

E ).

Thus devi(G) assumes avalue between-1 and 1. (Another interpretation is that nk+i devi
is the difference of the number of "even partial (squashed) octahedrons" and the "odd
partial (squashed) octahedrons," as described in [CG1] and [CG2].)

2.2. Quasi randomness. We use the following convention. Suppose that we have
two classes P P(o(1)) and P’ Pr(o(1)), each with occurrences of the asymptotic
o(1) notation. By the implication "P P’," we mean that, for each e > 0, there is a
6 > 0 (a function of e and k but independent of n) such that, if G(n) satisfies P(6), then
it also satisfies P’(e), provided that n > n0(e). Two properties P and P’ are said to be
equivalent if P pr and P’ P.

Here we define several classes of properties for k-graphs.
For i 0 and 1, define the properties

1 e(G) e() o(n:), where ( denotes the complement of G,
Rx G is almost regular. That is,

where

and

E (d+(u, u,_) d-(u, uk_)) 2 o(nk+l),

d+(u, =1 {" e V" {Ul,..., Uk-l, V} e

d-(ul,..., Zk-1)--I {v e V’{ul,... ,Uk-1, v}

_
E(G)}
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For i >_ 2, define

Ri" For every(/- 1)-graph H, e(G, H) e(t, H) o(nk).
In [CG1] it was shown that the property devk(G) o(1) for a hypergraph G is

equivalent to a number of properties, among which are

Q For all k-graphs G’ on 2k vertices, the number of (labelled) occurrences

of G’ in G as an induced subgraph is (1 + o(1))n2k2-().
Let s denote a fixed integer and s >_ 2k.

Q(s) For all k-graphs Gt(s) on s vertices, the number of (labelled) occurrences

of G’ in G as an induced subgraph is (1 + o(1))ns2-(:).
In [C] the deviation property is further generalized to the following property (denoted
Pi). For i >_ O, Pi devi(G) o(1). The main results of [C] can be summarized in the
following two theorems.

THEOREM 1. Properties Pi and Ri are equivalent for i 0,..., k. In particular, for
i >_ 2, we have that

max
e(a, H) e(G, H) (dev,(a))x/2’(i) disc/((])

H:(i-)-graph IV(G) <

(ii) devi(G) < 4 (disci(G))/’

Theorem 1, in fact, has interesting computational implications. It is easy to see that
computing disc/for general t7 (naively) takes time O(2’’. nk), since the number of i-

graphs is O(2’) and, for each/-graph H, computing e(G, H) e(t, H) takes O(nk)
time. On the other hand, devi can be computed in time O(nk+i), since devi is a sum
of nk+i terms, each term, respectively, is a product of 2 subterms, each of which is an
edge function. Thus Theorem 1 leads to the following conclusion: Although it takes
exponential time to compute disci exactly, an approximation can be obtained by using
devi in only polynomial time. We remark that it would be of interest if the power 1/2
on the right-hand sides of the inequalities could be improved.

THEOREM 2. Let .Ai denote the equivalence class ofk-graphsfor which Pi holds. Then

Ao ::) .A1 ::) .A2"" :::) fl..k.

The family .A Ak) of k-graphs is said to be (k,/)-quasi-random or, sometimes,
/-quasi-random if there is no confusion. The term "k-quasi-random" for k-graphs is the
same as "quasi-random" in previous papers.

Here we describe the constructions of k-graphs Gi, separating class Ai from .A/+I.
It is used in a later section on lower bounds for communication complexity. Since Pi
P+ for any i, we have that ,44

_
Xz+. To show that A A+, for i 0,..., k 1,

the idea is to construct k-graphs G with the property that G e d14 and G A+ using
quasi-random graphs as the basic building blocks. In [CG1] two families ofquasi-random
k-graphs are given, one of which is the Paley k-graph Pk with V(Pk) {1,2,... ,n}
(n is a prime) and/p, (u,..., u) I if and only if u +... + uk is a quadratic residue
modulo n.
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For each i, we define the k-graph Gi as follows:

V(Gi) V(Pi)- V,

E(G,) {zE ()" ()NE(P,)I--0 (rood 2)}.

Claim. It holds that G E jl \ +.
oof. eproof is dMded intoo pas.
Pan 1 (Gi ). It is sho in [C] (by using the character sum inequali of

Burgess [B]) that

devi(Gi) O(n-/).
erefore Gi satisfies Prope Pi, and hence is in.

Pan 2 (Gi +l). Consider the set E(Gi, P) of edges of Gi induced by the Paley
graph P. at an edge z is in E(G, P) means that eve/-subset of z has a sum that is a
quadratic nonresidue. By definition, m contains an even number of/-sets, each ofwhich
has a sum that is quadratic nonresidue. is can happen only when () 0 (mod 2).
erefore either g(Gi, Pi) is emp or g(Gi, Pi) is emp. Since k and i are all ed
integers,

E(G, P) E(, Pi)

Thus

nk
(1 + o(1))2()

We now describe a more general construction of k-functions G using any quasi-
random graph in Ak as the basic building block.

General construction for Gi A \ Ai+l. Note that the proof of Part 2 is quite
general; it does not use the fact that the basic building block was the Paley k-graph Pk.
We show here that, in fact, any quasi-random graph in Ak serves the purpose, as well.
(For example, the family of "even intersection" k-graphs defined in [CG1] is an equally
good choice.) First, we need the following definition of the "neighborhood graph" of
a k-graph. Given a k-graph G, the neighborhood graph G(v) of a vertex v is the graph
having vertex set G \ {v} and edge set E(G(v)) ix (kV_l) x tA {v} E(G).

Let Hi be a quasi-random/-graph on n vertices. Then we define the k-graph G as

v(a ) V,

We outline the proof of
Paa 1 (Gk- e Ak-). a direct consequence of the definition of a neighborhood

graph, we have that

1
dev,(G(v)).

vV

follows:
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For a fixed vertex v, consider the neighborhood graph Gk-l(V) of the k-graph (k-1.
The edge set of Gk-l(V) can be characterized as follows:

E (Gk-l(v))= E1 U,E2,

where

{ ( )_-0El= y E
k -1

y e Hk_l and E(Hk_l(v)) f’l
k 2

(mod 2) }
and

E2 y e
k -1

y . Hk_l and E(Hk_l(v)) CI
k 2

Thus

($) [Gk-1 (’O) ’Hk-1 [’(Hk-1

where 6(Hk- (V)) is defined to be

(mod 2) }

{5(Hk_l(v)) y e
k-1 (v)) n

k-2 (mod 2) }.
It is easy to verify that (.) implies that

deVk-l(Ck-l(V)) devk-1 (Hk-1)

Thus

devk-l(Gk-1) E devk_l (Gk_l(V))
n o(1), since Hk-1 e Ak-1.n

This shows that Gk_1 Ak-1.

Part 2. The proof of Gk-1 Ak is identical to the proof of Part 2 with the Paley
graph construction, above.

3. Communication complexity.

3.1. Quasi-random classes of functions. A k-function is a function f from Vk to
{-1, 1}. We note that k-functions can be viewed as ordered k-graphs, and k-graphs can
be regarded as symmetric k-functions. In fact, most known lower bound constructions
for k-functions are symmetric and thus can be reduced to hypergraphs. We see in the
following that the notions of discrepancy and deviation extend to k-functions, as well.
For convenience, we use the same notation (disc and dev) for discrepancy and devia-
tion of k-functions. Thus, for example, disc(f) refers to the deviation of a k-function f,
whereas disc(G) denotes that of a k-graph G.

Let I denote a subset of size i of {1,... ,k} [k]. For a k-tuple x (xl,... ,xk),
we define xt to be an i-tuple (xal,..., xa), where al < < ai and ai E I.

Discrepancy. Let7 denote a family of/-functions, where i < k and the members of
7-/, are indexed by ([]), denoted by h,. We define E(f, 7-l,) as follows:

E(f, 7-[.i) {x e Vk" f(x) -1 and for every hi e 7-l,, hl(xI) -1}.
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We denote the cardinality of E(f, 7"li) by e(f, 7"li). The/-discrepancy of f is defined as
follows:

disci(f) max
le(f’ ’i-1)- e(-f, ’i-1)

Ivl
n() V+ {-I, I} byDeviation. Define If,/

"-}

(0

II... II
where ej {xj_l_m_l,Xj+m} if j I and m =1 I fq [1,j] l, and ej xi+, if j I. The
/-deviation of f is defined to be

1
(i)

devi(f):max E l-I(xl,’"
i tk+i

x ’",z+i

where I ranges over all subsets of [k] of size i.
For fixed i, we consider the following properties for a k-function:

Ri For i > 2, for every family 7"/i- of (i 1)-functions,
e(f hi-l) e(-f hi-l) o(nk),

Pi devi(f) o(1).

It can be shown that properties/ and/5 are equivalent. In fact, the analogues of The-
orems I and 2 for k-functions also hold (see [C]).

3.2. Multiparty communication games. In [BNS], Babai, Nisan, and Szegedy con-
sidered the communication complexity for k-functions, where each ofthe k players knows
exactly k I inputs. Let x (z,... ,z) denote an input chosen uniformly over all k-
tuples. Then the communication complexity is bounded by log 1/F(f), where

r(f) msaX (Pr[x S and f(x) -1]- Pr[x S and f(x) 1]),

where S ranges over so-called "cylinder intersections." The theorem below generalizes
the result of [BNS].

We first extend the notion of "cylinders" and "cylinder intersections" for functions
in class Ai. A subset of S(i-) of k-tuples is called a cylinder if membership in S(-1)
depends only on i I coordinates. Thus, based on which i I of the coordinates the k-
tuple depends, there are (i_) types of S(i-) in Ai. Furthermore, a subset of k-tuples is

a cylinder intersection if it can be represented as an intersection of cylinders. Let fqS(-)

represent a subset that is an intersection of all (_x) types of cylinders. We define r(f)
of f to be

Fi(f) max (Pr[x CIS(i-1) and f(x) -1]- Pr[x [qS(i-1) and f(x) 1].
I’lS(i--1) \ /

Let I denote the subset of i coordinates on which S(i) depends. Then we have the
following natural correspondence between cylinders S(O and/-functions hi, for i
1,...,k- 1:

x S(i) } hi(xi) -1
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and

for every ht i, hi(xI) -1.

This enables us to prove the following.
THEOREM 3. For i 2,..., k,

r(f) disci(f),

Ci(f) >_ log
disci(f)

where Ci f denotes the communication complexity of f in class
Proof. Since z is chosen uniformly over all 2mk possible k-tuples, we have that

/

Fi(f) NS(i-1) (-,iS(i-1max {Pr[x and f(x) -1]- Pr[x and f(x) 1]]
NS(i-1) \

1
max ]{x’x e f"lS(i-1) and f(x)

t3s(i-)

-]{x’x S(i-1) and f(x)= 1}

1
max [e(f, "Hi-i) e(-f, ’Hi-l)]

disci(f).

The second part of this proof is similar to that of Lemma 2.2 in [BNS]; we include it
here for completeness. Let P be any valid protocol for the given function f. We denote
by P(x) the value of f(x) as computed by the protocol P. Let N be the number of
different possible strings that may be written on the board by P. We want to prove that
N >_ 1/Fi(f). With each string s, we associate Xp,8, the set of inputs for which s gets
written on the board by P. It is easy to see that Xp,8 is a cylinder intersection fqS(i-1).

Let be chosen uniformly over all k-tuples. Since P is a valid protocol,

Pr[P(x)= f(x)]- Pr[P(x) # f(x)]l 1.

We can estimate the same by summing over different Xp,s as follows:

Pr[P(x)= f(x)]- Pr[P(x) # f(x)]

_< ylPr [P(x) f(x) and x Xp,s] Pr [P(x) f(x) and x Xp,s]

where s ranges over all possible strings that may be written. Thus

1 < ’ IPr [P(x) f(x) and x e Xp,s] Pr [P(x) -y(= f(x) and x e Xp,s]

Z Pr [f(x) 1 and x e Xp,s Pr [f(x) -1 and x e Xp,s]

< Z Fi(f), since Xp,siS a cylinder intersection

Nr(f).
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This proves that

Ci(f) log N >_ log
Fi(f)

1-1

We note that we do not restrict the number of players. Suppose that we consider
the minimum number Ck,i(P) of bits required to be exchanged for some p players, each
knowing at most i 1 inputs of a k-function. It is easy to see that C,i(p) C,i(ff) if
p’ > p. Moreover, Ck,i(P") > Ck,i(P) if p" < p.

Fact. For any k-function f, Ci f <_ k i + 1)m.
Proof. If (k i + 1) inputs get written on the board, then some player would know

all k inputs. This could be done, trivially, if a player always writes an input that is not
already present on the board.

THEOREM 4. For a random k-function f, Ci(f) > ((k i + 1)/2)m.
Proof. For a random k-function f, it is easy to verify that, with probability approach-

ing 1, we have that le(f, H) e(-y, H)I O(n(+-x)/) for every (i 1)-function H,
and this is the best possible. Using similar methods as in [ESp], this implies that

le(f, ’i-1) e(--f,
disci(f) max

7i-i ?Zk

Hence

In [BNS] examples of functions f with Ck (f) (m/2k) are given. Here we give a
short proof for the following "box-product" of functions.

Box-product of k-functions and deviation. Let f Vk {-1, 1} and g: Wk

{-1, 1} be two k-functions. We define fog (V W)k {-1, 1} to be the following
k-function:

y[]g((x,y),..., (xk, yk)) f(x,... ,Xk) g(y,... ,Yk).

It can be shown that (see also [CG2])

devi(fFlg) devi(f), devi(g).

Example 1. Consider the graph G on three vertices vi, v2, va, with the edges {vi, v2}
and {vz, va}; let V {vi, vz, va} and f denote the edge function of G. It is easy to
check that dev0(f) deVl(f) 1/9. Taking the box-product of f with itself gives us the
function f’ ImI with the properties dev0(/’) devi (f’) 1/81.

Example 2. Consider the following "generalized inner product function" f,, defined
on subsets S of a set of size m:

f
fm(Sl,...,Sk)

( -1

if Si fq fq Sk is even,

otherwise.



COMMUNICATION COMPLEXITYAND QUASI RANDOMNESS 119

For the special case where m 1, f, each S is a singleton or empty. It is easy to
verify, by induction on m, that

fm=flD’"Dfl (m times).

Since devi(fl) 1 2-k-i+x c < 1, we readily obtain that devi(f,) < c". In
particular, devk(f,) < c’, where c < 1. This implies that disek(f,) < c/z. By
eorem 3,

Ck(fm) log
disck(fm)

n

erefore we prove the following theorem.
EOM 5. egeneralized innerproductnction f has C(f) fl(m/2).
One of the main results in [BNS] is to establish an upper bound for disckfm, and

thereby obtain a lower bound for Ck(f). Independently, an upper bound for disckfm is
also proved in [CG1]. However, both the proofs are more complicated in comparison to
the one described above. e significance of the box-product is thus apparent. Staing
with a nction with dev < 1, we can construct nctions with eonentially small dev
by repeatedly considering the box-product of the original nction with itself.
e following result shows that eorem 5 is an instance in a more general setting.
EOREM 6. ere are plicit k-nctions f satis#ing

m

Proof. Recall from 2.2 that we constructed k-graphs G E A \ A/+x for which

dev,(a) O(n-).

In terms of k-functions, this implies that devi(fk,i) O(2-’). So

disci(f,i) <_ (devi)/’

This implies that Ci(f,i) f(m/2i).
Remark. One of the important tasks is to find communication complexity lower

bounds that do not decrease exponentially in k for some explicit k-function. This would
improve results [BNS] on pseudorandom sequences, time-space trade-offs for multihead
Turing machines, and length-width trade-offs for oblivious branching programs. Improv-
ing the relation (Theorem 1) between disci and devi would be significant for the same
reason.

3.3. Application to Turing machines. Let f be a k-function. Under our general
communication model, we have the following analogue of the result of Babai, Nisan,
and Szegedy [BNS] for the time-space trade-off of Turing machines, and we omit the
proofs here.

LEMMA 1. Any i-head Turing machine that computes a k-function ffrom thefollowing
input:
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(where ** means spaces on the input tape) requires a time-space trade-off of TS
ICi+(f)/i.

Hence we have the following result.
THEOREM 7. Foranyfixed i, any i-head Tungmachine computing the k-function

requires a time-space trade-offofTS >_ f(m ).
3.4. Discrepancy and the switching lights model. There is yet another interpreta-

tion for disc in terms of the switching lights model, first described in [Sp] for the two-
dimensional case. The game consists of an n x n array A of lights and 2n switches, one
for each row x and column V. Each switch, when thrown, changes each light in its line
from off to on, or from on to off. The difference is defined as the absolute value of the
number of lights that are on minus the number of lights that are off, ranging over all
possible settings of the switches. Given an initial configuration, the goal is to maximize
the difference. Mathematical formulation of this problem shows that maximizing this
difference corresponds to computing the discrepancy (the I’ function) in the multiparty
communication model in a sense made precise in the theorem below.

Consider a k-dimensional array of nk lights. Imagine each switch controlling an i-
dimensional hyperplane of n lights; i.e., each switch, when thrown, changes each light
in the particular hyperplane from off to on, or from on to off. There are (i + 1)nm-
such switches, and the aim is to maximize the difference between the number of lights
on and off. We denote this by D. Thus, in k-dimensions, we formulate k- 1 discrepancy
problems associated with the switching game.

In three-dimensions, we have two problems: D] and D. The distinction is that each
switch controls a plane of lights in one case, and a line of lights in the other. Intuitively,
we would expect D to be higher than D], and the intuition is right. The mathematical
formulation of this case (D) is as follows.

Let the array of na lights be represented by A(ijk) +1, for i, j, k 1,..., n. Thus
1 represents a light on and -1 a light off. Furthermore, we let zi, yj, zk represent the
3n switches. "Throwing" a switch z corresponds to setting z -1. Given an initial
setting of A(i, j, k) +1, we define the discrepancy of A to be

D(A) max A(i, j, k) xiyjzk,
xi ,y ,zk =4-1

i.e., the maximum difference between the number of lights on and off that we can obtain
by throwing the switches. Furthermore, we define

D min max A(i, j, k)xiyjzk
A xiy zk

to be the maximum ranging over all possible initial configurations of A. The case ofD
for general i has a similar mathematical formulation.

The following theorem establishes the equivalence between D: and the "discrep-
ancy" I’ in the context of multiparty communication complexity. First, we associate
with a given k-input function f, the k-dimensional array A, of size 2 x... x 2’, where

Af(il,... ,ik) f(xl il,... ,Xk ik).
Thus we are assuming (without loss of generality) that each input x ranges from 1 to
2’. We then have the following theorem.

THEOREM 8. We have
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Proof. Basically, the number of inputs each player knows corresponds to the number
of coordinates required to specify a switch, and the possible bit sequences by the players
correspond to the switch settings. We describe the proof for i k 1. The general case
is quite similar and will be omitted. It is easy to see that F_x can be rewritten as follows
(see [BNS]):

rk_l(f(m)) max IE[f(xl,... ,Xk)tl(Xl,... ,Xk)’’ "tk(l,’’’ ,k)] l,
)1

where the expectation is over all possible 2"k choices of Zl,. , zk, and the maximum is
taken over all functions bj ({0, 1}’) {0, 1} such that bj does not depend on
(Intuitively, bj corresponds to possible messages communicated by player Pi.) Thus

1
Fk-l(f(m))=

2mk max I’"Z[f(xl,... zk)bl(Zl,.., xL)...bk(Zl,...
<1,...,>k

al

whereas discrepancy of AI in the switching game is defined as

Sil ""’Sik il--1 ik’--I

where the switch sit {1,... ,2m}k {0, 1} depends on all but index ij. It is now
easy to see that the functions Cj correspond to the switches s. us Fk_l(f(m))

e following theorem appears in [ESp] in the form of a result on a hypergraph-
coloring problem.

EOREM 9. ere ist aays A ofnk lights such that

where c(k, i) is an plicit constant depending on k and i.

oof. eproofis straightfoard using the probabilistic method and can be found
in[T].

Remark 1. eorem 7 shows that, for a random k-function f, disci(f)
O (n(+-1)/2). us this yields a simple proof of

log(2(k+i-l)m/)
(k + i 1)

m.
2

Remark 2. Note that Theorem 9 guarantees the existence of an array A such that

Dk(A) < cn(2k-i)/2. Can we, in fact, construct such an array? The question is open for
k > 2. For k 2, it is known that an n n Hadamard matrixH works! That is,

n(u) < n3/2.

However, it is not clear how to generalize the notion of Hadamard matrices for the
case of k > 2. Apart from being an interesting derandomization question, this has the
following implications. In view of Theorem 8, upper bounds on D yield, in turn, upper
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bounds on F, and, furthermore, give lower bounds on the communication complexity of
multiparty protocols. Thus, making Theorem 5.1 constructive seems to be an interesting
open problem.

Remark 3. The inequality in Theorem 7 is the best possible. That is, given any
arbitrary initial configuration for the array of lights, we can set the switches such that the
maximum difference is 2(r(/+i-1)/2). In fact, the random configuration achieves the
bound that can be proved by generalizing the result in [ESp]. The method ofconditional
expectations can be used in derandomizing the algorithm and a sequential as well as a
parallel algorithm is described in [T] to achieve the optimal setting of the switches.

4. Problems and remarks. In addition to various problems that were mentioned in
previous sections, many problems and directions remain to be explored. It would be
of interest to establish relations and connections with other complexity problems. For
example, an interesting relation between circuit complexity and quasi randomness has
been demonstrated through some recent work of Hastad and Goldmann [HG]. Using
the results of [BNS], Hastad and Goldmann show that (among other things) evaluating
the generalized inner product function on k+ 1 inputs by a depth 3 unweighted threshold
circuit with bottom fanin at most k would require size 2n(n/k4k). One way to improve
these lower bounds is to derive explicit hypergraphs or k-functions with smaller discrep-
ancy or higher communication complexity.

Although we deal with hypergraphs with the edge density 1/2, the results can easily
be generalized to hypergraphs or functions with any fixed edge density c, for 0 < a < 1.
For a function f from Vk to {-1, 1}, we define f,(x) 1- a if f(x) -1 and f,(x)
-c if f(x) 1. In [C], devif, discif, and the class Ai, are defined analogous to dev,
disci, and A/. In particular, the 2-discrepancy discz, is described as follows:

e(f,X)- t IX k

disc2,(f) xc_vmax IX ik

where e(f,X) =] {z E () f(z) -1} 1. Suppose that we choose a to be e(f,X)
{z V f(z) -1} / V 1 (which can be viewed as the density of "ordered"

hyperedges). Then disc, (f) associates with the maximum quantity that the number of
ordered-edges in a subset X can differ from the average. Ifwe can use dev, to (upper)
bound disc, (f), then we can (lower) bound the number of edges leaving X from every
X c_ V and thus assert the expanding property of the hypergraphs.
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DISCRETE LOGARITHMS IN GF(P) USING THE NUMBER FIELD SIEVE*

DANIEL M. GORDONt

Abstract. Recently, several algorithms using number field sieves have been given to factor a number n in
heuristic expected time Ln[1/3; c], where

Ln Iv; c] exp{(c + o(1 )(log n)" (log log n }

for n oo.
This paper presents an algorithm to solve the discrete logarithm problem for GF(p) with heuristic ex-

pected running time L,[1/3; 3/3]. For numbers of a special form, there is an asymptotically slower but more
practical version of the algorithm.

Key words, discrete logarithms, number field sieve

AMS(MOS) subject classification. 11Y16

1. Introduction. Given a prime p and integers a and b, the discrete logarithm prob-
lem in GF(p) is to find an integer z (if any exists) such that

(1) a _-- b (mod p).

The difficulty of computing discrete logarithms has been used in the construction of
several cryptographic systems (see, for example, [15]). The most successful implemen-
tation of a discrete logarithm algorithm for GF(p) to date is by LaMacchia and Odlyzko
[11], who solved the discrete logarithm problem modulo primes of 58 and 67 digits using
the Gaussian integers method. This method, introduced by Coppersmith, Odlyzko, and
Schroeppel in [8], uses a complex quadratic field to aid the sieving process.

Define

(2) L:[v; c] exp{ (c + o(1)) (log x)" (log log x)-v},

for z o. The Gaussian integers method, as well as several other methods described
in [8], find discrete logarithms for GF(p) in expected time Lp[1/2; 1].

The idea of using number field sieves has been used recently for factoring. Lenstra
et al. [13] have used a number field sieve to obtain rapid factorizations ofnumbers of the
form re +/- s, for small r and s. Buhler, Lenstra, and Pomerance [5] have generalized this
method to factor general numbers n in time L,[1/3; c]. Adleman [1] and Coppersmith
[7] have suggested further improvements.

Some necessary facts and heuristic assumptions about algebraic number theory and
linear algebra computations are discussed in 2. In 3 an overview of an algorithm
for computing discrete logarithms in GF(p) using the number field sieve is given. Us-
ing these results and assumptions, 4 shows that the algorithm works in expected time
L,[1/3; 32/3]. Another version for special numbers, which is asymptotically slower but
more practical, is given in 5.

2. Computational background. There are a number of specialized algorithms and
heuristic assumptions that are needed to give a good running time for finding discrete
logarithms with the number field sieve. Similar assumptions are used in [13] for estimat-
ing the time needed to factor with the number field sieve.
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2.1. Smoothness. Call an integer y-smooth if all of its prime factors are at most
y. Let (x, y) be the number of integers _< x that are y-smooth. We need results on
the probabilities of various rational and algebraic integers being smooth. The following
special case of a theorem of Canfield, Erd6s, and Pomerance [6] gives an estimate for
the probability of a number in a given range being smooth.

THEOREM 1. Suppose that 0 < w < v < 1, 7 > 0, and 6 > 0 are fixed. Let x and y be
functions ofp such that x Lp[v; "/] and y Lp[w; 6] for p --, x). Then

7(v_w)] forx
Lp[v w;- p oc.

The ratio (x, y)/x is the probability that a random number in (0, x] is y-smooth. In
this paper, we deal with numbers near x that are not random, but we use the heuristic
assumption that their probability of being smooth is also given by Theorem 1. For exam-
ple, we assume that numbers of the form c + din, for c and d running through a narrow
range and m fixed, are smooth as often as random numbers of the same size.

The elliptic curve method (ECM) for factoring an integer n depends on finding an
elliptic curve for which the order of the curve modulo a prime divisor ofn is smooth (see
[14]). The following conjecture implies that enough such curves exist so that the ECM
can expect to find one in reasonable time.

CONJECTURE 1. Given the conditions of Theorem 1, the probability that a random
number in (x x/, x + x/-) is y-smooth is Lp[v w;-7/6(v w)] for p --, o.

This conjecture implies the following special case of Conjecture 2.10 of [14].
CONJECTURE 2. The expected time for the ECM to factor an Lp Iv; c]-smooth integer

in [0, p] is L,[v/2; 2] for p --2.2. Linear algebra. Another operation that will take a large part of the computa-
tion time is dealing with matrix equations over Q. Given an S x T sparse integer matrix
A, where S > T and the entries in A are all at most T in absolute value, must find a
linear relation over Q for the rows of A. This may be done by the following algorithm,
due to Pomerance [17] (see [10] for an alternative algorithm).

ALGORITHM M. Let A be a (T + 1) x T matrix over Z, with each row having at most
E nonzero entries, each of absolute value at most T. This probabilistic algorithm returns
a linear relation for the rows of A.

Step 1. Attempt to compute the rank r of A.
Choose a random prime qo <_ ET log T. By using Gaussian elimination rood q0, find

the rank r0 of A rood q0. Rearrange the rows so that the first r0 rows are linearly inde-
pendent mod q0. Call the rearranged rows v, vz,..., v+. The result of the Gaussian
elimination determines an r0 x r0 submatrix A of the first r0 rows of A such that . is
nonsingular mod q0.

Step 2. Attempt to express Vo+X as a linear combination of v,..-, vo mod q for
each prime q <_ ET log T.

We attempt this via Wiedemann’s coordinate recurrence method [21]. Let P denote
the product of the primes q for which we are successful, and let P’ denote the product
of the remaining primes up to ET log T. If P’ > (EX/ZT), then return to Step 1 and
begin again.

Step 3. Attempt to compute the determinant D of ..
For each prime qlP, use Wiedemann’s probabilistic determinant algorithm [21] to

compute an integer D {0, 1,..., q 1}, which is the determinant of A rnod q with



126 DANIEL M. GORDON

probability at least 1 (ET)-z. Use the Chinese remainder theorem to compute the
integer Do closest to zero with Do =- Dq mod q for each prime qlP. Repeat this step
until a value of Do is found with 0 < ID01 <_ (E/ZT).

Step 4. Attempt to produce a linear relation among the rows of A.
With the Chinese remainder theorem and the results of Steps 2 and 3, compute the

integers cx,-. , co closest to zero such that

Dov,.o+ =- civ (mod P).
i--1

If any ci has absolute value exceeding (E1/2T)T, return to Step 3. Otherwise, we have
found the relation

ro

(3) Dov,.o+ civi.
i=l

THEOREM 2. Suppose that T > E > 12. IfAlgorithm M terminates, then (3) is a
correct equation. The expected running time ofAlgorithm M is O(EZTa log3 T).

Proof. By the assumptions on A, we have that II v II <- E/2T for each row vi of A.
Thus, by Hadamard’s inequality, the absolute value of the determinant of any submatrix
of A is at most (E/2T)T. From results of Rosser and Schoenfeld [18], it follows that
the number of distinct prime factors of any such nonzero determinant is less than 2T.
However, from the same reference, the number 7r(ET log T) of primes q < ETlogT
exceeds ET/3. We can thus conclude that for at least half of the primes q < ET log T,
the rank of A mod q is equal to the rank r of A over Q. Thus, with probability at least
1/2, the number r0 returned in Step 1 is equal to r. The running time for one iteration
of Step 1 is O(T3 log2 T) bit operations.

If r0 r, then Vo+t is a linear combination of v,..., vo over Q, and the least com-
mon denominator of the rational scalars involved divides the determinant D of. Thus,
if r0 r, then P’ _< (E1/2T)T. If Vo+X is a linear combination of v,..., vo mod q,
then Wiedemann’s coordinate recurrence method will be able to express Vo+X as such a
linear combination in O(ET2) operations mod q. Thus the running time for one iteration
of Step 2 is O(E2Ta log2 T) bit operations.

Wiedemann’s determinant-finding algorithm can calculate the correct determinant
with probability at least 1 (ET)-2 in O(ET2 log T) operations mod q. Among all the
numbers Dq computed in Step 3, the probability that at least one such Dq is not congru-
ent to D mod q is at most 7r(ETlogT)(ET)-2. From [18] we have 7r(ETlogT) < 2ET.
Thus the probability that the number Do computed in Step 3 is not D is at most 2(ET)-x.
The time for the Chinese remainder theorem is O(log2 P), which is O((ET log T)2) by
[18]. The total time for Step 3 is O(E2T3 log3 T) bit operations.

If Do D, then D0vo+X is an integral combination of v,.-., vo, and the integer
scalars c,.-., Cro are all at most (EX/2T)T in absolute value. Since P > 2(E/2T)T,
knowing those scalars mod P is enough to determine them. Thus, if Do D, then Step
4 will be successful; that is, we will not need to return to Step 3. Furthermore, (3) is a
correct equation. The running time of Step 4 is O(E2T3 log2 T). I-]

For the special number field sieve, we need only solve matrix equations modulo
p 1. This may be done using Wiedemann’s algorithm in O(ET2 log2 T) bit operations
for matrices satisfying the conditions specified in Algorithm M. If the factorization of
p i is known, a solution can be found modulo each prime factor, and a solution mod
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p- 1 can be obtained using the Chinese remainder theorem and Hensel’s lemma. If not,
then Wiedemann’s algorithm may be used modulo p 1. Either the algorithm will work
or it will discover a factor of p 1, and the algorithm may be repeated on each factor.

2.3. Algebraic number theory. Throughout this paper, p will be a prime for which
we wish to solve the discrete logarithm problem in GF(p). We represent GF(p) by Z/pZ,
where elements are identified with their least nonnegative residues.

We choose an integerm and f(z) Z[z] of degree k such that f is monic, irreducible
over Q, and f(m) =_ 0 (rood p). Such an f may be found by choosing an m of suitable

ksize and finding the base m representation of p, say p -i=0 aim*. Then f(z)
k-i=0 az satisfies f(m) p and is irreducible by a theorem of Brillhart, Filaseta, and

Odlyzko [4].
We also require that p does not divide Ay, the discriminant of f. If this happens

for a particular m, we may choose a different m, or alter f by adding m to some ai and
subtracting 1 from a/. The irreducibility of the new f may be checked quickly; see
[12]. Note that Af (--1)k(k-1)/2(f, f’) may be calculated efficiently. R(f, g) here
denotes the resultant of f and .

Let a C denote a root of f, K Q(a), and Or denote the ring of integers in K.
If s is a prime number not dividing the index [OK Z[a]], then its factorization in OK is
given by the following proposition (see, for example, [22]).

PROPOSITION 1. For aprime number s not dividing the index, suppose that ffactors in
GF(s)[z] as

(4) f(z) ------ II 9i()e’ mod s,

with each 9i monic and irreducible mod s, and gi gj for j. Then (s) I-Ii sie’, for
differentprime ideals si (s, 9i(c)) and N(si) sdeg(g’)

In particular, since (p, AI) 1, la (p, a m) is a first-degree prime factor of (p)
in OK, and we have OK/la GF(p). We may define a homomorphism o from Z[a] to
Z/pZ as in other number field sieve algorithms, by sending a to m mod p.

We say a prime ideal of OK is bad if its norm divides the index. All other prime
ideals will be called good.

Prime numbers dividing the index can be recognized efficiently using a theorem of
Dedekind (see [22]): Suppose that f factors mod s as in (4). Then the prime number s
divides the index if and only if there is some j for which ej > 2 and

(gj mod s) s-l(f- H 9i )mod s

as elements of GF(s)[z].
For any Z, call an algebraic integer in Z[a] -smooth if it is divisible only by

good prime ideals of Or of norm at most . We must find smooth numbers of the form
c / dc, for c and d rational, coprime integers of moderate size.

To do so, we start by attempting to factor

(5) +
Ick ak-lck-ld W’’" 2t- alc(-d)k-1 -t- a0(-d)l

_< + 1). ma (l l, Idl} . m ax(la, l}.
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PROPOSITION 2. Suppose that c, d E Z are coptime and N(c+da) is relativelyprime to
the index [OK Z[a]]. Then (c + da) factors completely into goodfirst-degreeprime ideals
in OK.

Proof. For each rational prime s dividing IN(c + da)l, there is a unique ideal of
norm s dividing (c + da). This is because, if a prime ideal dividing s divides (c +
then a -c/d modulo the ideal, and since the right side is rational, the congruence
holds mod s. Thus c8 =- -c/d (mod s) is a root of f mod s and, by Proposition 1,
determines the unique ideal z (s, a cs) dividing c + da.

The norm N(z) IOK/I is clearly a power of s. We have IZ[a]/( N Z[cz]) s,
since the representatives of classes in Z[a]/( fq Z[cz]) are just a, cz + 1,..., c + (s 1).
Since IOK/Z[c] is relatively prime to s, OK/Z[cz] maps to the identity under reduction
mod , so IOK/I s as well. Therefore the power of z dividing (c + da) is the same as
the power of s dividing the norm.

For the number fields K we deal with here, the discriminant will be huge, so most
operations in K will be impractical. One operation we must be able to do is take a
small set of units, given as products of a large number of algebraic integers, and find a
multiplicative dependency among them.

Let rl be the number of real embeddings of K, let 2r2 be the number of complex
embeddings, and let r rl + r2. Let al,..., al denote the real embeddings, and
try1/1, cr/l,..., a, a- the others. We define a mapping K -. C+- in the usual
way, by

l(z) (log I()1,""" ,log larl (z)l, 2 log I+1()1,""" ,2log I()1).
This mapping sends the units in (gr into a lattice/: EIi, with roots ofunity mapped

to the origin. The following theorem of Dobrowolski [9] shows that other units cannot
be too close to the origin.

LEMMA 1. Let 7 be a nonzero algebraic integer in K, and denote by I’rl the maximal
modulus of its conjugates. Then

I’rl < 1 + log k
6k2

only if "y is a root ofunity.
This implies that, for any unit u that is not a root of unity, II Z(u) II > log(1 +

((log k)/6k)) > 1/(10k) for k > 1.

THEOREM 3. Suppose that M > 80rk, and let ul,...u be units in (Dr, with
z(u ) < Mfor i 1,..., 2r. Then there is a non,vial linear relation

(6) c,. l(u) 0
i--1

with each ci an integer with [ci < M2.
2 (ui) with 0 <_ M2Proof. Consider the set S of all sums ,i=1 ci ci < There are

formally M4 such sums, and it suffices to show that two of them are equal.
For all vectors s S, we have s II < 2rM3. Therefore all s S are in an r-

dimensional sphere of radius 2rM, and, by the lemma, no two members of are closer
than 1/(10k2) to each other. Let V(x) denote the volume of an r-dimensional sphere
of radius x. Then the number of lattice points in the sphere is at most

V(arM3 + 1/(20k2)) < (80rk2M3)r m3r(8Ork2)r.V,(1/(20k2))
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This is less than M4r, however, and so, by the pigeonhole principle, there must be
two equal vectors in S. El

This dependence does not cancel out the units completely, since the resulting unit

I-I u’ could be a root of unity. If an/th root of unity is in a field of degree k >_ (1),
then we have < 6k log log k by [18]. The root of unity that it is can be determined by
calculating the arguments of each tr (ui).

If the root of unity is not one, we will look at other vectors e’ until one is found for
c’.which I-I ui’ 1. In practice, an/th root of unity could be eliminated by raising the

equation to the/th power. We will not do that here, to avoid dealing with the possibility
of losing information when and p 1 have a common divisor.

By the above, ifM > 80rk2 andwe are given 2r units ut,..., uzr with [[ l(ui) II < M
2rfor i 1,..., 2r, then there is a nontrivial relation I-Ii= u’ 1 with each c an integer

with Ic l < 6k0og log k)M2.
Ofcourse, existence is not enough. For the algorithm, we must find such a nontrivial

relation. This can be done using an application of the Lenstra-Lenstra-Lovfisz (LLL)
algorithm due to Babai [2]. For a lattice , let A() be the length of the shortest nonzero
vector in .

THEOREM 4. Let bl, , bn be vectors in Zn with Euclidean length less than N, and let
denote the lattice generated by bl,- , bn. We can find a vector v E such that

II II <_ (3/x/)nA()

in time 0 (n5+" (log N)2+’) ,for any e > O.
This algorithm will be used to find the dependency ofTheorem 3. The time estimate

is the same as for the LLL algorithm [12], using fast multiplication.
THEOREM 5. Suppose that M > 80rk2, and let Ul,..., u2 be units in OK, with

Z(u) < Mfor i 1,..., 2r. A nontrivial relation yI2: u’ 1 can be found in time
O(r5+’(log M)2+’),for any e > O.

Proof. Let lm(x) denote l(x) with each coordinate li replaced by/2’/J, and let
be the lattice generated by/,(u),..., 1,(u2).

For c (c, c2,..., c2) as in Theorem 3,

2r 2r 2r

II II + 0 + II < 2r3/2M2,
i=1 i=1 i=1

where each e is a vector with all coordinates less than 1 in absolute value. We will show
that such vectors e are short vectors in , and that they are sufficiently shorter than
other vectors to guarantee that the algorithm of Theorem 4 will find one.

There is a (highly unlikely) possibility that 21 ci 1,(u) 0 for all choices
of cl,..., c2 in Theorem 3, so that the shortest nonzero vector could be longer than
2r3/2M2. If the algorithm ever failed because of this, we could repeat it with a lattice
Z:’, where one coordinate lj is replaced by [2m/j] instead of [2m/J. By the Gelfond-
Schneider theorem (see, for example, [3]) the lattices are different, since 2’l cannot be
an integer. Therefore no vector e that is not a root of unity with c 0 could be zero in
both, and ’m, and at least one lattice (say ,) has )(,) < 2ra/2M.

2 1,(u) not corresponding to a relation of the form (6) willAny vector= ci
have one coordinate at least [2’/10k2J in absolute value, by Lemma 1. Taking 2" >
20k2r25rM2, this implies that the vector has length greater than 2r25M2.
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By Theorem 4, we can find a vector inm of length at most (3/VC)zr)(/m). How-
ever, 2rZSM2 > (3//)2A(,), so the vector found must correspond to a relation
(6). [3

3. Discrete logarithms in GF(p). The algorithm consists of two main parts. The
first is finding the discrete logarithms of a factor base of small rational primes, which only
must be done once for a given p. The second actually finds the logarithm of an individ-
ual b E GF(p) by finding the logs of a number of "medium-sized" primes and combining
these to find the log of b. In addition, for each number field used (one for the precompu-
tation and several for the individual logarithm calculations), the good degree-one prime
ideals of small norm in that field must be determined using the method discussed in 2.

We will assume that a, the base for the discrete logarithm, is B-smooth, where B is
a bound for the size of primes in the factor base. If a is not smooth, then we may choose
a random number that is smooth over the factor base, call it a’, and use it as the base for
logarithms instead of a. Then find loga, a, and use the identity

loga b loga, b/loga, a (mod p- 1).

If a’ is not a generator for GF(p)*, then loga, a and loga, b may not exist. If this
happens, we just choose another value of a’ until we find one for which log, a exists.
Alternatively, we could factorp- 1 using the number field sieve factoring algorithm and
then test if an a’ is a generator by checking that (a’)(-)/ 1 (rood p) for each prime
q dividing p 1. There is no guarantee that a small generator exists, but Shoup [20] has
shown that the extended Riemann hypothesis implies that there is a constant c such that
for all primes p, GF(p)* has a generator less than cw(p- 1)4(log(w(p 1)) + 1)4 log2 p.
Here w(n) is the number of distinct prime factors of n.

The reason for requiring a to be smooth is to have at least one inhomogeneous
relation for the logs of the factor base, using the equation

(7) loga a 1 _= floga q (mod p 1).

3.1. Precomputation. Let p be a prime and a be a primitive element of GF(p). As
described in 2.3, choose an integer m and an irreducible monic polynomial f(x) Z[x]
such that (p, Af) i and f(m) =_ 0 (mod p). Let a C denote a root of f, K Q(a),
and OK denote the ring of integers in K. Let p (p, a-m), so we have OK/p - GF(p).

The factor base B will consist of two parts: BQ will be rational primes _< B, and BK
will be good prime ideals in OK of degree one and norm <_ B. Let B’ denote the subset
of BQ consisting of the prime factors of a.

For the precomputation stage, we solve for the logarithms of the rational primes. We
will do this by sieving through pairs of small integers c and d. A "hit" will be a coprime
pair c, d for which c +dm and c + da are both smooth over B. These can be searched
for efficiently by sieving c + dm and N(c+ da). Suppose that we find a c and d for which
both are smooth, say

(8) c + dm H sW’(c’d)
s prime,s<_B

and

(9)
s prime,s<B
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for v,, w, E Z_>0. By Proposition 2, for each s in (9) with v, > 0 there is a unique ideal
in BK lying over s and dividing c + da. Let v(c, d) v,,(c, el) for this ideal, and be zero
for other ideals in BK of norm s. Thus we have

(10) c + dm II s’(’d)
sGflQ

and

(11) (c + dc) IX "*(’a)

In the Gaussian integers method, where K is a complex quadratic field with class
number one, the factorization into ideals in (11) can be rewritten as a product of alge-
braic integers in OK and one of a few (at most six) units. Then the equations can be
related using p(c + da) c + dm (rood p), and, from enough of these equations, a
solution can be determined that gives the logs ofevery element ofB. A similar technique
will be used for special p in 5. For the number fields K that we are dealing with here,
we must use a different method.

We continue sieving through pairs (c, d) until we have collected more than Itl equa-
tions of the form (10) and (11). Then we form a matrix with the w,’s and v’s for each
equation as its rows and apply Algorithm M to the submatrix of columns correspond-
ing to elements of B B’. In this way, we cancel out all those primes to find equations
involving only primes in/3’ (the resulting equations could be trivial, but we will use the
heuristic assumption that they will behave as if they were random equations). We then
have a set S of pairs (c, d) and integers z(c, d) for (c, d) E ,5 such that

H (c + din)(’d)
(c,d)eS

is divisible only by primes in B’, and

(12) II (c + da)(*’a) U,
(c,d)68

where U is a unit in OK.
After gathering 2r equations of the form (12), we may find a combination of these

that cancels all the units, by Theorem 5. This results in an equation of the following
form:

(13) II(c + da)u(,d) 1,

and so

(14) H(c + dm)U(’a) H qo(c + da)u(’a) 1 (mod p).
c,d c,d

Using the factorizations in (10), this gives

(15) H s" =1 (mod p),
sEN’
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where zs Ec,a w(c, d)y(c, d).
Taking logs, we have that

(16) E zs loga s ------0 (rood p- 1).
sB’

Once we have more than IB’I such equations, we can attempt to solve these ho-
mogeneous equations together with (7) and obtain the logs of every prime in B’, using
Gaussian elimination modulo p 1. If the matrix does not determine a unique solution,
we may collect more equations until it does. Since IB’I < logp, the fact that we must
have [B’[ runs of Algorithm M will not affect the complexity analysis.

3.2. Finding individual logarithms. To compute the logarithm of b, we first convert
the problem into finding logarithms of "medium-sized" primes. This is done by choosing
random integers [1, p 1] until we find one for which

(17) at b =- qlq2 qt (mod p),

where each of the qi are moderately sized (say _< p/). Then, by finding the discrete
logarithms of each q, we will obtain the discrete logarithm of b.

For each i, take m qh, where h is a number smooth over B chosen so that
mi is close to pX/. Let f(x) be a monic polynomial of degree k such that fi(mi) =_ 0
(mod p) and define

Then fi,j(mi) 0 (mod p), and, if fi,j(x) is irreducible over Q and ai,j is a root
of fi,j(x), then in Q(ai,j), IN(,y)I If, (0)1. We sieve through values ofj to find ones
for which fi, (0) is B-smooth and continue until we find one with fi,j (x) irreducible, and
(pf,(O), AI, 1. We will use this polynomial to find the logarithm of q.

Once a suitable value of j has been found, the factorization of ai (= ai,y) in Ki
Q(ai) gives us the following equations:

(18) rni qihi _= qa(ai) (mod p)

and

(19) (ai)= H ’"
As in the precomputation stage, we will sieve through small c and d until we collect

enough equations of the form (10) and (11) to cancel factors not in B’ and obtain

(20) qh H(c + drn)t(’d) =_ (a)H(c + da)t(’d) _= 1 (mod p),
c,d c,d

where the left product is divisible only by qi and primes in B’. Note that we only need
one such equation, since the logs of primes in B’ are known from the precomputation.

Thus we have

q H s’ (mod p),
sB’
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and so

(21) log q, z’ log s (mod p 1).

We do this procedure once for each qi and combine their logarithms to find log b.
The sieving and cancellation in this stage is the same as in the precomputation. The
only difference is that we must keep (18) and (19) and find other equations with rank
sufficient to cancel out the factors in those equations and the units that arise. It is a
reasonable heuristic assumption that the equations will have full rank, and most discrete
logarithm algorithms involve a similar assumption. An exception is the rigorous algo-
rithm of Pomerance in [16], but we have no version of his Lemma 4.1 that works in this
setting.

4. Runtime analysis. We will choose two parameters to optimize the performance:
the size of B will be Lp[1/3; 6] and the size of m will be Lp[2/3; 7], with 6 and ,,/to be
chosen later.

For the precomputation, take

k=
log logp

Then choose m Z less than p/k and f irreducible of degree k as described earlier.
Let a be a root of f, and K Q(a).

We will search through pairs of integers c, d that are relatively prime and at most
Lp[1/3; ,] in absolute value. There are thus Lp[1/3, 2)] pairs. We have

Ic + dml <_ Lp[2/3;-] and IN(c + da)l < Lp[2/3;- + /’]

by (6).
Using the heuristic assumptions of 2.1, we expect to obtain enough hits to solve for

the logs of 13’ after

Lp[1/3; + "Y +
38
A/7 + 6]

trials. Letting this equal Lp[1/3; 2A], we obtain

(22) A 2"Y2 + 3827.
67- 1

The time necessary to sieve through all these values is Lp[1/3; 2A]. Each use of
Algorithm M to solve the matrix equations takes time Lp[1/3; 38], taking T Lp[1/3; ,5]
and E O(logp). To cancel the units as described in 2.3 takes time Lp[1/3; 28]. This
follows from Theorem 5, taking M exp(Lp[1/3; 8]).

This is done IB’I < logp times, so the total time is still Lp[1/3; 38]. Altogether, the
precomputation takes time Lp[1/3; 38].

To calculate the discrete log of a particular b GF(p), we choose a random e
[1, p 1] and see if ab mod p is Lp[2/3; 7J-smooth. Assuming Conjecture 2, the ECM
can detect such smooth numbers with probability 1 o(1) in time Lp[1/3; 2x/-]. If
no factorization is found after that amount of time, another value of can be tried.
We expect to find an for which a mod p is smooth after Lp[1/3; 1/(3-),)] trials, by
Theorem 1.
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Once such avalue has been found, we have atb qtq2"" qt (mod p), and it suffices
to find the discrete logarithm of each q.

Then we choose mi qihi of size L,[2/3; 7] for each qi, and find an irreducible
monic polynomial f of degree k for which f(mi) 0 (rood p) and fi(O) is B-smooth.
The constant term of f is L,[2/3; 7], so finding a smooth value should take time
Lp [1/3; q,/(38)].

The next step is to collect equations as in the precomputation. The parameters are
the same, and so the time will be the same, unlike most discrete logarithm algorithms,
for which the precomputation takes more time than finding individual logarithms.

The total time is L,[1/3; M], where

M=max 2,k,3,/2 ,-
By choosing 7 ()l/a, 6 3-x/a, and ) ()t/a, we note that (22) is satisfied, and
we achieve an optimal time of Lp[1/3; 32/].

5. Discrete logs for special p. As with the number field sieve factoring algorithm, it
is possible to modify the discrete logarithm algorithm for numbers ofa special form. The
method we present here is a generalization of the Gaussian integer method to higher-
degree fields. While asymptotically slower than the method of 3, it avoids the use of
Algorithm M and so is more practical for numbers of a reasonable size.

In [15] McCurley offers $100 for breaking a Dittie-Hellman scheme (which is no
harder than, and may be equivalent to, finding discrete logarithms) with the prime p
2- 739. q + 1, where q (749 1)/6. For this number, the scheme given below would
be faster than the method of 3, although, since p has 128 digits, even this method would
require an exorbitant amount of computer time.

Let

l_og_p_ 1/i]k=
\loglogpj

for some .y > 0 to be chosen later. The special method will apply to primes p for which
there exists an irreducible monic polynomial f of degree k and integer m near pX/k for
which f(m) =_ 0 (rood p), and all the coefficients of f are small. "Small" is a flexible
term, but can be taken to mean that the resulting field K Q(a) for c a root of f has
small enough discriminant that the class group and unit group can be dealt with.

For instance, if r s 0 (mod p), for a small positive integer r and a nonzero
integer s of small absolute value, let be the smallest integer for which kl > e. Then
rkl =_ 8rkl-e (mod p), and so if we pick m r and f(x) xk srkl-e, we have
f(m) =_ 0 (modp).

For the number q, above, we could take k 6, m 725, and f(x) x6 7.
The number p is more difficult; with the same k and m, we would need to take f(x)
739x6 5152. Using a nonmonic polynomial would not cause major difficulties, but the
larger coefficients would increase the difficulty of operations in (.Og and reduce the hit
rate for the sieving.

Let a be a root of f, and K Q(a). For simplicity, we will assume that
is a unique factorization domain.

Choose B Lp[2/5; 6], where 6 > 0 is another parameter to be chosen later. Our
factor base B will consist of rational primes < B (BQ), first-degree primes (algebraic
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integers, not ideals) in OK with norm less than B and a fundamental set of units in OK
(BK). We will be dealing explicitlywith the ideals and the units in K, and so it is necessary
to calculate generators for the unit group and the ideals in BK. This may be done as in

[13], by searching elements of the form k-t ’s-i=0 aio?, with ai of small absolute value, for
ones of small norm, and combining these to obtain the necessary units and generators
of the ideals.

The base for logarithms for algebraic numbers is not important; it may be a small
prime that generates (O:/p)*, for p a prime ideal of norm p, or an algebraic number
with a qo(p) (mod p).

The precomputation step will determine the discrete logs of the whole factor base,
notjust a subset ofthe rational part. As before, sieve through c and d less than Lp[2/5;
looking for values with c + dm and N(c / da) both smooth. We have

c +dm ip[4/5;’y], and N(c + da) Lp[3/5; )/-y] 5,[4/5; 0].

Therefore the probability of both being B-smooth is Lp[2/5;-27/(56)]. Obtaining
Lp[2/5; 6] hits will take expected time

np[2/5; 2./(55) + 5],

with ,k ")’/(56) + 6/2.
Each hit gives us an equation involving logarithms of the factor base. Once we have

more than Itl L[2/5; 6] hits, we solve the resulting matrix equation over Z/(p 1)Z
using Wiedemann’s algorithm in time L,[2/5; 26]. Heuristically, we expect there to be a
unique solution, which will give the logarithms of the factor base.

To find an individual logarithm, we again reduce the problem to finding the logs of
medium-sized primes qi by looking for atb (mod p) smooth. Now it will be advanta-
geous to take the q’s much smaller than m, say of size L,[3/5; 0]. Assuming Conjecture
2, if atb is this smooth, we expect the ECM to factor it with probability i o(1) in time
L,[3/10; V/60/5]. We expect a smooth number to occur in about L[2/5; 2/(50)] trials,
so the total time is L,[2/5; 2/(50)].

For each qi, we will sieve c and d for which qil(c + din), say tbdng d and taking
c co + eq, to find one value for which (c + dm)/q and N(c + da) are both B-smooth.
Once this happens we are done, since, from the precomputation, we know the logs of
the whole factor base.

We cannot change m as in the general method, since this would result in a field
with large discriminant. Therefore at least one of c and d must be about as big as q, so
(c + dm)/q L,[4/5; 7], and N(c + da) L,[4/5; 0/7]. (Note that, for the general
number field sieve method, N(c + da) would be L,[1; 1], which is why multiple fields
were needed.) The expected time to find both B- smooth is therefore

L,[2/5; 2(7+0/7) ]56

Thus the time for the precomputation is Lp[2/5; #], where

(23) #=max +6,26
and the time for finding individual logarithms is L,[2/5; v], where

{2 2(7+0/7)}(24) v max 5-’ 56
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Since 0 does not occur in the precomputation, we may choose it to make the two
terms in (24) equal, as follows:

The choices for 7 and 6 depend on how time is to be divided between the two stages.
Enlarging 6 reduces the time needed to find individual logarithms, but at the cost of in-
creasing the precomputation time. If the times are to be equal (say if only one logarithm
is desired for a given p), then the optimal values are

’7=10-1/5 and 6=(1-) /5

giving a time of Lp[2/5;/z] Lp[2/5; v], where

128 1/5
1.00475.

If many instances are to be done for one p, more time could be spent on the precompu-
tation. For/z > (128/125)/, if we spend Lp[2/5; #] time on the precomputation, each
logarithm can be found in time

For any c >_ 1, the Gaussian integer method can find logarithms in time Lp[1/2; 1/
(2c)] if Lp[1/2; c] is spent on the precomputation. Where the above method becomes
faster than the Gaussian integer method depends largely on the o(1) terms and the choice
of f, but for a good f it is well under 100 digits. More research is needed to say for
which size primes and polynomials the special number field sieve algorithm is a practical
improvement.

The general number field sieve algorithm is definitely not practical for any reason-
able numbers. The crossover point for Lp[1/2; 1] and Lp[1/3; 32/3] (the times for the
Gaussian integer method and the general number field sieve) is 218 digits. The crossover
point for Lp[2/5; 1.00475] and Lp[1/3; 32/3] (the times for the special and general num-
ber field sieves) is above 320,000 digits.

IfOK has class number h > 1, thenwe must cancel the nonprincipal ideals that occur
in (11). Ifwe have calculated h, then the algorithm may proceed as in 3, with Algorithm
M replaced by Wiedemann’s algorithm modulo h, to obtain an equation involving only
principal ideals.

Finally, it should be noted that the special number field sieve can also be applied to
primes that are values of homogeneous forms in two variables, as well as polynomials.
Let f be a polynomial of degree k, and X and Y be integers near pl/k, such that

Ykf(X/Y) Xk + ak_lXk-ly +’" + aoYk 0 (mod p).

Then the above method may still be used, with the homomorphism qo(c + da) c +
dX/Y. Then the sieving phase searches for values of c and d for which c + da and
cY / dX are both smooth. The analysis is the same as given above.
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6. Recent developments. The general number field sieve algorithm is still imprac.
tical for large numbers, largely because of the need for Gaussian elimination over Q.
Methods to avoid this problem have been suggested by Adleman [1] for number field
sieve factoring and by Schirokauer [19] for discrete logarithms over GF(p). Copper-
smith very recently has suggested using multiple fields to factor n in time L, [1/3; c] with
c 1.902, an improvement over c 2.08 for the original algorithm of Buhler, Lenstra,
and Pomerance, and c .. 1.92 for the methods of Lenstra and Adleman. The result-
ing algorithms, while faster, are still impractical for numbers within reach of modem
computers. Use of the number field sieve in number-theoretic algorithms is a rapidly-
developing area. These developments, and the improvements of the constants above,
are likely to continue.

The practicality of the special number field sieve is of interest for discrete log-based
cryptosystems. By choosing a prime p with a good f and m (as in 5) as the base for such
a system, its security would be weakened. A person with knowledge of f might be able
to use it as a "trapdoor" to break the system. More study is needed to say how much of
an advantage this would actually be.
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POLYHEDRAL PROPERTIES OF CLUTTERAMALGAM*
P. NOBILI? AND A. SASSANO

Abstract. A clutter . is a collection of subsets of a ground set E() with the property that, for every pair
A, Aj E ,A is neither contained in nor contains Aj. Acover of is a subset ofE intersecting every member
of .. The covedngpolytope Q(), associated with a clutter , is the convex hull of the incidence vectors of
the covers of . The polytope Q,(.) provides a common generalization for several polytopes associated with
combinatorial optimization problems (stable set, knapsack, aeyclic subdigraph, bipartite subgraph, etc.) that
can be formulated as covering problems with respect to suitably defined clutters.

In this paper, a binary composition operation is described, the clutter amalgam, that combines two clutters
and 9. to produce a new clutter called amalgam of and 2. Furthermore, an isomorphic polyhedral

composition operation is introduced that combines the linear descriptions of the polytopes Q( and Q(2)
and produces a linear description of the polytope Q().

The clutter amalgam operation has the crucial property that if the clutters 1 and 2 are ideal then the
amalgam is also ideal. Finally, the restriction of the clutter amalgam to graphs properly generalizes the
graph amalgam introduced by Burlet and Fonlupt and defines a new perfection-preserving operation.

Key words, clutters, polyhedra, perfect graphs

AMS(MOS) subject classifications. 05C70, 52B99

1. Introduction. A subset system . such that no two members Ai, Aj E satisfy
Ai c Aj is called a clutter. Theground set of is denoted by E(L). A set C c_ E() that
has nonempty intersection with every member of is said to be a cover of .

In this paper, we study the polytope Q() conv{zc E () C is a cover of },
which is called the coveringpolytope associated with . We can write

Q()= cnv {x {O’ l}g() Ex >-- l’A ’}
A possible way to describe the structure of the polytope Q() is to define composi-

tion/decomposition operations for clutters and to provide isomorphic polyhedral oper-
ations that produce the linear description of the polytope associated with the composed
clutter in terms of the linear descriptions of the polytopes associated with the compo-
nents. More specifically, consider the following composition scheme for clutters.

Let S be a class of clutters constituted by the following conditions:
(i) A finite number of simple clutters for which the linear descriptions of the asso-

ciated polytopes are known ("building blocks");
(ii) The clutters that are obtainable from the building blocks by applying a finite

number of times some composition rule "";
(iii) Nothing else.
Assume, without loss of generality, that the composition rule "" is a binary oper-

ation, i.e., composes two clutters and to give a clutter . Furthermore, suppose
that the linear descriptions of Q( and Q(2) are known and that there exists a binary
operation "*," which combines (linear descriptions of) polytopes and is isomorphic to
the operation ’%" in the sense that the relation

Q(I /2) Q(/I)* Q(/2)
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holds for any pair of clutters 1 and 2 in S.
It follows that we can obtain the linear description of the polytope Q() for each

clutter in S by simply knowing the linear descriptions of the polytopes associated with
the building blocks and the series of compositions that produces .

Following this general approach, we introduce in this paper two operations to com-
pose (and decompose) clutters. The first operation (2) is called weak cutset identification
and generalizes the clique cutset identificaton introduced by Chvhtal [4] for graphs. We
prove that, if a clutter is obtained as weak cutset identification of two clutters t and
2, then the linear description of Q() is given by the union of the linear descriptions of
Q(1) and

In 3 we introduce the clutter amalgam operation. This operation is an extension of
thejoin operation defined by Cunningham [5] for independence systems and ofthegraph
amalgam operation defined by Burlet and Fonlupt for the stable set problem on graphs
[2]. It is interesting to also note that the restriction to graphs (edge-clutters) of the clutter
amalgam constitutes a proper generalization (Remark 3.12) of the graph amalgam.

For the clutter amalgam operation, we describe how the linear descriptions of the
polytopes Q() and Q() must be combined to obtain a complete linear description
of Q().

Finally, we prove that both the weak cutset identification and the clutter amalgam
preserve ideality and that, restricted to edge-clutters (graphs), they define two new com-
position operations that preserveperfection.

In the remainder of this section, we give the main definitions and notation used
throughout the paper.

Let E be any finite set. We consider the linear vector space,whose vectors have
components indexed by the elements of E. If C c_ E, then x denotes the inci-
dence vector of C; that is, x I if e C, x 0 otherwise. The vectors of whose
components are all equal to zero or all equal to I are, respectively, denoted by 0 and 1.

Let be a clutter and Z c_ E() be any set. The clutter of all the members of that
have empty intersection with Z is said to be obtained from by deletion of the set Z and
is denoted by \Z. The clutter of all the minimal members of (Ai Z" Ai } is said
to be obtained from by contraction of Z and denoted by /Z. Any clutter ’ obtained
from by a sequence of deletions and contractions is said to be a minor of

The family of all the covers of that are minimal (with respect to set inclusion) is
called the blocker of and denoted by b(). Evidently, b(/) is a clutter. Moreover, the
relation between clutters and their blockers is symmetric; that is, if two clutters 1 and
2 satisfy 1 b(2), then they also satisfy 2 b(/:l). Two clutters in such a relation
are said to be a blockingpair of clutters.

In the following proposition, we recall some basic properties of Q() (see, for in-
stance, [6]).

PROPOSITION 1.1. We have the J’ollowingproperties:
(i) Q()/s nonempty ifand only if, for each member A , IAI _> 1;
(ii) Q() is full-dimensional (i. e., dim(Q()) E()1) if and only if AI _> for

each A ;
ifQ() is full-dimensional, then, for each e E(),

(iii) The inequality z > 0 defines a (trivial) facet ofQ() ifand only if IA {e}l > 2
for each A ();

(iv) The inequality z < 1 defines a (trivial)facet ofQ();
(v) Every nontrivialfacet ofQ() is defined by an inequality oftheform,()

> ao where all the coefficients are nonnegative;
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(vi) The hyperplanes supporting nontvialfacets of Q() do not contain the vectors 0
and 1.

In the following, we assume that all the covering polytopes we consider are full-
dimensional. Such an assumption can be made without loss of generality. In fact, by
Proposition 1.1 (ii), a polytope Q() is not full-dimensional if and only if there exists a
singleton member {f} /2. In such a ease, every cover of/2 contains the element f, and
we have

Hence we can consider the polytope Q(\{f}) instead of Q().
The following proposition, whose straightforward proof is omitted, relates the struc-

ture of a polytope Q(’) to the structure of Q(), where ’ is some minor of obtained
by deletion.

PROPOSITION 1.2. Let ’ be a nonempty minor of obtained by deleting a set Z c_
E(.). Then the polytope Q(.’) is the projection of the polytope Q(.) onto the subspace
E()-Z C_ (). Consequently, an inequality -ee()-z aeXe >_ ao is validfor Q() if
and only ifit is validfor Q(’); moreover, ifit defines a facet ofQ(), then it also defines a
facet ofQ(’).

A clutter is said to be ideal if and only if every nontrivial facet of Q() is defined
by an inequality Yea -> 1 for some A . Consequently, a clutter is ideal if and
only if

Q() QLp() {xE(z:).xe>_l,Ae;eeA O <_ x <_ l,e E(/:)}
If the clutter is not ideal, we have that Q() c QLp(ff-,) and hence that other

facet-defining inequalities are needed to describe Q(). A basic family of facet-defining
inequalities of Q(Z) is associated with a class of subsets of E(Z) introduced by the fol-
lowing definition.

DEFINITION 1.3. Let/2 be a clutter; a subset R of E(/) is a 2-clique of if, for each
pair of elements ei, ej E R, the set {ei, ej } is a member of/2. A 2-clique is said to be
maximal if there does not exist a 2-clique R’ of such that R c R’.

PROPOSITION 1.4 (see [6]). Let . be a clutter and R a 2-clique of., then the inequality

defines a facet ofQ(.) ifand only ifR is maximal.
A clutter is said to be an edge-clutter if [A 2 for each A E :. It follows that each

edge-clutter is associated with a graph G (V, E) such that V E() and A if
and only if A {e, e } and eej E.

Evidently, each cover of corresponds to a vertex cover of Gz, and the polytope
Q() corresponds to the vertex coverpolytope Q(Gz). Moreover, the complement of a
cover of (vertex cover ofG) is astable set of Gz. It follows that the stable set polytope
P(G) is the image of Q(G) under the affine tranformation y =l-x.

Consequently, an inequality ,eev ax <_ ao defines a facet of P(G) if and only if
the inequality ]evay > -ao + ]va defines a facet of Q(G).

Furthermore, we have that a maximal 2-clique of an edge-clutter corresponds to a
clique ofG and that the facet-defining inequality ]enx > IRI- 1 of Q() Q(G)



142 V. NOBILI AND A. SASSANO

corresponds, modulo the affine transformation y =l-z, to the facet-defining inequality
-eeR me < I of P(G) (clique inequality).

Awell-known result due to Chvtal [4] asserts that a graph G isperfect if and only if
each nontrivial facet of P(G) is defined by a clique inequality. It follows that if is an
edge-clutter andG is perfect, then each nontrivial facet of Q() is defined by a 2-clique
inequality esR me > IRI- 1.

2. Weakcutsets. Let be a clutter; a proper subset (7 ofE() is a cutset of if there
exists a partition (El, Ez) of E(Z) C with El, Ez and such that every member of

is either a subset of E1 U C or a subset of Ez U C. The sets E1 and Ez are said to be
the shores of the cutset C. Evidently, if C is a cutset, then every subset C’ of C is a cutset
of the clutter \(C C’).

DEFINITION 2.1. A cutset W of a clutter is said to be a weak cutset if

I{A n W’’ A E b(Z:)}l _< Iw’l / 1, for each W’ c_ W.

If W is a weak cutset of a clutter , and ifE and Ez are the shores of W, then say
that arises as weak cutset identification of the clutters/ \Ez and -/\E. The
clutters and are called the components of the clutter

In the following theorem, we describe the polyhedral structure of the polytope Q()
in terms of the structure of the polytopes Q(/I) and Q(z). We denote by S(a) {e
E(/:) ae > 0} the support of an inequality eE() aeze > aO.

THEOREM 2.2. Let . be a clutter and let W c_ E() be a weak cutset of.. Let E1 and
Ez be the shores ofW and let 1 \E and \E. Then the linear description of
thepolytope Q() is given by the union ofthe linear descriptions ofthepolytopes Q( and
Q().

Proof. If every facet of Q(Z:) is defined by an inequality whose support is either a
subset of E U W or a subset of E U W, then the theorem follows by Proposition 1.2.
Hence we assume that there exists a facet F of Q(Z:) defined by an inequality aTx >_ ao
whose support S(a) has nonempty intersection with both E1 and E.

Let S S n S(a), E E2 n S(a), W’ W n S(a), and ’ \(E() S(a)).
We can write the inequality aTx > ao as

(2.1) aexe+ aeXe+ Z aexe>_ao,
eE eE eW’

where all the coefficients are strictly positive. By Proposition 1.2, inequality (2.1) defines
a facet of Q(’).

Let C’ be the family of covers of’ whose incidence vectors satisfy (2.1) as an equal-
ity. Since inequality (2.1) has full support in E(’), we have that each member of C’
belongs to b(’). Let C and C be any two members of iT’ such that C n W’ C W’.
We claim that the following equations are satisfied:

e_C,NE e.CNE

Z ae-- Z ae.
eEC,nE eECNE

In fact, suppose that one of the above equalities does not hold and let, without loss of
generality, eec,nE ae < -,eeCjnE ae. Since W’ is a cutset of E’ and Ci n W’
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C W’, we have that the set (Ci fqE t3 (C E) is a cover of’ and that its incidence
vector does not satisfy inequality (2.1), which is a contradiction.

Now let M be the matrix whose rows are the incidence vectors of the covers in C’.
Let y be the column of M associated with the element e E E(’) and let M’ be the
matrix with IW’I + 2 columns defined as follows: The first IW’I columns of M’ coincide
with the columns ofM associated with the elements in W’ the last two columns of M’,
say yl and y2, are defined as

yl= E aeYe’ y2= E aeY"

Since inequality (2.1) is facet-defining for Q(’), we have that the matrix M has
full column rank. It follows, by construction, that also the matrix M’ has full column
rank. Furthermore, (2.2) implies that, for each pair of covers Ci, Cj C’ such that
Ci fq W’ Cj fq W’, we have that y yJ and y y. It follows that the rows of
M’ corresponding to the covers Ci and C are equal. As a consequence, the matrix M’
contains at most I{A f3 W’ A C’}I different rows. Moreover, since C’ c_ b(’), we
have that I{A W" A C’}[ < I{A W" A b(’)}l.

Consequently, since I(A W" A b(’)} < I{A ca W" A E b()} I, we have, by
definition of weak cutset, that the number of different rows of M’ is at most IW’[ + 1
and hence that M’ cannot have full column rank. This contradicts the assumption that
inequality (2.1) defines a facet of Q(’) and completes the proof of the theorem. U

As a first example of weak cutset identification, consider a cutset W of a clutter ,
which is a 2-clique of . It follows that every minimal cover of either contains W or
misses at most one of its elements. Moreover, the same is true for any subset W’ of W.
Hence W is a weak cutset of , and Theorem 2.3 implies the following corollary, which
is a generalization to arbitrary clutters of the well-known result of Chvhtal [4] relative to
the clique-cutset identification and the stable set polytope.

COROLLARY 2.3. Let be a clutter and let W be a cutset that is a 2-clique of. Let
E1 and E2 be the shores ofW and let 1 ,\E2 and if-,2 ff-.\E1 be the components of. Then . is a weak cutset identification of .1 and 2, and the linear description of the
polytope Q() is given by the union of the linear descriptions of the polytopes Q(1) and

As another example, consider a cutset W of that is totally ordered by a relation
-< such that e -< e (e, e W) implies that every member of containing ei contains
also e. Every minimal cover of contains at most one element from W, otherwise some
element is redundant; it follows that W is a weak cutset.

COROLLARY 2.4. Let . be a clutter and let W be a cutset whose elements are totally
ordered by a relation -< such that, for everypair ofelements ei, ej W with ei -< e andfor
every member A of 12, ei A implies e A. Let E1 and E2 be the shores ofW and let
ff-’l ff-\E2 and \E1 be the components of. Then is a weak cutset identification
of .1 and . and the linear description of the polytope Q() is given by the union of the
linear descdptions ofthe polytopes Q( and Q ).

3. Clutter amalgam. In this section, we introduce a new binary composition opera-
tion for clutters, called clutter amalgam. This operation has the property that its restric-
tion to the family of edge-clutters provides a proper generalization ofthegraph amalgam
operation as defined by Burlet and Fonlupt [2].

In the previous section, we defined a clutter containing a weak cutset W c_ E()
to be the weak cutset identification of the clutters (proper minors of) 1 \E and
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,2 \Ex. Furthermore, we proved that the linear description of the polytope Q(E) is
obtained as the union of the linear descriptions of the polytopes Q(t) and Q(Ez).

In the following definition, we characterize a two-element member of the minor
w \(E() W), which will play a basic role in the definition of clutter amalgam.

DEFINITION 3.1. Let W be a weak cutset of a clutter and let E and E be the
shores of W. A pair of elements ex and ez of W such that {e, ez } E is a W-pair of

if there exists a maximal 2-clique R {ex, ez,..., e} of such that the following
properties hold:

(i) If A and e A, then A c_ E W (i 1, 2);
(ii) For each A such that A fq R {ei} (i 1, 2) and each eh R {e, e},

there exists A’ such that A’ {eh} C_ A {ei};
(iii) For each pair A,A2 w with AR {e} and A2R {e2}, there exists

A w such that A c_ (A u A)- {e, e2}.
By (i) of Definition 3.1, we have that R c_ W, and, by (ii) and (iii), we have that,

if {eh, et} and {eh, e2} , then eh R. It follows that R is the unique maximal
2-clique containing et and e2.

The main properties of a W-pair are given by the following lemma.
LEMMA 3.2. Let W be a weak cutset ofa clutter , let {e, e2 } c_ W be a W-pair of, and let R {el, e2,..., e} be the maximal 2-clique containing {e, e2 }. Then every

nontrivial facet-defining inequality aTx >_ ao of the polytope Q() satisfies the following
conditions:

(i) ae >_ ae, for eh R (el, e2} and i 1, 2;
(ii) Ifa, > O, then S(a) c_ E W W, i= 1, 2;
(iii) Ifae > 0 and ae. > O, then, for somepositive a we have that

Proof. (i) Let ei {el,e2} and eh R- {el, e2}. Since the inequality aTx >_
ao defines a nontrivial facet of Q(), we have that there exists a cover C of whose
incidence vector satisfies the inequality aTx > ao as an equality and such that eh C.
Moreover, since Aih {ei, eh} /:, we have that ei C.

Now we claim that the set C {e} is a cover of {Aih}. In fact, suppose that
there exists A E {Aih} with the property that A (C {ei}) 0. Since eh C
and thus R- {eh} C_ C, it follows that AfqR {e}, and, by (ii) of Definition 3.1, there
exists A’ such that A’ {eh} C_ A {ei}. Consequently, we have that C fq A’
C f’) (A {eh}) C_ C fq (A {ei}) }, contradicting the assumption that C is a cover
of .

The above claim implies that the set C C- {e} U {eh} is a cover of, and hence
we have that ah > a,.

(ii) By (i) of Definition 3.1, we have that the sets Wx W-{ex} and W2 W-{e2}
are cutsets of , and hence, by Definition 2.1, both W1 and W2 are weak cutsets of .
Let us consider the cutset W; we have that the shores ofW are E t2 {e} and E2 and
that the components of E with respect to W1 are ’ \E2 and " \(E tA {e }).
By Theorem 2.2, we have that the inequality aTx > ao defines either a facet of Q(’) or
a facet of Q("). In particular, if a,x > 0, we have that the inequality aTx > ao defines
a facet of Q(’), and hence S(a) c_ E t2 W. A symmetric argument, relative to the weak
cutset W2, shows that, if a, > 0, then S(a) c_ E2 t3 W.
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(iii) If a > 0 and a > 0, then we have, by (ii), that S(a) c_ W. It follows, by
Proposition 1.2, that aTx > ao defines a facet of the polytope Q(W).

Let Cw be the family of covers ofw whose incidence vectors satisfy the inequality
aTx > ao as an equality and let C be a member of Cw. Since R is a 2-clique, we have
that r- 1 <_ [Cfq R[ _< r.

Suppose that IC R[ r; since a, a. > 0, we have that neither the set C
C {e} nor C C {e} is a cover ofw. It follows that there exist two members of
w, sayA and A, such thatAC’ } andAC }. Now, since C is a cover ofw
and R c_ C, we have thatAfqC {ex } A1 fir and AfqC {e} AfqR. It follows,
by (iii) of Definition 3.1, that there exists A w such that A c_ (At
and hence that C f A 0, contradicting the assumption that C is a cover ofw.

It follows that IC fq RI r I and hence that the incidence vector of each cover
C Cw lies on the hyperplane {x !Iw ,nxf r- 1}. Consequently, the
inequalities aTx > ao and ’j’en xj, > r 1 define the same facet ofQ(W) and, by the
full-dimensionality of Q(w), (iii) follows.

The following proposition is an easy consequence of Theorem 2.2 and Lemma 3.2.
PROPOSITION 3.3. Let W be a weak cutset ofa clutter 12 and let EI and E2 be the

shores ofW. Let1 and2 be the components of12 with respect to W. Finally, let {el, e2}
be a W-pairof12 and let R {el, e2 e} be the maximal 2-clique containing {el, e2 }.
Then the defining linear systems for the po!ytopes Q(k), (k 1, 2) have the following
structure"

(3.1)

>
eEEkUW

E bez+zek >- b (ielk),
eEEkUW

CeXe 21- Xeh
eW

E Xe+Xel+Xe. >_ r--l,
eCR

0 <_ xe < 1 (e E E(Z:k)),

where W’ W {el,e2}, R’ R- {el,e2} and h 1 (respectively, 2) if k 2
(respectively, 1). Moreover, a linear description ofthe potytope Q(12 is thefollowing:

0 <_ ze _< 1 (e e E(/12)).

We are now ready to introduce the concept of clutter amalgam.
DEFINITION 3.4. Let W be a weak cutset of a clutter xz and let Ex and Ez be the

shores of W. Let and be the components ofz with respect to W, let {e, ez}
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be a W-pair of Z:12, and let R {el, e2,..., er} be the maximal 2-clique of L:12 contain-
ing {el, e2}. The amalgam of 1 and Z:2 with respect to {el, e2} is the clutter of the
minimal members of the family " of subsets of E() E(12 {el, e2} defined as
follows:

r r1 tA {A1 t_J A2 {el, e2}" A, e/:12, A, fq R {e,}, i 1, 2},
where -’1 /12\{el, e2}.

In the special case of edge-clutters, we can state the following.
PROPOSITION 3.5. Let ..1 and 2 be two edge-clutters. Then their amalgam is an

edge-clutter
Proof. Let 12 be the weak cutset identification of 1 and 2 and let W be the

corresponding weak cutset. Moreover, let {el, e2} be a W-pair and let R be the unique
maximal clique containing {el, e2}. Since 12 1 t2 2, we have that 12 is an edge
clutter. Furthermore, we have that the clutter :12\{el, e2} is a subset of 12 and hence
is an edge-clutter. Finally, for each pair A1,A2 E /212 satisfying A1 fq R {el} and
A2 CI R {e2}, we have that the set A A1 t.J A2 {el, e2} satisfies [A 2. It follows,
by Definition 3.4, that, for each A E , we have that IAI 2 and hence that is an
edge-clutter.

A crucial relation between the clutter, obtained as weak cutset identification of
and, and the amalgam is given by the following theorem.
THEOREM 3.6. A subset C c_ E() is a cover of ifand only ifC C’ {el, e2} and

C’ is a cover of12 with IC’ fq RI r 1.

Proof. Sufficiency. Let C’ be a cover of 12 with IC’ fq RI r 1 and suppose that
the set C C’ {e, e2} is not a cover of . It follows that there exists A such
that A fq C 0. Since C’ is a cover of 12, we have that C is a cover of 12\{el, e2 } and
hence, by Definition 3.4, that there exist A and A2 in such that A fq R {e} for
i 1, 2 and A A t.J A2 {e, e2}. It follows that C’ q (A {e}) O for i 1, 2
and hence that {e, e2} c_ C’. Now, since IC’ RI r 1, we can assume that ek C’
for some ek R {e, e2}. By (ii) of Definition 3.1, there exists A’ such that
A’ {ek } C_ A1 {el }, and hence it follows that

C fq A 0,

contradicting the assumption that C’ is a cover of/12.
Necessity. Let C c_ E() be a cover of . Then, by Definition 3.4, we have that C is

a cover of 2\{e, e2} and hence that C’ C t3 {ex, e2} is a cover of 2. Since R is a
2-clique of 12, we have that r 1 < ]C’ f RI < r.

If [C’ N RI r 1, then we are done; hence consider the case where IC’ fq RI r.
We claim that either C C’ {e} or C C’ {e2} is a cover of Z:12. Suppose
that neither C nor C is a cover of 12. It follows that there exist A1, A2 12 such
that A fq C 0 (i 1, 2). Since C’ is a cover of 12, we have that A1 f-) R {el }
and A2 fq R {e2}. It follows, by Definition 3.4, that there exists A /: such that
A c_ At t_J A2 {e, e2} and hence that A 3 C 0, contradicting the assumption that C
is a cover of .

Consequently, we can assume, without loss of generality, that C is a cover of 2,
and, since C C {el, e2 } and [Ci fq R[ r 1, the theorem follows. [:]

An immediate polyhedral consequence of Theorem 3.6 is given by the following
corollary, whose straightforward proof is omitted.

COROLLARY 3.7. Thepolytope Q() is theprojection onto the space NE(C) ofthefacet
ofthe polytope Q(/12) defined by the inequality -1x >_ r 1.
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Now, given a clutter/3 obtained as the amalgam ofthe cluttersx and 2,we are able
to provide the linear description of the polytope Q() in terms of the linear descriptions
of the polytopes Q( and Q(z).

THEOREM 3.8. Let W be a weak cutset ofa clutter x2 and let E1 and E2 be the shores
ofW. Let 1 and ,2 be the components of12, with respect to W, let {el, e2} be a W-pair
ofxz, and let R be the maximal 2-clique containing {e, ez}. Let be the amalgam of
and 2 with respect to {el, eg.} and let (3.1) be the defining linear systemsfor the polytopes
Q(/31) and Q(9.). Then thefollowing is a defining linear system for thepolytope Q()

(3.3a) Z axe > a (i Nk; k=l,2),
eEUW

bx+ bx- x>bo/-r/l (iI1; jI2),
eEUW eEUW eR

(3.3c) bx >_ bo -1 (i Ik; k=1,2),
eEUW

(3.3d) x _> r- 3,
eR’

0 <_ x <_ l(e e E()),

where W’ W {el, e2} and R’ R- {el, e2}.
Proof. By Corollary 3.7, we have that the polytope Q() is the projection onto the

space E(C) of the facet

FR--Q(12) fq{xE() Xe=r--ll
of the polytope Q(/12). Consequently, by Proposition 3.3, we have that the polytope Fn
is described by the following system:

(3.4)

_> a (i e N; k 1,2),

_> b (i e 11),

> bo (i e I2),

> > o e

Now we can obtain a linear description of Q() by Fourier-Motzkin elimination of the
variables zl and z from system (3.4) [1]. In particular, observe that the variable zl
has a nonzero coefficient in the inequalities with index in 11, in the trivial inequalities,
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and in the equation -feR zy r- 1. Consequently, the elimination of z, from system
(3.4) produces the following system:

- xe + x. >_ r- 2,
eR

eEIUW

-x>-l, x>0 (e e E(/12) {el}).

Now the Fourier-Motzkin elimination of the variable x, from system (3.5) produces
the following linear description of the polytope Q():

(3.6a) aXe_>a (iNk; k=l,2),
eEkUW

(3.6b) Z bex + bx ff- xe >- b +b-r + l (I1;jZ2),
e_ExUW eE2UW fR

(3.6c) bexe >_ b- 1 (i Ik; k 1, 2),
e6EuUW

(3.6d) Z x >_ r- 3,
eR’

(3.6e) beze x >_ bio- r + 1 (i 11),
eEEIUW eER

0 <_ Xe <_ l(e e E(:12) {1, 2}).

Each inequality of system (3.6) has nonnegative coefficients since, by (i) of Lemma
3.2, we have that each inequality of system (3.4) with index i EIk (k 1, 2) has the
property that b > bk 1 for each f R’.

Finally, observe that inequalities (3.6e) are redundant. In fact, they are obtained as
sum of inequalities (3.6c) and inequalities -x _> -1 (e

Remark 3.9. Observe that to describe the polytope Q(), we need only the facet-
defining inequalities aTx >_ ao ofQ() with a. 0 and the facet-defining inequalities
bTx >_ bo of Q(2) with b O. It follows that the knowledge of the linear structure of
Q(/:l\{e2}) and Q(/2\{el }) is sufficient to describe the linear structure of Q().
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Theorem 3.8 has the following interesting consequences.
COROLLARY 3.10. Ifthe clutters and are Meal, then their amalgam is Meal.
Proof. To prove the corollary, observe that, if is ideal, then each nontrivial facet-

defining inequality has the form ’eaz > 1 for some A E i (i 1, 2). It follows that
the W-pair {e, e} is a maximal 2-clique inz (R {e, ez}). Consequently, we have
that, in system (3.3), the inequalities of type (3.3c) and (3.3d) become redundant and
that all the other inequalities have right-hand side 1; hence the clutter is ideal. [:]

In the special case of edge-clutters, we have the following corollary.
COROLLARY 3.11. Let 1 and be two edge-clutters and let be their amalgam. If

the graphs and areperfect, then the graph is perfect.
Proof. First, observe that the graph G is well defined, since, by Proposition 3.5,

is an edge-clutter.
Ifthe graphG is perfect for h 1, 2, then each nontrivial facet-defining inequality

of the polytope Q(h) has the form -eR, z > IRil I for some maximal 2-clique R/
ofh (2-clique facet).

It follows that the inequalities of type (3.3a) have the same structure. Consider any
inequality of type (3.3b), say

(3.7) bxe+ b{xe-xe>bo+b-r+l
eExt-IW eEg.t-IW eR

for some i E I1 and j 12. Since each facet of Q(h) (h 1, 2) is defined by a 2-clique
inequality, we have that there exists a maximal 2-clique R1 of 1 containing el and a
maximal 2-clique R2 of2 containing e2 such that inequality (3.7) can be rewritten as

eR-{e} eeR2-{e} eR’

Now, by (i) of Lemma 3.2, we have that R {e2 } c_ R1 and R {el } c_ R2, and, since
R is maximal in 12, we have that R1 R2 R’. It follows that the above inequality can
be rewritten as

e(RxURg.)-{el,eg.}
x >_ I(Rx R2)- {e, e2}l- 1.

M0reover, the set R (R UR2 {e1, e2 } is a 2-clique of. In fact, each pair {eh, ek } C_
/f3E1 belongs to 1\{el } and hence to . Similarly, each pair {eh, ek } C_ ]CIE2 belongs
to 2\{e2}. Finally, each pair {eh,
by Definition 3.4.

Consequently, R is a 2-clique, and, by the maximality of R1 and R2 in 1 and , it
is also maximal in . It follows that each facet of type (3.3b) is a 2-clique facet.

Finally, the inequalities of type (3.3c) and (3.3d) are clearly 2-clique inequalities;
hence the graph G is perfect.

Remark 3.12. It can be easily shown that the graph amalgam operation described by
Burlet and Fonlupt [2] (also from a polyhedral point ofview [3]) is a special case of clutter
amalgam of edge-clutters. Moreover, there are examples of graphs obtained by clutter
amalgam (Example 3.13) that cannot be obtained as a simple graph amalgam. It follows
that the restriction to graphs of the clutter amalgam (and the weak cutset identification)
enlarges the family of perfection-preserving operations.

Example 3.13. Consider the graph G (V, E) of Fig. 3.1 and recall that each cover
of the associated edge-clutter Z:c corresponds to a vertex cover of G. Let V(G) be the
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family of all the minimal vertex covers of the graph G (blocker of the associated edge-
clutter). Let W {1, 2, 3, 4} and observe that each minimal vertex cover of G that
contains the node 3 (4) must contain the node 1 (2). It follows that

.T’(W) {C Cl W" C E 12(G)} {{1, 3}, {2, 4}, {1, 2, 3, 4}, {1, 2, 4}, {1, 2, 3}}.

Consequently, we have that IWl + 1. Moreover, it is easy to see that ’(W’) <
IW’l / 1 for each W’ c W and hence that W is a weak cutset of G. It follows that G
is the weak cutset identification of the graphs G and Gz displayed in Fig. 3.2. Finally,
since {3, 4} is a W-pair of G, we have that the graph t in Fig. 3.3 is the clutter amalgam
of the graphs G and G.

G

FIG. 3.1

Fro. 3.2
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HAMILTON CYCLES THAT EXTEND TRANSPOSITION MATCHINGS IN
CAYLEY GRAPHS OF Sn*

FRANK RUSKEYt AND CARLA SAVAGEt

Abstract. Let B be a basis of transpositions for Sn and let Cay(B Sn) be the Cayley graph of Sn
with respect to B. It was shown by Kompel’makher and Liskovets [Kibernetica, 3 (1975), pp. 17-21] that
Cay(B Sn) is Hamiltonian. This result is extended as follows. Note that every transposition b in/3 induces
a perfect matching Mb in Cay(B Sn). It is shown here when n > 4 that, for any b E B, there is a Hamilton
cycle in Cay(B Sn) that includes every edge of Mb. That is, for n > 4, for any basis B of transpositions of
Sn, and, for any b E/3, it is possible to generate all permutations of 1, 2,..., n by transpositions in B so that
every other transposition is b.

Key words. Cayley graph, perfect matching, Hamiltonian graph, transposition

AMS(MOS) subject classifications. 05C25, 05C45

1. Introduction. For a finite group G with generating set X, the Cayley graph ofG
with respect to the generating set X is the graph Cay(X: G) with vertex set G, in which y
and yz are joined by an undirected edge for every y E G and z E X. We will consider
the edge {g, gz} as being labeled . A compelling question in graph theory is whether
every undirected Cayley graph is Hamiltonian. Although there are results such as [CW]
and [KW], which show that the answer is yes for certain subclasses of Cayley graphs, the
general question remains open. If we require only a Hamilton path, the question is still
open and is, in fact, a special case of the more general conjecture of Lovfisz that every
connected, undirected, vertex transitive graph has a Hamilton path ILl.

If we restrict our attention to the case when G S,,, the symmetric group of all
permutations of In] {1, 2,..., n}, it is still an open problem whether every Cayley
graph of S, is Hamiltonian. The question remains open even when we require that
every generator X satisfy 2 id. What is known is that for every generating
set X of transpositions, the Cayley graph of S, is Hamiltonian. This was first shown by
Kompel’makher and Liskovets [KL]. Slater showed in [S] that we could always find a
Hamilton path in Cay(X :S,) that starts at 12... n and ends at a permutation with a j in
position k for any j, k In]. Tchuente generalized both of these results by showing that
any two permutations of different parity are joined by a Hamilton path in Cay(X Sn) [T].
As an example, the well-known algorithm of Steinhaus [St], Johnson [J], and Trotter [Tr],
for generating permutations by adjacent transpositions, gives a Hamilton cycle through
the Cayley graph of S,, with generating set { (12), (23), (34),..., (n- 1 n) }.

However, an element of S,, of order 2 need not be a transposition, so it remains open
whether the Cayley graph of S, on a set of generators, each of order two, is Hamiltonian.
Recently it has been shown that the Cayley graph of a Coxeter group (generated by order
2 elements that aregeometric reflections) is Hamiltonian when the generating set X is the
standard basis of reflections [CSW]. A related result is that, for A, generated by the set
of 3-cycles {(12n), (13n),..., (1 n-1 n)}, the Cayley graph is Hamiltonian [GR].

In this paper, we consider S, with any generating set of transpositions, X. Note that
each z X defines aperfect matching in Cay(X: S); that is, a set Mx of edges of the
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graph with the property that each vertex of Cay(X" S,) is the end of exactly one edge in
M

Mx {{g, gx} g E S,}.

Knowing that Cay(X: S,) is Hamiltonian by [KL], we can ask if M extends to a
Hamilton cycle. Such a cycle corresponds to a listing of all permutations of [n], in which
successive permutations differ by a transposition in X, so that alternate transpositions
correspond to the element z.

2314

2134 ;124

1432

1342

4321

FIG. I. The graph Cay({(12), (23), (34)}. $4) with M(2a).

The graph C Cay({(12), (23), (34) } $4) is shown in Fig. 1. The tripled lines of
the figure indicate edges in the matching M(za), and the list of permutations of Fig. 2 is
a Hamilton cycle in C that contains every edge of M(a).

A specific instance of this problem arose initially in the work of Pruesse and Ruskey
on listing the linear extensions of certain posets by transpositions [PR]. LetRbe the class
of ranked posets in which every nonmaximal element is covered by at least two distinct
elements. Examples of posets in R include the odd fences, crowns, the Boolean algebra
lattices, the lattices of subspaces of a finite-dimensional vector spaces over GF(q), and
partition lattices. In [PR] it is proved that the linear extensions of any poset in 7 can be
listed so that every extension differs by a transposition from its predecessor in the list.

Their proof required a cyclic listing of all permutations of In] by transpositions so
that every other transposition was an exchange of the elements in positions 1 and 2.
Although they were able to show such a listing was always possible, in some cases the
transpositions were not of elements in adjacent positions; these transpositions were the
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1234 1324 3124 3214 2314 2134 2143 2413
2431 2341 3241 3421 3412 3142 1342 1432
4132 4312 4321 4231 4213 4123 1423 1243

FIG. 2. B {(12), 23), (34)} and b (23) (read across).

only ones in the proof that were In [RS] we showed that it is possible to list permutations
of In] by adjacent transpositions so that every other transposition exchanges the elements
in positions 1 and 2. See Fig. 3 for an example when n 5. This result is equivalent to
showing that, in the Cayley graph Cay(X: S,), where X {(12), (23),..., (n-1 n)},
the perfect matching M(xz) extends to a Hamilton cycle. For n 4, there is a Hamilton
path including every edgeof M(xz), but no Hamilton cycle. A consequence of this result,
which is a special case of our main theorem below, is that the linear extensions of the
posets in R. can, in fact, be listed by adjacent transpositions.

Our major result in this paper is the following theorem.
MAIN THEOREM. Let X be a generating set of transpositions for Sn, where n > 4.

Then,for any z X, M extends to a Hamilton cycle in Cay(X: S,).
A basis for S, is a minimal set of generators for S,. Without loss of generality,

we may assume that our generating set of transpositions for S, is a basis B, so that
the transpositions can be described as a tree Tn: the vertices of Tn are the positions
1, 2,..., n, where i and j are joined by an edge if and only if (ij) is a transposition in
B. For b B, we refer to the ordered pair (Tn, b) as a combination. A combination
(TB, b} is said to be ordinary if there are two edges ex, ez in TB such that (a) e b,
ez b, and (b) the edges e and e are not adjacent. A combination that is not ordinary
is exceptional.

The reason for distinguishing between ordinary and exceptional combinations is that
our basic proof technique is to splice together Hamilton cycles in certain induced sub-
graphs. This splicing is based on small cycles that do not contain any edges labeled b. If
<TB, b) is ordinary, then every vertex of Cay(B :S,,) is on a 4-cycle with no edge labeled
b. Specifically, if c, d b are nonadjacent edges of TB, then (cd) id; so, for any vertex
7r of Cay(B: S,,), the sequence

7r, 7rc, 7rcd, 7rcdc, 7rcdcd 7r

is a 4-cycle. However, if (TB, b) is exceptional, any edges c, d b of TB are adjacent, so
generators c and d do not commute. In this case, there will be no 4-cycles in Cay(B:S,,)
not containing b. Instead, (cd)a id, which gives rise to 6-cycles not containing b.

A star is a tree of n vertices in which one vertex has degree n I and aflare is a tree
of n vertices in which one vertex has degree n 2 and one vertex has degree 2. We refer
to a vertex of degree 1 in a tree as a leaf of the tree. See Fig. 4. Exceptional combinations
are characterized in the following lemma, which we state without proof.

LEMMA 1. An exceptional combination (T, (ij)> for n > 4 must either be a star or be
a flare in which i is a leafand j is a vertex ofdegree 2 (or vice versa).



HAMILTON CYCLES IN CAYLEY GRAPHS OF Sn 155

12345 21345 23145 32145 31245 13245 13425 31425
34125 43125 43152 34152 31452 13452 13542 31542
31524 13524 13254 31254 32154 23154 23514 32514
32541 23541 25341 52341 53241 35241 35421 53421
54321 45321 45231 54231 52431 25431 25413 52413
54213 45213 42513 24513 24531 42531 42351 24351
23451 32451 32415 23415 24315 42315 43215 34215
34251 43251 43521 34521 34512 43512 45312 54312
53412 35412 35142 53142 53124 35124 35214 53214
52314 25314 25134 52134 51234 15234 15324 51324
51342 15342 15432 51432 54132 45132 41532 14532
14352 41352 41325 14325 14235 41235 42135 24135
21435 12435 12453 21453 24153 42153 41253 14253
14523 41523 45123 54123 51423 15423 15243 51243
52143 25143 21543 12543 12534 21534 21354 12354

FIG. 3. B {(12), (23), (34), (45)} and b (12)(readacross).

6

FIG. 4. Exceptional combinations: star (left) andflare (dght) with b as indicated.
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The proof of the Main Theorem uses a different construction for each of the follow-
ing three families of combinations: (i) ordinary combinations, (ii) exceptional combina-
tions in which n > 4 and T is a flare, and (iii) exceptional combinations in which n > 4
and T is a star.

Within each family, the construction relies inductively only on members of the same
family, so the three cases can be handled independently. Section 2 concerns ordinary
combinations. Exceptional combinations are handled in 3. Section 4 contains exten-
sions and open problems.

2. Ordinary combinations. An ordinary combination (T, (ij)) is minimal if, for ev-
ery leaf k i,j, the combination IT- k, (ij)) is exceptional. The following lemma is
easily proved.

LEMMA 2. There are three nonisomorphic minimal ordinary combinations. They are
shown in Figs. 2, 3, and 5.

For b B, define a b-altematingpath (cycle) to be a path (cycle) in Cay(B: S,) in
which alternate edges are labeled b. Furthermore, in the case of a b-alternating path,
the first and last edge of the path must be labeled b. For example, the cycle in Fig. 3 is a
(12)-alternating Hamilton cycle in Cay(B :S,) where B {(12), (23),..., (n-1 n)}.

In this section, we show that, when/3 is a basis of transpositions for S,, with b B
and (Tn, b) is an ordinary combination, then Cay(B: S,) has a b-alternating Hamilton
cycle. The proof is by an inductive construction and will require a somewhat stronger
hypothesis.

If Q is any b-alternating cycle in Cay(B: S,), an (i, j)-insertion pair for Q is a pair of
consecutive vertices, c,/ on Q satisfying (1) c(i) 3(i) j, and (2) the edge joining c
and/ is not labeled b (i.e., {c,/} Mb).

THEOREM 1. Let B be a basis of transpositions for S, and let b B be such that
(Tn, b) is an ordinary combination. Then Cay(B: S,) has a b-alternating Hamilton cycle
Q. Furthermore, Q can be chosen so that, for every i, j In], Q has an (i, j)-insertion pair,
and, ]’or each i [hi, there is some j In] for which Q has two distinct (i, j)-insertion
pairs.

Proof. If the ordinary combination (T, b) is minimal, then by Lemma 2 it must be
isomorphic to one of the combinations in Fig. 2, Fig. 3, or Fig. 5, each shown with a cycle
Q satisfying the conditions of the theorem.

Otherwise, assume inductively that the theorem is true for all ordinary combinations
with fewer vertices than Tn. Since (Tn, b) is not minimal, Tn contains a leaf v, not
incident with the edge labeled b, such that (Tn v, b) is an ordinary combination. Let z
be the unique vertex of Tn adjacent to v.

The Cayley graph of S, on the set B \ {(zv)} has n components G, G,..., G,,
where G is the subgraph of Cay(B :S,) induced by all permutations 7r with r(v)
k. Let G’ denote the Cayley graph of permutations of In] \ {v}, generated by the set
B \ {(zv)}. Then the induction hypothesis holds for G’. Each Gk is isomorphic to G’;
so, by induction, G,, in particular, has a b-alternating Hamilton cycle Q,. Furthermore,
for each i, j satisfying i - v, j - v, Q has an (i, j)-insertion pair and, for each i : v,
there is some j v for which Q has two (i, j)-insertion pairs.

For k v, interchanging k and v in every permutation on Q. gives a b-alternating
Hamilton cycle Qk in Gk.

Now, to obtain the desired cycle Q for Cay(B:S,), each of the cycles Qk, where
k v, is spliced into the cycle Q. at a (z, k)-insertion pair of Q. (z is the unique vertex
of TB adjacent to v.) This is done as follows (see Fig. 6). Let c,/ be the (z, k) insertion
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12345 21345 21354 12354 13254 31254 31245 13245
14235 41235 41253 14253 12453 21453 21435 12435
13425 31425 31452 13452 14352 41352 43152 34152
34125 43125 42135 24135 23145 32145 32154 23154
25134 52134 52143 25143 24153 42153 45123 54123
54132 45132 41532 14532 14523 41523 42513 24513
24531 42531 43521 34521 34512 43512 45312 54312
51342 15342 13542 31542 35142 53142 53124 35124
31524 13524 15324 51324 52314 25314 25341 52341
53241 35241 32541 23541 23514 32514 35214 53214
51234 15234 12534 21534 21543 12543 15243 51243
54213 45213 45231 54231 52431 25431 25413 52413
51423 15423 15432 51432 53412 35412 35421 53421
54321 45321 42351 24351 23451 32451 34251 43251
43215 34215 32415 23415 24315 42315 41325 14325

FIG. 5. B {(12), (23), (24), (45)} and b (12)(read across).

pair of Qv. Let c’, ’ be the corresponding pair on the cycle Qk; that is, c’ is obtained
from c by interchanging v and k, and similarly for/ and/’. Then simply delete edges
a/ and c’/’ and add edges aa’ and tiff’ corresponding to the generator (zv) in B.

It remains to show that, after all Qk are spliced into Qv to form Q, there is still an
(i, j)-insertion pair for every i, j E [n] and that, for each i, there is some j for which Q
has two (i, j)-insertion pairs.

First, consider i # z, v and j : v. The cycle Q has an (i, j)-insertion pair and, for
some t # v, there are two (i, t)-insertion pairs. These pairs are still in the final cycle
Q, unless some Q was spliced into Q, at a (z, k)-insertion pair a, , which was also an
(i, j)-insertion pair. Then, however, for any # j, k, consider the consecutive pair c*,/*
on Qt obtained by swapping elements v and in each of c, (see Fig. 7). Then c*, fl*
is an (i, j)-insertion pair on Qt. Note that c*(z) *(z) k. In splicing Qt into Q,,
however, Qt is split only at a pair with element v in position z, so c*,/* is still an (i, j)-
insertion pair in Q. Thus, after splicing, there is no net loss in insertion pairs for i # z, v
and j #- v.

For i z, v and j v, choose k v. In Q there was an (i, k)-insertion pair c,/3.
Interchanging elements v and k in each of c,/3 gives an (i, v)-insertion pair on Q. Since
i z, this is not the pair in Q that was split when Q was spliced into Q. Thus each
Q, k v contributes an (i, v)-insertion pair to Q.

If i v, the number of (v, k)-insertion pairs onQ is (n- 1)!/2. During the splicing,
only one pair is split for k v and only n 1 pairs for k v. So Q contains a (v, k)-
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Q,, Q

FIG. 6. Splicing cycle Qk into cycle Qv at a (z, k) insertion pair in proofofTheorem 1.

Q

Ql

z v

FIG. 7. Conservation of (i, j)-insertion pairs when z, v and j v.
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insertion pair for every k, as well as two (v, v)-insertion pairs.
In the case where i z, splicing Qk into Q, for k # v can only split Qk at a (z, j)-

insertion pair for j v. So, even after splicing, Qk will contain (z, j)-insertion pairs for
every j # v, k. Choose any l, m distinct from k and v. Then each of Qt and Q, contains
a (z, k)-insertion pair, even after splicing.

Finally, we must check for a (z, v)-insertion pair. The cycle Q, has none, and each
Qk, k v gets split at a (z, v)-insertion pair during splicing. However, by induction,
there is some j # v for which Q, contains two distinct (z, j)-insertion pairs. Corre-
sponding to these, Qj contains two (z, v)-insertion pairs. Thus, even after splicing, Qj
contains a (z, v)-insertion pair.

3. Stars and flares: Exceptional combinations. Let B be a basis of transpositions
for S, and b E B. We consider here the cases where TB is a star or a flare in which bjoins
the vertex of degree 2 with a leaf (see Fig. 4.) In both cases, any two edges in B \ {b}
are adjacent, so the technique used for ordinary combinations will not work. We focus
attention on flares and then show that stars can be handled similarly.

If TB is a flare, we can assume that B F, {(12), (23), (34), (35),..., (3n)}. For
n > 5, flares are isomorphic to ordinary combinations, unless b (12). We show now
that even in this case, Cay(F, S,) has a (12)-alternating Hamilton cycle.

12345 21345 21435 12435 12534 21534 21354 12354
12453 21453 21543 12543 15243 51243 51423 15423
15324 51324 51234 15234 15432 51432 51342 15342
13542 31542 31452 13452 13254 31254 31524 13524
13425 31425 34125 43125 43215 34215 34512 43512
43152 34152 34251 43251 43521 34521 35421 53421
53124 35124 35214 53214 53412 35412 35142 53142
53241 35241 32541 23541 25341 52341 52143 25143
25413 52413 52314 25314 25134 52134 52431 25431
24531 42531 45231 54231 54321 45321 45123 54123
54213 45213 45312 54312 54132 45132 41532 14532
14352 41352 41253 14253 14523 41523 41325 14325
14235 41235 42135 24135 24315 42315 42513 24513
24153 42153 42351 24351 23451 32451 32154 23154
23514 32514 32415 23415 23145 32145 31245 13245

FIG. 8. Basis caseforflares (read across).

THEOREM 2. For n >_ 5, Cay(F," Sn) has a (12)-alternating Hamilton cycle H satis-
fying thefollowing conditions:
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(1) For n odd, there are consecutivepermutations an, Tn on H satisfying

(2) For 0 < k < (n 1)/2 when n is even andfor 1 < k < (n 1)/2 when n is odd,
there are consecutivepermutations ak) and () on H satisfying

Z(2)(3) + +

Proof. The theorem is true when n 5, as demonstrated in Fig. 8. Note that, on the
cycle of Fig. 8, the required consecutive permutations a5 and T5 are 34215 and 34512.
The required consecutive permutations Cg(51) and/(1) are 52314 and 52413. (Note that
the order does not matter as long as the permutations appear consecutively.)

Assume that, for some n > 5, Cay(F, S,) has a (12)- alternating Hamilton cycle H
satisfying conditions (1) and (2) of the theorem. Ifwe append n+ 1 to every permutation
on H, we have a b-alternating cycle in Cay(F+v S,+), call it H,+, still satisfying (1)
and (2).

For I < < n, the subgraph of Cay(F,+l S,+x), induced by the elements of S,+
with i in position n + 1, is isomorphic to Cay(F," S,), and therefore it contains a (12)-
alternating Hamilton cycle Hi. Note that, given any permutation 7r with 7r(n+ 1) i and
any transposition of the form (3 k) E F,, we may assume that 7r is followed by an edge
labeled (3 k) on Hi. (Some edge labeled (3 k) must appear on Hi since F, is a basis for
S,. Simply arrange the cyclic list of generators corresponding to the edges along H to
begin with (3 k) and apply them, starting with permutation 7r. This yields a new H with
the required property.)

The idea ofthe construction is to splice H,..., H, into H,+ in such away to obtain
a (12)-alternating Hamilton cycle H* in Cay(F,+ "S,+) and preserve properties (1)
and (2) of the theorem.

For n odd, we first splice H, Hz, and H, into H,+I at the pair a,, - on H,+x
corresponding to a,, T, on H (see Fig. 9.) To do this, we use the fact that the following
composition of transpositions is the identity:

(3 n)(3 n+l)(3 n-l)(3 n+l)(3 n)(3 n+l)(3 n-l)(3 n+l) id.

’andWe know that a, T appear consecutively on H,+ and, as discussed above, we
may assume without loss of generality that

(i) [T’(3 n+l)] and [T’(3 n+1)](3 n--l) appear consecutively on H,;
(ii) [T’(3 n+l)(3 n-- 1)(3 n+l)] and [7’(3 n+1)(3 n-1)(3 n+1)](3 n) appear con-

secutively on H1; and
(iii)

and

ITCh(3 n+l)(3 n-- 1)(3 n+l)(3 n)(3 n+l)]

[Tn(3 n+1)(3 n-- 1)(3 n+1)(3 n)(3 n+1)](3 n--l)

appear consecutively on Hz.
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Hn+l

B

d ab 2...1 n+l

ab n+l

L2k+l ...2k+2 n+l

cd 2k+2 ...2k+l n+l

Hn

ab l...n+12

n+l ...1

t ot((n--1)/2 a((n--1)12) pairn+l ’n+

H H

H2k+2

cd n+l...k+l

d 2k+l ...n+l 2k+

H2k+l

+1...2k+2 2k+1

2k+2...n+l 2k+1

t’
FIG. 9. For n odd, splicing the cycles Hi into Hn+1.

In each pair above, as well as for the pair a,, T;, delete the edges joining the two
elements of the pair in their respective cycles. Then use edges corresponding to the
generator (3 n+ 1) to join together the cycles as shown in Fig. 9. Note from Fig. 9 that this
construction provides us with the required pairs ,(0) c() and ,((’-)/) ((-)/2)

n+l n+l n+l t-’n+l
for the (12)-alternating cycle H* being constructed in Cay(F,+a" S,+1).

For 0 <_ k < (n 1)/2 when n is even and 1 < k < (n 1)/2 when n is odd, we
splice H9.+1 and H=k+= into H,+ at the consecutive pair on H+I corresponding to
a(k),/3() on H, similar to the method above, but using the identity

(3 n)(3 n+ 1)(3 n)(3 n+ 1)(3 n)(3 n+ 1) id

(see Figs. 9 and 10.) Note from Fig. 9 that this provides for the cycle H* the pairs "n+l,
(k) for 1 < k < (n 1)/2 and, from Fig. 10, when n is even, gives O’n+1 7"n+1 1-’]
+1
The ease of stars can be handled similarly. For a basis B of transpositions of Sn, if

TB is a star, we may assume that B R, {(31), (32), (34), (35),..., (3n)}, and that
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A

B

Hn+ H2 Hi

(n)--abl...in/l 1 ..n+l 2

n)--ab2"’’ln+l 3abn+l’’’12

new n+l, n+l pair

H2k+2

cd 2k+2...2k+l n+l cd n+l...ik+l 2k+2

3(nk)=cd2k+l’’’2k+2n+l _2k+X...n+12k+2

ab2...n+l 1

H2k+l

n+l...2k+22k+1

cd 2k+2...n+12k+1

() a() pairnew

FIG. 10. For n even, splicing the Hi into Hn+1.

the distinguished edge b of B is (32) (see Fig. 4.) In this case, we have the following
theorem.

THEOREM 3. For n > 5, Cay(R, S,) has a (32)-alternating Hamilton cycle H satis-
fying the following conditions:

(i) For n odd, there are consecutivepermutations a,, T, on H satisfying

a,(3)=2, an(n-1)= l, an(n)=n,

Tn(3)=n, Tn(n--1) l, "rn(n) 2;

(ii) For 0 < k < (n 1)/2 when n is even andfor 1 < k < (n 1)/2 when n is odd,
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there are consecutivepermutations a(k) and/() on H satisfying

(3) +

(3) + 2,

Proof. The theorem is true when n 5, as demonstrated in Fig. 11. Note that,
on the cycle of Fig. 11, the required consecutive permutations a5 and -5 are 34215 and
34512. The required consecutive permutations a1) and/1) are 25314 and 25413. The
remainder of the proof is identical to the proof of Theorem 2. El

4. Final remarks. There have been some other papers written about finding Hamil-
ton cycles through specified matchings in graphs, but not in connection with Cayley
graphs [H], [W]. For example, Hfiggkfist [H] has shown that, if d(u) +d(v) > Iv(G)I / 1
for all nonadjacent vertices u and v of G, then G has a Hamilton path through any given
perfect matching.

By deleting all odd permutations from our lists, we obtain listings of the alternating
group A,. In the case of a star, where B {(1 n), (2 n),..., (n-1 n)} and b (1 n),
note that, since (1 n)(j n) (1 j n), our results provide another proof of the result of
Gould and Roth [GR] that the digraph Cay(X-A,,) is Hamiltonian for n > 5, where
X= {(lj n) 1 <j <n}.

Tchuente IT] showed that there is a Hamilton path between any two permutations of
opposite parity in Cay(B" S,) for any basis of transpositions B. The next lemma shows
that it is not, in general, the case that there is a b-alternating path containing Mb between
any two permutations of opposite parity.

Let (TB, b) be a combination. If the edge b is removed from TB then two trees
remain; these trees induce a partition of In] into two sets, say X and Y.

LEMMA 3. Let X, Y be thepartition of[n] induced by <TB, b). Ifthere is a b-alternating
Hamilton path in Cay(B" S, that starts at the permutation 7r and ends at thepermutation
7r’, then 7r and 7r’ must satisfy thefollowing condition:

U 7r(i) U 7r’(i).
iX iX

Proof. Consider the multigraph A/[ formed from Cay(B: S,) by condensing into a
single vertex, for each k-subset S of [n], those permutations 7r for which {Tr(i) i E X}
S. Thus .M has () vertices, and each vertex has degree k!(n k)!. Every edge of 3/1 is
labeled b, since every transposition other than b either swaps two elements with positions
in X or swaps two elements with positions in Y. A b-alternating path in Cay(B :S,) that
contains every edge of Mb becomes an Euler tour in 2/1. Clearly, this tour must start and
end at the same condensed vertex. [:]

Ifn 4, then there are two nonisomorphic exceptional combinations (TB, b), namely,
the star B {(12), (13), (14)} with b (12) and the path B {(12), (23), (34)}, again
with b (12). In these cases, it is not too difficult to show that there is no b-alternating
Hamilton cycle. However, there are b-alternating Hamilton paths containing Mb, as
shown in Fig. 12.

Below, we list some questions for further investigation.
(1) Is there an efficient algorithm to generate the permutations on a b-alternating

Hamilton cycle? Wewould like an algorithm whose total storage requirement is
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12345 13245 13542 15342 15432 14532 54132 51432
51234 52134 52314 53214 23514 25314 25413 24513
24153 21453 41253 42153 42351 43251 43521 45321
35421 34521 34125 31425 31245 32145 32415 34215
34512 35412 35142 31542 51342 53142 53241 52341
52431 54231 54321 53421 53124 51324 31524 35124
35214 32514 32154 31254 31452 34152 34251 32451
32541 35241 25341 23541 23145 21345 21543 25143
15243 12543 12453 14253 14352 13452 43152 41352
41532 45132 45312 43512 53412 54312 54213 52413
52143 51243 51423 54123 14523 15423 15324 13524
13254 12354 12534 15234 25134 21534 21354 23154
23451 24351 24531 25431 45231 42531 42135 41235
21435 24135 24315 23415 43215 42315 42513 45213
45123 41523 41325 43125 13425 14325 14235 12435

FIG. 11. Basis casefor stars (read across).

O(n) and whose total running time is O(n!). A straightforward implementation
of our proofs leads to algorithms that require O(n. n!) time and O(n. n!) space.

(2) Is the necessary condition ofLemma 3, together with the condition that r and r’
have opposite parity, also a sufficient condition for the existence of a Hamilton
path from r to r’? We conjecture that the condition is sufficient.

(3) Given a matching M in the n-cube Q,, is there a Hamilton cycle in Q, that
includes every edge of M?

(4) If X is a set of generators for a group G, and x E X is an involution (i.e., x2
id), then x induces a perfect matching, Mx, in Cay(X" G). A natural question
is whether there is a x-alternating path in Cay(X" G).

In general, there is no x-alternating Hamilton path in Cay(X’G). For example, if
X {(1 2), (1 2 n)}, where n >_ 3 is odd, then the following argument, similar to the
proof of Lemma 3, shows that Cay(X" S,) has no (1 2)-alternating path. Condense into
single supervertices all those permutations equivalent under the rotation (1 2 n).
The resulting multigraph has (n 1)! vertices, each of degree n, and any Hamilton path
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1234 2134 3124 1324 2314 3214
4213 2413 3412 4312 1342 3142
4132 1432 2431 4231 3241 2341
4321 3421 1423 4123 2143 1243

1234 2134 2314 3214 3124 1324
1342 3142 3412 4312 4321 3421
3241 2341 2431 4231 4213 2413
2143 1243 1423 4123 4132 1432

FIG. 12. (12)-alternating Hamilton paths.

in Cay(X" S,) becomes an Euler tour in the multigraph. Clearly, there is no Euler tour
if n is odd.

On the other hand, if G is a Coxeter group and X is a standard basis of reflections,
it is likely, for every x X, that G has an x-alternating Hamilton path. This has been
verified already for the groups S, (this paper) and B, [Sm], and for several other G, x
pairs.

[csw]
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A NEW TRIANGULATION FOR SIMPLICIAL ALGORITHMS*
MICHAEL J. TODDt AND LEVENT TUN(JELt

Abstract. Triangulations are used in simplicial algorithms to find the fixed points of continuous functions
or upper semicontinuous mappings; applications arise from economics and optimization. The performance
of simplicial algorithms is very sensitive to the triangulation used. Using a facetal description, Dang’s D1
triangulation is modified to obtain a more efficient triangulation of the unit hypercube in R’, and then, by
means of translations and reflections, we derive a new triangulation, DI, ofRn. It is shown that D uses fewer
simplices (asymptotically 30 percent fewer) thanD while achieving comparable scores for other performance
measures such as the diameter and the surface density. The results of Haiman’s recursive method for getting
asymptotically better triangulations from D, D and other triangulations are also compared.

Key words, subdivisions, simplicial algorithms, triangulations
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1. Introduction. Scarf [Sc] was the first to provide a constructive proof of Brouwer’s
and Kakutani’s fixed-point theorems, which have important applications in proving the
existence of competitive price equilibria in certain economic models. Scarf used the no-
tion of primitive sets, but most subsequent work used triangulations to discretize the
continuous problem. The resulting methods to compute the approximate fixed points,
known as simplicial algorithms, are described, for instance in Allgower and Georg [AG1],
[AG2], Eaves [E], and Todd [T1]. The performance of such methods depends critically
on the triangulation used, and this led to much work on devising efficient triangulations
of Rn. Among those used in simplicial algorithms are those of Freudenthal [F], Tucker
(Lefschetz [Le, p. 140]), Todd [T2], and Dang [D], known as K1, J1, J’, and D, re-
spectively. These triangulations have relatively simple descriptions of their simplices
and their pivoting rules, i.e., rules indicating the adjacent simplex found when a speci-
fied vertex of a given simplex of the triangulation is dropped. Other triangulations, with
attractive properties but with much more complicated descriptions and pivoting rules,
are independently devised by Sallee IS1] and by Lee [L], and Sallee’s middle cut tri-
angulation [$2]. In this paper, we modify Dang’s triangulation to get a more efficient
triangulation, which we denote D.

A triangulation of an n-dimensional convex subset of Rn is a locally finite collection
of n-dimensional simplices that cover the subset, any two of which intersect in a com-
mon face (possibly empty). All of the triangulations above (except J) also triangulate
the unit cube In := [0, 1] n in that their simplices in In form a triangulation of Rn. The
triangulations of Rn are then obtained by replicating this triangulation using reflections
and/or translations. One basic measure of such a triangulation is the number of sim-
plices used to triangulate In. This is n! for K and J1, about (e-2)n! for D, and about
(e-2)zn! for Dt. The triangulation of Lee [L] and Sallee [S1] is slightly better, and that
of Sallee [$2] is considerably better, but at a price of increased complexity.
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An n-simplex can be described as the convex hull of n + 1 affinely independent
vertices or, alternatively, as the solution set of n + I linear inequalities, provided that it
is bounded with nonempty interior. The latter description, called a facetal description,
often provides a simpler proof that a given collection of simplices forms a triangulation
(see, e.g., Todd [T1] and [T2]). We use this description to derive D1. A typical simplex
of K1 or Jt in I’ has the form

{x R’" 1 >_ x >_ z _>... _> x, >_ 0};

all possible orderings of the components give the n! simplices in I’ (the triangulations
differ in how this triangulation of I’ is replicated to cover R’). A typical simplex of D1
in I’ can easily be shown to be of the form

{xRn’Xl’X"’"x’>P--lX-l>xp+>’">xn>O}p-i

where 1 < p < n. As we shall see, the typical simplices of Dx have a more symmetrical
facetal description, which also distinguishes the last n q + I components of x, where
l<p<q<n.

Section 2 defines D a,nd proves that it is indeed a triangulation. In 3 we
provide the pivot rules of D. Finally, 4 compares all the triangulations mentioned
above according to the number of simplices in the unit cube, their diameters, and their
average directional or surface densities. We conclude by comparing the results of apply-
ing Haiman’s recursive method [HI for obtaining yet better triangulations from these.

2. The triangulation D’1. We first describe how we triangulate the unit cube I’ -=
[0, 1] ’. Copies of the triangulation are then constructed by standard methods (using
reflections and translations) to give a triangulation of R’.

Let e1, e2,..., e’ denote the standard basis of R’ and let e := -j eJ. We divide
the unit cube into a shell S and a core (7, which is a neighborhood of the diagonal from
zero to e. We triangulate S and (7 separately; the collection of all the resulting simplices
triangulates the unit cube.

C is the convex hull of 0, e, e for E N "= { 1, 2,..., n}, and e ek for k E N. We
triangulate it into 2’ + 2 simplices as follows: First, the hyperplane {x eTx 1} cuts
Off the simplex

.= E1 E2 En}(2.1) a_ conv{0,

and the hyperplane {x eTx n 1} cuts Off the simplex

(2.2) a+ cony{e, e e e2 ...{3 n}.

What remains is conv{ex, e,..., e’, e-ex, e-eZ,..., e- e’}, which is an affine transfor-
mation of the standard octahedron conv{+e, +e,..., +/-e’). We triangulate this into
2’ simplices, corresponding to the 2’ partitions of N into ! t_J K; a typical simplex is

(2.3) o’i,K conv{-e e i I, e- ek k K),2

(which corresponds to the simplex conv{0, -e, i I, ek, k K} of the canonical trian-
gulation of the standard octahedron). It is clear that this provides a triangulation of C
(note that it is possible to use just 2’- + 2 simplices by joining the center simplices in
pairs; if 1 e I, replace 1/2e by e e, while if 1 e K, replace 1/2e by e. Then all simplices
include e and e ex. For symmetry, we have retained the central vertex 1/2e.).
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For future reference, we need a facetal (by linear inequalities) description of the
octahedron conv{ei, i N, e ek, k N}, as well as the simplices described above. We
write z(1) for -]et zi, and so forth.

LEMMA 2.1. With the notation above, conv{ei, i N, e e, k N} {zl(IKI
(1 1- x)m(K) _< IKI- l forallpartitions I t3 K ofN}.

Proof. It suffices to check that the inequality given is satisfied at equality by e
I, and e e, k K, and strictly by the other vertices, so that it describes the facet
conv{ei, i I, e e, k K} of the octahedron.

For the next result, we call 0, 1/2e, or e the zeroth vertex of any simplex in which it
appears, while e or e e is the jth vertex of a simplex in which it appears.

LEMMA 2.2. (a)a_ {x RIx(N) < 1, xj > 0,j N}. Moreover, ifx a_, the
jth barycenc coordinate ofx ispositive ifand only ifthe inequality indexed by j is satisfied
strictly. (Here x(N) < 1 is indexed zero.)

(b) a+ {x E R’Ix(N) >_ n- 1, xj <_ 1,j N}. Moreover, if x a+,the jth
barycentric coordinate of x is positive if and only if the inequality indexed by j is satisfied
sctty. (Again, the first-listed inequality is indexed by zero.)

(C) O’I,K {X e Rnl(Igl 1)x(I) -(llI- 1)x(g) <_ Ig[ 1, xi > (x(N) 1)/(n-
2),i I, xk <_ (x(N)- 1)/(n- 2),k K}.Moreover, ifx cri,K, the jth barycentric
coordinate ofx ispositive ifand only ifthe inequality indexed by j is satisfied sctly. (Again,
the first-listed inequality is indexed by zero.)

Proof. In each case, we merely check that all the vertices satisfy all the inequalities,
strictly if and only if the indices correspond.

Now we define the shell S and its subdivision. Let 1 < p < q < n and let 7r be a
permutation of N. Then let

ap,q,r "= {xlxr(),..., xr(p) >
x({Tr(1),..., 7r(p)})- I > xr(p+)p-1

x(ITr(q),..., r(n)}) > xr(q), xr(n)}>... > x(q_) >_
rt q

and let S be the union of all such rp,q,r.(Note that the order of {7r(1),..., 7r(p)} and
of {Tr(q),..., 7r(n)} is immaterial.) By summin the first p inequalities above, except
that indexed by 7r(i), we can deduce that x(i) _< 1 for each i less than or equal to
p. Proceedin similarly with the last n q + 1 inequalities yields x.(k) >_ 0 for each
k greater than or equal to q. Hence ap,q,, is in the unit cube. It is easy to find an x
satisfying all inequalities strictly, whence we can see that ap,q, contains an open ball.
Since it is defined by n + 1 inequalities, it is an n-simplex. We label the inequalities
7r(1),..., 7r(p); 7r(p + 1/2),..., 7r(q 1/2); 7r(q),..., 7r(n), as they appear above. Of course,
7r(p + 1/2) is a purely formal notation, connoting that it is "between 7r(p) and 7r(p + 1)" in
some sense.

LEMMA 2.3. The vertices ofap,q, are

(2.4) er(i), i 1, 2,..., p,

(2.5) E e’(i)’ j p’ p + 1,..., q 1,
i--1

and

(2.6) e er(k), k q, q + 1,..., n.
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Ifindexed by 7r 1),..., r(p), r(p + 1/2 ),..., 7r(q 1/2 ), and 7r(q), 7r(n), then they corre-
spond to thefacets with the same index. That is, each vertex is offjust thefacet with the same
index.

Proof. Again, merely check the inequalities. El
Given z E [0, 1]’, let us suppose the components of z are ordered as follows:

l >_x >_... >_xn >_O.

For p > i and q < n, let us write

xit, := x({ 1, 2,..., p}),

Xqn := x(Iq,..., n}),

f(p) := Xlp- 1
p-l’

a(q) :=

(We suppress the dependence of f and g on x.) We can think of f(p) as approxi-
mately the average of p largest components of x, and g(q) as approximately that of the
n q + 1 smallest. In fact, if 1 x and xn O, f(p) is the average of the p largest
components of x without the largest, and similarly for g(q).

Clearly, f(p) and g(q) are important in the description ofap,q,,, where e is the identity
permutation. The following result is very useful.

LEMMA 2.4. Let p > I and q < ra Then
(a) f(p + 1) ((p- 1)/p)f(p) + (1/p)x,+;
(b) g(q 1) ((n q)/(n q + 1))g(q) + (1/(n q + 1))Xq_l;
(C) Xp+ {<, --, >}f(P) according as Xp+ {<, =, >}f(p + l);
(d) Xq-l{<, =, >}g(q) according as Xq-l{<, =, >}g(q 1);
(e) If 2 < p < n- 1, then f(p- 1) _< g(p)and g(p) >_ Xp imply that f(p) <_ g(p + 1),

and the third inequality is strict ifeither ofthe first two is;
(f) If 2 < p < n 1, then f(p) <_ g(p + 1) and x >_ f(p) imply that f(p 1) _< g(p),

and the third inequality is sct ifeither ofthe first two is.

Proof. Parts (a) and (b) of Lemma 2.4 follow directly from the definition. Since
f(p + 1) is a strict convex combination of f(p) and Xp+l, part (c) follows; similarly, part
(d) follows from (b). For part (e), the hypotheses imply that f(p), as a strict convex
combination of f(p 1) and Xp, is at most g(p). However, g(p) is a convex combination
of g(p + 1) and Xp, so g(p) > x implies that g(p + 1) _> g(p). This gives the weak
inequality, and the claim on when it is strict follows also. Part (f) is similar.

We can now show that our simplices cover the unit cube.
PROPOSITION 2.1. The simplices a_, a+, at,K and a,,q,,, where I, K, p, q, and

range over all appropate values, cover the unit cube.
Proof. Choose z E [0, 1]’ and, without loss of generality, assume that

1 >_ xx >_ x2 >_"" >_ Xn--1

_
Xn

_
O.

Since Xl, x2 < 1, we find that Xl, X2 __> f(2) (Xl +x2-1)/(2-1), and, since x,_, x, >
0, we see that x,_,x, < g(n 1) (x,-x + x,)/(n (n 1)).
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Nowwe proceed as follows. We have Zl,X2,...,z, > f(p) for p 2, and g(q) >_
Xq,... ,x-,xn for q n 1. If xp/ > f(p) and p < q 1, we replace p by p + 1.
Then, if Xq_ < g(q) and p < q 1, we replace q by q 1. By (c) and (d) in Lemma 2.4,
we see that xx,... ,xp > f(p) and g(q) > Xq,... ,x, are preserved.

Suppose that the procedure ends with p < q and

Xl >’’" > Xp > Xlp- 1 > Xp+l >’’" > Xq--1 > ’xqn
p--1 n--q

Then x O’p,q,,, where is again the identity permutation.
Otherwise, wewant to increasep or decrease q, butwe cannot since p q- 1. Hence

Xl >... > xp >/(p), g(p + 1) > Xp+l >... > xn;

xv < g(p + 1) or xv+ > f(p).
In either case, g(p + 1) > f(p). Now (e) in Lemma 2.4 implies that g(j + 1) > f(j)

for p < j < n 1, and (f) implies that g(j + 1) > f(j) for 2 < j < p. We can now show
that x C.

If x(N) < 1 or x(N) > n- 1, then x E a_ or x E a+, respectively. If 1 < x(N) <
n- 1, then the inequality

(IKI- 1)z(I)- (llI- 1)z(K) < IKI- 1

is satisfied for I and I N. Since z > 0 and z < e, this inequality is satisfied for I
or K a singleton. So assume that I has j elements, 1 < j < n 1; then the inequality is
certainly satisfied if

(IKI- 1)Zlj -(1II- 1)zj+l,n < IKI- 1,

since the left-hand side only increases by taking the indices of the j largest components
of x as I and those of the n j + 1 smallest as K. This inequality, however, is exactly
equivalent to f(j) g(j + 1) < 0, which holds as shown above. Hence, if x lies in no
ap,q,,, nor in a_ or a+, it lies in the octahedron conv{ei, i N, e-ek, k N} and hence
in some aX,K. ]

Since there are clearly only a finite number of simplices in our description, to show
that we have a triangulation, it only remains to show that any point in the unit cube lies
in the relative interior of just one face of a simplex of our collection. First, we need the
following lemma.

LEMMA 2.5. Suppose that x a "= ap,q, and x a’ := ap,,q,,,. Then

x({Tr(1),..., 7r(p)}) 1 x((Tr’(1),..., 7r’(p’)}) 1

p-1 p’-i

and

x({7(q),..., 7(n)}) x({Tr’(q’),..., 7r’(n)}) 1

n-q n-q

Proof. Without loss of generality, we assume that 7r is the identity, so that

x _> x >_..- _> x,.

Since also x.,(1) > > x,(,0, it follows that x({Tr’(1),..., r’(p’)}) is the sum of the
p’ largest components of x. We must therefore show that f(p) f(p’) and similarly
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that g(q) g(q’). We prove just the first equation. Assume that p’ > p. By Lemma
2.4(a), f(j) > Z+l implies that f(j + 1) < f(j) and f(j + 1) > z+ > z+z. Hence
f(p) > f(p+ 1) >... > f(p’). Now either Zp+l f(p) or zv+l < f(p). In the first case,
f(p+ 1) f(p), while, in the second, Lemma 2.4(c) shows that zp+z < zp+t < f(p+ 1).
Thus, as we proceed from p to p’, either f(p) f(p + 1) f(p’), as desired, or
at some stage Z+l < f(j), in which case z+z < f(j + 1),..., zp, < f(p’ 1), which
implies that zv, < f(p’). However, z E a’ shows that the p’ largest components of z are
at least f(p’), a contradiction. Hence f(p) f(p’).

A similar argument yields g(q) g(q’).
PROPOSITION 2.2. Each [0, 1]n lies in the relative interior ofjust one face of a

simplex ofour collection.
Proof. If z a, then the face of a containing z in its relative interior is called

the carrier of z in a; its vertices are just those corresponding to the positive barycentric
coordinates of z in a.

If z lies in no ap,q,, then, by Proposition 2.1, z lies in the core C, and the result is
clear. Suppose therefore that z a := crp,q, and assume without loss of generality that
7r is the identity.

We show first that any vertex of the carrier of z in a is a vertex of the carrier of z in
any other simplex of our collection in which z lies, and then the converse follows easily.
We distinguish several cases.

First, let e be a vertex of the carrier of z in a. Then the ith barycentric coordinate
of z in a is positive, so, by Lemma 2.3,

Xlp-- 1
Xi > p-1

If x a’ := ap,,q,,,, then Lemma 2.5 shows that the ith barycentric coordinate of x
in a’ is also positive, so e is also a vertex of the carrier of x in a’. If x a" aZ,K,
then the argument in the proof of Lemma 2.5 shows that f(p) > f(n), so that xi >
(xl, 1)/(n 1); hence e is also a vertex of the carrier of x in a" by Lemma 2.2. If
x a_, then x > x, > 0 shows that e is a vertex of the carrier of x in a_. Finally, we
show that x cannot belong to a+ as follows: For j I to q 1, xj > xq,/(n q), with
at least one strict inequality. Hence (n q)x,q_ > (q 1)xa,. Adding (q 1)X,q_
to both sides gives

(q- 1)x, < (n- 1)X,q_ < (n- 1)(q- 1),

soxn<n-landxa+.
Next, let v := e +... -t- ep +... + ej be a vertex of the carrier of x in a, so that the

inequality indexed j + 1/2 of a is strict, as follows:

Xj > XjTI

where xj is replaced by f(p) if j p, and xj+l is replaced by g(q) if j q 1. Suppose
that x E a’ := ap,,q,,,. There is a gap between the jth largest component of x (or
f(p)) and the (j + 1)th (or g(q)), and, since f(p) f(p’) and g(q) g(q’), this also
holds true when x is regarded as a member of a’. The vertex v is just the sum of the
coordinate vectors corresponding to the j largest components of x; this is also a vertex
of the carrier of x in a’. Also, f(p) > g(q) and Xp+l >_ g(q) if p < q 1, so, in this case,
f(p + 1) > g(q). Continuing, f(q 1) > g(q), which implies that x violates one of the
inequalities defining C, so it lies in none of its simplices.
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Now, let e ek be a vertex of the carrier of z in a. Then we have

Xqn
Xk n-q

The argument follows exactly the lines of that for the first case. (Alternatively, we may
replace x by e z, the permutation 7r by its reverse, p by n+ 1 q, and q by n+ 1 p;
the argument is then identical.)

Hence every vertex of the carrier of x in a is also a vertex of the carrier of x in every
other simplex containing it. To show the reverse, we simply observe that, if x lies in a
simplex, then the barycentric coordinates of x in that simplex is unique. This completes
the proof.

We have proved the following result.
THEOREM 2.1. The simplices a_, a+, {cri,K} and {ap,a,} triangulate the unit cube

To triangulate R’, we first reflect our triangulation in each of the coordinate hyper-
planes x 0, to get a triangulation of [-1, 1]’. Then we translate this triangulation by
each vector in (2Z)’ (with even integer components) to triangulate R’. Each unit cube
corresponds to a vector v E (2Z)’ and a sign vector s E {-1, +1}’, and is the set {xlxj
between vj and v + sj, j N}. This is the image of the unit cube [0, 1]’ under the
nonsingular affine transformation x (v + Ex), where E is the nonsingular diagonal
matrix whose diagonal entries are the components of s. Then an explicit description of
the vertices of the resulting simplex is obtained by applying the same transformation to
the vertices of a_, a+, {ai,K}, and {crp,q,r } given in equations (2.1)-(2.6). We call the
resulting triangulation of R’ D; it is a modification of Dang’s D triangulation [D].

3. Pivot rules. Here we describe the rules for obtaining the adjacent simplex a’
D, which contains all vertices of a D except a specified one v. We confine ourselves
to the case where a c_ [0, 1] ’.

Case 1: a a_. If v 0, it is replaced by v’ 1/2e, and a’ aZ,K, where I N,
K . If v e, then it is replaced by v’ -ei, and a’ is the reflection of a in xi O.

Case 2: a a+. If v e, it is replaced by v’ 1/2e, and a’ ai,K, where I O,
K N. If v e ek, then it is replaced by v’ e + ek, and a’ is the reflection of a in
xk--1.

Case : a ai,g. If v ei, then it is replaced by v e e, and a ai,,g,, where
I’ I\(i}, K’ K (3 (i}. If v e ek, then it is replaced by v’ e, and a’ cri,,g,
with I’ I t_J (k}, K’ K\(k}. Finally, if v 1/2e, then if I N v’ 0 and a’ a_; if

e and aI 0 v e and a a+; else v ieI ap,q,, where p II] q 1 and
r is any permutation placing all I before all k E K.

Case 4: a ap,q,,. Suppose that v e. Then v ]P__ e() e and a

ap_,q,,, where r moves j to position p, i.e., 7r’(p) j (if it was not already there), as

lon as p > 2. Ifp 2, then (r(1), r(2)} (j, j’}, v’ eJ + 2eJ’, and a’ is the reflection
of a in xi, 1.

Suppose that v ]P__ e"(0. Then v’ e"(p+), and a ap+l,q,, as long as
p < q 1. Ifp q 1, then v’ 1/2e and a’ aI,g, where I (r(1),...,Tr(p)},
g (Tr(q),...,

Suppose that v -= e(’), p < j < q 1. Then v’ _S: e(’) + er(j+) and
a’ ap,q,,, where r’ (r(1),..., 7r(j 1), r(j + 1), r(j), r(j + 2),..., r(n)).

q-1
V e7r(q-1) and aSuppose that v ]= e(0. Then e ap,q_,, as long as

p < q 1. (The case p q 1 was considered earlier.)
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q--I 0.!Finally, suppose that v e eJ Then v’ Ei=I er(i) + ej and o’p,q+l,r,
where r’ moves j to position q (if it was not already there); as long as q < n 1. If
q n 1, then {r(n 1), r(n)} {j,j’}, v’ e eJ 2eJ, and a’ is the reflection of
a in zj, O.

4. Efficiency measures. The performance of simplicial algorithms is very sensitive
to the triangulation used. To evaluate the triangulations, several measures of efficiency
have been proposed in the literature; see Todd [T1]. In this section, we calculate the
values of the efficiency measures for the new triangulation D and compare them with
those of Dx and other previously developed triangulations. Here, we consider D with
"paired" simplices in the core, i.e., without the interior vertex 1/2e.

4.1. The number of simplices in the unit cube. Let P(D) be the number of sim-
plices used byD to triangulate I’. The number of simplices in the core is 2 + 2n-x, and
we count the number of simplices in the shell as follows: We know that 2 _< p < q _< n- 1
and the order of the indices r(j) for j E {1,..., p} (and similarly for j E {q,..., n}) is
irrelevant. Therefore, given p and q, we choosep indices out ofn indices, thenwe choose
(n q + 1) indices out of (n p) indices, and finally we have (q p 1)! different ways
of ordering indices r(j) for j E {p + 1,..., q 1}.

So, for any given p and q, we have

n-p
(q-p-l)!=

n q + 1 (n p)lp! (q p 1)!(n q + 1)!
(q p

p!(n q +
simplices. Hence

n-i q-I

2 + 2’-1 + EE p!(n- q+ 1)!
q=3 p=2
n--1 n! o

1E _q + 2--P’< 2 + 2"- + n 1)!q--3

1
2 + + +q=a

12+--1 + (e-- 2)n]
k=2

2 + 2n-1 + (e- 2)2n.

(We use e for the base of the natural logarithm since e is reserved for the vector of ones.)
Moreover, it is easy to see that the ratio of the left-hand side and the right-hand side
approaches 1 as n . Hence we have the following theorem.

THEOREM 4.1. P,(D’I) <_ (e- 2)2n[ + 2n-1 + 2 and

lim
Pn(D) (e- 2)2

4.2. The diameter of D’1. Let T and T’ be the two facets of a triangulation. The
distance between r and r’ is defined as the minimum number of adjacent simplices that
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must be visited to get from T to T’; i.e., if a0, al,..., a, is a sequence of simplices in
the triangulation such that 7- c a0, " c am, and a and a+x are adjacent for all i

{0, 1,..., m 1}, then this sequence of simplices define a path of length (m + 1). So,
the distance between T and T’ is defined as the minimum length of such a path. The
diameter of a triangulation is the distance between the farthest two facets or, in other
words, the maximum of all such distances.

For our analysis, it is easier to work with full-dimensional simplices. We find the
maximum distance between two simplices in D; the diameter is then one more.

If It3K is a partition of N’ := {2,.. n}, we denote by aLK the simplex conv{e1 e-

el, ei, i I, e e, k K}. Let a’_ := aN,,O and a+ := a0,N, Then a_ is adjacent to

a’_; a+ is adjacent to a+, and, clearly, any aLK is a distance of at most n/2 from either

O"t or
Now, let a := ap,,,r be in the shell and assume that 7r is the identity permutation.

Let I {1, 2,..., p}, d {p + 1,..., q 1}, and K {q,..., n}. From a, we can reach
a’_ in at most n 1 steps as follows. First cross the facet defined by f(p) zp+l, so
that index p + 1 moves from d to I. Then successively move p + 2,..., q 1 from d to
I; Idl steps are necessary. Now p has become q 1; move across the facet defined by
f(p) g(q). The vertex e + e2 + + ep is replaced by e e1, and we have entered
the core. Finally, move the elements of K one by one into I, in Igl steps. The total is

Idl + 1 + IKI n III + 1. Since III _> 2, at most n 1 steps are necessary. Similarly,
at most n 1 steps are necessary to move from a to a+ (actually, only n 2, since 1 E 1
does not have to be moved).

Since n- 1 > n/2, it follows that we can move from any simplex to any other simplex
in at most 2n 2 steps, via either a_ or a+.

We now show that 2n 2 steps are necessary to go from a’ := ap,q,,, where p 2,

q n 1, and 7r’ (2, 3, 1, 4, 5,..., n) (here n > 5), to a" "= a,,q,,,, where 7r"
I’= {2,3},J’= {1,4,5,...,n-2},K’= {n-l,n},(n,n/,, 1, ,5,4,1,3,2). Leti,and 7", J" J’, K" We let I, J, K denote the index sets during a typical,,. j’simplex on the path from a to a First, consider an index j E If it leaves J at some

step, it must return at a later step, so we charge this index two steps. If it remains in J
at all steps, then each index in Iand K’ must cross this index, so we charge this index
four steps. This accounts for at least 2lJ’ 2n 8 steps.

Next, if we never reach the core, then each index in I’ K’t3 must enter J and leave
at the other end, for two steps each or eight in total. This gives 2n steps in all. Hence we
must reach the core and leave it again; this costs two steps.

Finally, each index in I’ K’t_J must cross from one end to the other. (Note that none
of the indices is the special index 1, which is "at both ends" in the core.) This takes at
least one step for each such index, for a total of 4. Hence 2n- 2 steps in all are necessary.

When we add the extra one to account for the diameter for the facets, we have the
following theorem.

THEOREM 4.2. diam(D’I) 2n 1.
Note that, even though the diameter ofD is 2n 1, when we take a line that goes

through the unit cube it might intersect as many as 1/2 (n-4)(n-5) simplices. In diameter
calculations, we free ourselves in taking the shortest distance between two facets; as a
result, the shortest path does not necessarily follow a line.

4.3. The surface density of D’. The average directional density of a triangulation, a
measure introduced by Todd [T1], was shown to be equivalent to the surface density of
the same triangulation by Eaves and Yorke [EY], as long as it satisfies certain regularity
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conditions, which hold for D’t. In fact, they showed the equivalence for a larger class.
The equivalence holds for tilings that do not necessarily have convex cells. They con-
eluded that, given a subdivision of R’, the average directional density does not depend
on how the cells are assembled, but it does depend on the cells used, and they give the
following relationship:

average directional density (surface density)-gn, where

(n- 1)r(1/2)r((n- 1)/2)

Here, we calculate the volumes and the surface areas of the simplices in D. Then
we can compute the surface density ofD, SD(D’), by one of two means, shown below:

or

YeD’,,,CZ" SA(a)
SA(a)SD(D’) -,,,eD’,,,cI’ Vol(a) --,,eD’,,,cI’

SD(D’) -,,,eD’,,,cI, SD(a)Vol(a) y SD(a)Vol(a).
trff.Dl ,aCIn

Here, SA(a), SD(a), and Vol(a) denote the surface area, the surface density, and the
volume of simplex a, respectively. Note that the second equation implies that the worst
surface density over all individual simplices cannot be better than the surface density of
the triangulation.

To calculate the volume of a simplex, we construct an (n + 1) by (n + 1) matrixM
whose columns are the vertices of that particular simplex a augmented with a /1 in the
(n + 1)st position. Then the absolute value of the determinant of the constructed matrix
divided by n! is the volume of the simplex.

To calculate the area of a particular facet, we take the vertices of the facet, find the
normal of the hyperplane defined by the facet, and create a new point by taking a unit
step (in Euclidean norm) from a vertex of the facet in the direction of the normal. Then
the convex hull of the vertices of the facet and the new point define an n-simplex, and n
times the volume of this simplex is the same as the surface area of the facet.

4.3.1. The simplices in the core. We have two different types of simplices in the
core. Simplices a_ conv{0, e1 eZ,..., en} and a+ conv{e e1 e eZ,..., e e, e}
are of type 1, and the remainder of type 2.

For type I simplices, we have

One of the facets of a_ is conv{et,... ,e’}, and all other n facets are congruent to
conv{0, et,..., e’-x }. Hence

SA(a_) SA(conv{e, e"}) + nSA(conv{O, el,..., en--1})

So, we obtain the surface density of type 1 simplices as follows:

SA(a_) (n + x/’-)n.SO(a_) Vol(a_)

(n-
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Let a’ be a type 2 simplex. Then we have

n!

Note that any type 2 simplex has e and e e as its vertices. Let T and 7"2 be the facets
that we get from a’ by throwing away e and e ex, respectively. All other facets of a’
have the same surface area; let Ta denote such a facet. Let p be the number of e’s that
are vertices of a’; then the surface areas of the facets of a’ are as follows:

SA(-c) V/(n p+ 1)(p-2)2 + (p- 1)(n- p)2
(n- 1)!

SA(T2) v/p(n p 1)2 / (n p)(p 1)2
(n- 1)!

SA(T3) v/(n 2)(n- 3)+ 2

So if ap is a type 2 simplex with parameter p, we obtain

SA(a’v) SA(Ti) + SA(T2) + (n- 1)SA(T3).

From this formula, we can easily get an upper bound on the surface densities of the type
2 simplices independent of p:

n2v/SA(a’p) < n(n- 2)+ nv SD(a’p) < n2 +(n- 1)! n-2"

4.3.2. The simllices in the shell. For a generic simplex an,q,,, in the core, we con-
struct the corresponding matrix Mp,qm as described at the beginning of this section. We
then have

Up,q,n :’--

p E(p-1)(q-p)

triu(E(q_p) x (q-p))

E(q-1)(n-q+l)

(E- I)(n_q+l)(n_q+l)

eT
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where E,.xt is the r x t matrix of ones, Irxr is the r x r identity matrix, and triu(A) is an
upper triangular matrix that is the upper triangular portion of A. Hence

1 (p- 1)(n q)Vol(rrp,q,,) .ldet(M,q,)l n!
Let r,_,q_x,,-x be a facet of a,,q,, that does not have one of the first p vertices of r,,q,,
(all such facets are congruent). We find that

SA(’rp-l,q-l,n-1) (n- q)v/p2 3p + 3

(n- 1)!

Similarly, we get 7"p,q,n_ 1 as a facet of r,,q,, when we throw away one of the last
(n q + 1) vertices of r,,q,, (again all such facets are congruent). We find that

SA(T,,q,,_I)
(p 1) V/(n q + 1)2 3(n q + 1) + 3

(n- 1)!

Finally, we define ,q-1,,-1 as the facet obtained when the jth vertex, j E {p +
1,..., q} of ap,q,, is thrown away. We find that

q)(p
(n- 1)t

jq,jp+l;

(n q)V/p2 p + 1

(n- i)!
j=q#p+l;

SA(rJp,q_,,_x)
+ + +
(n- 1)! J p + 1 # q;

v/(n q + 1)(p 1)2 + p(n q)2
(n- i)!

j=q=p+l.

So, we have p facets like "rp_,q_i,,_i, (n q + 1) facets like Tp,q,,_, and (q p)
facets like ,q_1,,-1. Thus the total surface area for the simplex ap,q,,, is

q

SA(ap,q,) pSA(Tp-l,q-l,n-1) + (n q + 1)SA(Tp,q,,_I) + SA(T,q_I,,_I).J
p+l

As n --* oo, the worst surface density is given by the simplices that have small p
and large q as parameters. In particular, the worst simplices are those with p 2 and
q n 1, giving

SD(cr2,,_l,,) x/n + o(n2).
Note that the surface density of the triangulation cannot be worse than the worst

simplex in the triangulation; therefore

,_qD(D’) <_ x/n2 + o(n2).
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(In fact, there are n!/4 simplices with p 2 and q n 1, with total volume 1/4. If we
next consider the simplices with p 3 and q n 1, or p 2 and q n 2, which
have almost as bad a surface density, the volume increases to 2- Continuing, we find
that SD(D’) /n + o(n2).)

4.4. Comparison of the triangulations in terms of the efficiency measures. We de-
fine Poo of a triangulation as limn--,oo P,/n!, where P, is the number of simplices of the
triangulation in In. Then we have Table 1.

TABLE 1

Triangulation Poo Diameter

Freudenthal [F] (K1) 1 O(n2)
Tucker [Le] (J1) 1 O(,2
Sallee [$1] and Lee [L] 0.4762 not known
Sallee [$2] 0 O(n2)
Dang [D] (D1) 0.7183 2n- 3
D 0.5159 2n- 1

In terms of Poo, D1 is superior to Jx, K1, and Dx. In terms of their diameters, D
and D are the only ones that are known to have O(n) bounds. In terms of the surface
densities, D is slightly better than J, K, and D, yet asymptotically they all have the
same surface density /n + o(n). (Published version of [D] corrects error.)

4.5. Asymptotically better triangulations. We first mention an elegant result by
Haiman [H].

THEOREM 5.1. If]n can be triangulated into Pn simplices, then Ikn can be triangulated
into [(kn)!/(n!)k]P pkn(kn)! simplices, where p- (Pn/n!)/n.

Note that, according to the measure R, := (P,/n!)/’, Roo lim,oo R, we have
Ro 1 for all triangulations in the previous table. Haiman’s result implies that, if a
triangulation achieves some R, p for some n, then the same number p is asymptoti-
cally achievable, i.e., Roo p. In other words, this result enables us to get triangulations
with Poo 0 from those that have Poo < 1.(Note that this is weaker than saying that
Roo p < 1, which is also true.)

Using this result, we can define new triangulations recursively by using those in the
previous table, and choosing the best possible p for each triangulation.

We observe that, for each triangulation, R, converges to 1 very fast. As a result, the
best value for p is achieved for n < 10 for all these triangulations (as expected, smaller
p values are achieved by those triangulations which have smaller Poo values).

Finally, we note that all triangulations in Table 2 except D achieve the minimum
value of Pz, all except D1 achieve the minimum for P, and all except D achieve (or
are within 1 of) the minimum for P. See Mara [M], Cottle [C], B6hm [B], and Hughes
[Hull. Hughes also shows that any triangulation that slices alternate corners off the
unit cube in R cannot achieve fewer than 324 simplices, which is achieved by Sallee’s
middle-cut triangulation; however, Hughes [Hu2] recently showed that a 6-cube can be
triangulated into 312 simplices.
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TABLE 2

3

4

5
6
7

8
9
10

Sallee [S1] and Lee [L] Sallee [$2] D1 D

5 .9410 5 .9410 5 .9410 6 1

16 .9036 16 .9036 18 16 .9036

67 1.8900] 67 .8900 87 .9377 68 1.8926l
364 .8925 324 .8754 518 .9466 384 .9005

2445 .9018 1962 .8739 3621 .9539 2628 .9112

19296 .9120 13248 1.8701] 28962 .9595 20864 .9201
173015 .9210 106181 .8724 260651 .9639 187356 .9292

1720924 .9281 931300 .8728 2606502 .9675 1872496 .9360

[AGll

[AG2]

[]

[cl
[D]

[El

[EY]

[F]

[H]

[Hul]

[Hu2]

ILl

[el
[M]
[Me]

[$1]
[S2l
[sc]

[T1]
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THE PATHWIDTH AND TREEWIDTH OF COGRAPHS*

HANS L. BODLAENDERf AND ROLF H. MOHRING:I:

Abstract It is shown that the pathwidth of a cograph equals its treewidth, and a linear time algorithm to
determine the pathwidth of a cograph and build a corresponding path-decomposition is given.
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1. Introduction. The pathwidth and treewidth of a graph are two notions with a
large number of different applications in many areas, like algorithmic graph theory, very
large scale integration (VLSI) design, and others (see, e.g., [1], [3], [9], [15 ]). The
notions also play a major role in the theory of graph minors (see, e.g., [20] and, for
applications, 10]). Unfortunately, determining the pathwidth or treewidth of a given
graph is NP-complete 2 ]. In this paper, we show that there are efficient algorithms for
determining the pathwidth or treewidth of a cograph. We also derive some technical
lemmas, which are not only necessary to prove correctness of the algorithms, but are
also interesting in their own fight. For instance, we show that the pathwidth of a cograph
equals its treewidth.

The complexity ofthe problems to determine the pathwidth and treewidth ofgraphs
has also been studied for other interesting classes of graphs. Gustedt [12 showed that
the pathwidth problem stays NP-complete when restricted to chordal graphs. Sundaram,
Singh, and Rangan have obtained a polynomial algorithm to determine the treewidth
(but not the pathwidth) of a circular arc graph [22]. For fixed k, the problem of deter-
mining whether the pathwidth or treewidth of a given graph is at most k, and if so,
building the corresponding path- or tree-decomposition can be solved in O(n log n) time
(by combining the results in [17] and [6]).

The notions of pathwidth and treewidth have several equivalent characterizations
(see, e.g., [1], [15], [21]). For instance, a graph is a partial k-tree if and only if its
treewidth is at most k.

This paper is organized as follows. In 2 we give most necessary definitions and
some preliminary results. In 3 we prove a number ofinteresting graph-theoretic lemmas
and theorems. In 4 we show how these can be used to obtain linear time algorithms
for pathwidth and related notions on cographs. Some final remarks are made in 5.

2. Definitions and preliminary results. In this section, we give most necessary def-
initions and some preliminary results. We start with introducing the notion of cographs.

Notation. Let G (V, E), H (IV, F) be undirected graphs.
(i) We denote the disjoint union of G and H by G H (V W, E F)

(where t_J is the disjoint union on graphs and sets, respectively);
(ii) With G H, we denote the following type of "product" of G and H: G

H= (V(_A W,E(.J FU {(v, w)lve V, we W});
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FIG. 1. Transformation to a binary co-tree O, }.

(iii) The complement of G is denoted by G { V, E }, with E (v, w)lv, w
V, v 4: w, (v, w)E}.

PROPOSITION 2.1. 0, are commutative and transitive. G H (G (J H).
DEFINITION 2.1. A graph G (V, E) is a cograph if and only ifone ofthe following

conditions holds:

2) There are cographs Gt,..., Gk and G G G2 (J Gk;
3) There are cographs G, G+ and G G G_ G.
There are other equivalent characterizations of the class of cographs. Rule 3) can

be replaced by the following"
3)’ There is a cograph H and G H.
Also, we can restrict k in rules 2) and 3) to be 2. Alternatively, we can define the

class of cographs as the graphs that do not contain P4, a path with four vertices, as an
induced subgraph (see, e.g., 7 ).

With each cograph G (V, E), we can associate a labeled tree, called the cotree T+
of G. Each vertex of G corresponds to a unique leaf in T+. Internal vertices of T+ have
a label { 0, }. To each vertex in T+, we can associate a cotree in the following manner:
a leaf corresponds to a cotree, consisting of one vertex. The cograph corresponding to a
0-labeled vertex v in T+ is the disjoint union of the cographs, corresponding to the sons
of v in T+. The cograph corresponding to a l-labeled vertex v in T+ is the product ("")
of the cographs, corresponding to the sons of v in T+. Note that (v, w) + E if and only
if the lowest common ancestor of v and w in T+ is labeled with a 1. (There are other
very similar notions of "cotree.")

Corneil, Perl, and Stewart 8 gave an O(n + e) algorithm for determining whether
a given graph G (V, E) is a cograph and, if so, for building the corresponding cotree.

A cotree T+ can easily be transformed to an equivalent cotree T such that every
internal vertex in T has exactly two sons. (Note that Gt t3 G (G t3 (J
G_ t) t.) Gk, and G G (G G_ ) G. The resulting operation
on trees is illustrated in Fig. 1.)

So, in the remainder of this paper, we assume that cographs G are given together
with a binary cotree T. Next, we give the definitions of pathwidth and treewidth, intro-
duced by Robertson and Seymour 18 ], 19 ].

DEFINITION 2.2. A tree-decomposition of a graph G (V, E) is a pair { Xi I },
T (I, F)) with { Xi I } a family of subsets of V, and T a tree, such that

(i) Ui I X V’
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(ii) For all (v, w) E, there exists I, v Xi /X w Xi
(iii) For all v V, { I v Xi } forms a subtree of T.

The treewidth of a tree-decomposition { Xi I ), T (I, F)) is max/i lXi 1. The
treewidth of G is the minimum treewidth over all possible tree-decompositions of G.

Note that the third condition can be replaced by

Vi, j, k e I: ifj is on the path from to k in T, then Xi N Xk
_
X.

There are several other notions that are equivalent to the notion of treewidth, e.g., a
graph G is a partial k-tree if and only if treewidth (G) <= k (see ], 21 ).

The notion of pathwidth is obtained from the notion of treewidth by requiting that
the tree T in the tree-decompositions is a path.

DEFINITION 2.3. A path-decomposition of a graph G (V, E) is a pair ({ Xili
I}, I), with { Xili e I} a family of subsets, and there exists r
such that

(i) [’.JiI Xi V’
(ii) For all (v, w) E, there exists I, v Xi / w Xi
(iii) For all v V, there exists bo, e I, such that for all I, v Xi . b,, <= <= e,.

The pathwidth of { Sili I), I) is max;ilXil. The pathwidth of G is the minimum
pathwidth over all possible path-decompositions of G.

The third condition states that, for all v V, { I1 v a Si ) forms an interval in I
and is equivalent to "’i, j, k: < j < k Xi N X

_
X."

The notion of pathwidth is closely related to several other notions, including node
search number and interval thickness. (See, e.g., [13 ]-[15].)

DEFINITION 2.4. The node search number of a graph G (V, E) is the minimum
number of searchers needed to clear all edges of G under the following rules:

(i) Initially, all edges are contaminated;
(ii) A move can consist of

putting a searcher on a vertex,
2) removing a searcher from a vertex,
3) moving a searcher over an edge from a vertex to an adjacent vertex;

(iii) A contaminated edge becomes cleared when there is a searcher on both ends
of the edge;

(iv) A cleared edge becomes recontaminated when there is a path from the edge
to a contaminated edge that does not pass through a vertex with a searcher on it.

DEFINITION 2.5. A graph G (V, E) is an interval graph if, to each v 6 V,
an interval [by, e] can be associated such that for all v, w
[b,, e] fq [bw, ew] 4: .

LEMMA 2.1 (see 5 ], 11 ). Let G V, E) be an interval graph. Let the chromatic
number ofG be X(G) and let the maximum size ofa clique in G be w( G). Then x(G)
w( G) treewidth( G) + pathwidth( G) + 1.

DEFINITION 2.6. The interval thickness of a graph G (V, E) is the minimum
chromatic number of an interval graph H that contains G as a subgraph.

THEOREM 2.1 (see [13], [15]). For every graph G V, E), the pathwidth ofG +
1, the node search number ofG, and the interval thickness ofG are equal.

3. Graph-theoretic results. In this section, we derive some new and interesting
graph theoretic results, which are needed to derive the algorithm but also have interest
on their own. We start with a very short proof of a known result.

DEFINITION 3.1. A family { Tili I } of subsets of a set T is said to satisfy the Helly
property if, for all J

___
I with, for all i, j J, Ti fq T 4: , it holds that fqjj T 4: .
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THEOREM 3.1 (see 11, p. 92 ). A family ofinduced subtrees ofa tree satisfies the
Helly property.

LEMMA 3.1 ("clique containment lemma" ). Let { Xi I }, T (I, F) be a tree-
decomposition ofG V, E) and let W

_
V be a clique in G. Then there exists I with

W
__
X
Proof. Let T { II v Xi }. { T v W } is a family ofsubtrees of T. By Theorem

3.1, there exists 6 I with, for all u W, Tu. Hence, there exists I
with W

___
X;. [2]

Older and longer proofs of Lemma 3.1 can be found in [5], [21]. With the Helly
property for trees, we can also prove a variant of the clique containment lemma for
bipartite subgraphs.

LEMMA 3.2 ("complete bipartite subgraph containment lemma"). Let ({ Xli
I }, T (I, F)) be a tree-decomposition ofG (V, E). Let A, B

_
V and suppose that

{ (v, w) lv 6 A, w B
_
E, A fq B . Then there exists I with A

_
Xi or B

_
X.

Proof. Let { Xi 1}, T (I, F) G V, E) and A and B be given. Suppose
that for all I, B Xi. Let T { 6 I v X; }. Consider the family { Tlv 6 B } of
subtrees of T. As f’) T , it follows from Theorem 3.1 that there are b, b B
such that T and T6 are vertex disjoint. Consider the unique path of T connecting T
and Tb, and let k and be the border vertices of this path (see Fig. 2).

Each a A must be contained in a set X with T and in a set X with j T.
Hence a X. (Use the definition of tree-decomposition.) So A

_
Xk. [--]

LEMMA 3.3. Let { Xi I }, T (I, F) be a tree decomposition ofG V, E)
let A, B

_
V, and suppose that { v, w) v A, w B}

_
E, A fq B . Suppose

that there exists I with A
_

Xg. Then there exists an induced subtree T’ (I’, F’) of
T such that

(i) For all 6 I’, A
_

Xi
(ii) B iz, Xi;
(iii) {X I’ }, T’ (I’, F’)) with X Xg f3 (A tJ B) is a tree-decomposition

ofthe subgraph ofG induced by A to B.
Proof. Let I’ { IIA

_
Xi }. Take T’ (I’, F’) to be the subgraph of Tinduced

by I’. By definition of tree-decomposition, T’ is again a tree. Clearly, condition (i) is
fulfilled.

Because there exists an i, with A
_

Xi, { Xi I }, T) is a tree-decomposition of
G’ (V, E’) with E’ E tO { (v, w) v, w A, v 4: w }. For all b B, A tO { b forms a
clique in G’, and hence, by the clique containment lemma, there exists an e I with

!

path

o,

FIG. 2. An illustration ofthe proofofLemma 3.2.
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A tO { b } Xi there exists I’, b Xi. So condition (ii) is fulfilled. Consider an edge
(b, c) e E, b, c e B. A t.) { b, c } forms a clique in G’, and hence, by the clique contain-
ment lemma, there exists e I with A tO { b, c }

_
Xi; hence there exists e I’, { b, c }

X It now easily follows that condition (iii) is fulfilled. [3

LEMMA 3.4. Let G (V, E), H (W, F) be graphs. Then the following condi-
tions hold:

(i) treewidth (G H) max (treewidth (G), treewidth (H));
(ii) pathwidth G t3 H) max (pathwidth (G), pathwidth (H));
(iii) treewidth (G H) min (treewidth (G) + WI, treewidth (H) + VI);
(iv) pathwidth (G H) min (pathwidth (G) + WI, pathwidth (H) + IV I).
Proof. The proofs of conditions (i) and (ii) are trivial. To prove condition (iii), we

first show that treewidth G H) <= treewidth G) + Wl. Take a tree-decomposition
({Sili I}, T (I, F)) of G with treewidth treewidth (G). Then ({X tO Wli I},
T (I, F)) is a tree-decomposition of G H with treewidth treewidth (G) + WI.
So treewidth G H) <= treewidth G) + Wl. Similarly, we can show that treewidth
G H) <= treewidth H) + VI.

Next, we show that treewidth G H) >= min (treewidth G) + wI, treewidth
(H) + V ). Consider a tree-decomposition { Xi T}, T (I, F)) of G H. From
the complete bipartite subgraph containment lemma, it follows that there exists an
with V

_
Xi, or there exists an with W =_ Xi.

Suppose that there exists an with V
_

Xi. Let T (I’, F’) be a subtree of T such
that for all I’, V Xi, W . -JieI’ Xi and ({ Sili I’}. T’ (I’, F’)) is a tree-
decomposition of G H. T’ exists by Lemma 3.3. Note that { Xi f) WI I’ }, T’
(I’, F)) is a tree-decomposition ofH, so there exists an I’ with [Xi N W[ >= treewidth
(H) / there exists an I’ with Xil >- v / treewidth (H) + 1. So the treewidth
of the tree-decomposition { Xi I }, T (1, F) is at least V + treewidth H)

Similarly, if there exists an with W
_

Xi, we can show that the treewidth of
({Sili I}, T- (I, F)) is at least wI / treewidth (G). Hence treewidth (G H) >=
min V + treewidth H) W[ + treewidth G

The proof of (iv) is similar to that of (iii). [3

THEOREM 3.2. For every cograph G (V, E), treewidth G) pathwidth G).
Proof. To prove the theorem, use induction on V[. If G consists ofa single vertex,

then treewidth (G) 0 pathwidth (G). If G G (J G2, then treewidth (G) max
treewidth (G), treewidth (G2)) (i.h.) max (pathwidth G1), pathwidth (G2)) path-
width (G). If G G G2, with G (V, E), G2 (V2, E2), then treewidth (G)
min (treewidth (G) + IV21, treewidth (G2) + Vl) (i.h.) min (pathwidth (G1) +
Vl, pathwidth (G2) + Vl) pathwidth (G). [3

4. Algorithms for pathwidth and related notions on cographs. In this section, we
give linear algorithms for determining treewidth, pathwidth, path-decompositions, optimal
node search strategies, and interval graph augmentations with minimum clique size of
cographs.

In Fig. 3 we give two recursive procedures. COMPUTE-SIZE computes for every
vertex in a binary cotree the number ofvertices ofthe corresponding cograph. COMPUTE-
PATHWIDTH computes for every vertex in a binary cotree the pathwidth ofthe cograph
corresponding to that vertex. To compute the pathwidth of a cograph G, let r be the root
of the binary cotree corresponding to G. Now first call COMPUTE-SIZE(r) and then
COMPUTE-PATHWIDTH (r). As per vertex in the cotree, a constant number of op-
erations are performed, this costs O(n) time in total. Correctness follows from
Lemma 3.4.
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procedure COMPUTE-SIZE (v: vertex);
begin if v is a leaf of To
then size (v) :=
else begin COMPUTE-SIZE (left son of v)

COMPUTE-SIZE (right son of v);
size (v) := size (left son of v) / size (right son of v)

end
end

procedure COMPUTE-PATHWIDTH (v: vertex);
begin if v is a leaf of TG
then pathwidth (v) :-- 0
else begin COMPUTE-PATHWIDTH (left son of v);

COMPUTE-PATHWIDTH (right son of v);
if label(v) =0
then pathwidth(v) := max(pathwidth (left son of v),

pathwidth (right son of v))
else pathwidth(v) := rain(size (left son of v) +

pathwidth (right son of v),
pathwidth (left son of v) + size (right son of v))

end
end

FIG. 3

THEOREM 4.1. The pathwidth and treewidth ofa cograph given with a corresponding
cotree can be computed in O( n) time.

It is easy to construct corresponding path-decompositions in time, linear in the
output, i.e., linear in Zii x I, However, in some cases, this may be quadratic in n.
(Consider a cograph G G G2, where G is a clique with n / 2 vertices, and G2 consists
of n/2 isolated vertices. The optimal tree decomposition ofG will consist of n/2 sets Xi,
each containing each vertex of G1 and one vertex of G2.)

Thus we are seeking a more compact representation of path-decompositions. We
solve this in the following way: For each v V, we compute numbers first (v) min

II v S and last (v) max { 6 I1 v X; }. These numbers fix the path-decom-
position, because, for all v 6 V, I, v Xg first (v) -< =< last (v).

Note that this representation corresponds to assigning to each v Van interval such
that the corresponding interval graph contains G: the chromatic number equals the
maximum clique size of this interval graph equals the pathwidth of G plus 1. Thus we
also find a representation of G corresponding to its interval thickness.

The numbers first (v) and last (v) for all v V are computed in the procedure
MAKE-INTERVALS of Fig. 4, which is called with MAKE-INTERVALS (r, 1, m),
where r is the root of the binary cotree of G, and where m is an integer variable. In the
procedure, "start" always denotes the smallest value that can be used for first (w) with
w a leaf in the subtree of the cotree rooted at v, and "finish" will yield the largest value
used for last (w), with w again leafin the subtree rooted at v. Correctness ofthe procedure
easily follows. Clearly, the procedure is linear in the size of the cotree O(n).

THEOREM 4.2. A representation ofa path decomposition with optimal pathwidth of
a cograph, given with a corresponding cotree, can be computed in O(n) time.

THEOREM 4.3. The pathwidth and treewidth ofcographs and corresponding path-
decompositions or tree-decompositions can be computed in O( n + e) time.

Proof. Recall that the cotree of a cograph can be found in O(n + e) time (see 2 ).
We now use the fact that optimal path-decompositions of cotrees fulfill ieI x;I
O(n + e). ]
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procedure MAKE-INTERVALS (v: vertex, start: integer, finish: var integer);
var help: integer:
begin if v is a leaf of To
then begin first(v) := start; last(v) := start; finish := start end
else if label(v) 0
then begin MAKE-INTERVALS (left son of v, start, help);

MAKE-INTERVALS (right son of v, help + 1, finish)
end

else label(v)
if size (left son of v) + pathwidth(right son of v) > size (right son of v) + pathwidth(left son of v)

then begin MAKE-INTERVALS (left son of v, start, finish);
for each w V that is a leaf descendant of the right son of v
do begin first(w) := start; last(w) finish end

end
else begin MAKE-INTERVALS (right son of v, start, finish)

for each w V that is a leaf descendant of the left son of v
do begin first(w) := start; last(w) := finish end

end
end

FIG. 4

THEOREM 4.4. There exists an algorithm that, given a cograph G and a corresponding
cotree ofG, determines in O( n) time an interval graph H that contains G as a subgraph
and has chromatic number equal to the interval thickness ofG.

THEOREM 4.5. There exists an algorithm that, given a cograph G and a corresponding
cotree ofG, determines the node search number ofG and corresponding search strategy
in O( n time.

Proof. Compute first (v) and last (v) for all v 6 V, as described above. Now use the
following search strategy:

put a searcher on each vertex v with first(v)
fori to max{last(v) vV}-
do begin for all v e V with last(v) i: remove searcher from v;

for all v V with first(v) + 1: put a searcher on v
end

With this search strategy, all edges will be cleared, no recontamination can take
place, and the optimal number of searchers (pathwidth (G) + is used. Determining
the sets { v first (v) }, and v last (v) can be done with bucket sort in O(n)
time in total. ]

5. Final remarks. In this paper, we gave a linear time algorithm to determine the
treewidth and pathwidth of cographs. Currently, we are investigating how to extend the
results of this paper to larger classes of graphs, e.g., graphs that are built with modular
composition with small neighborhood modules (see [16 ). Another interesting problem
is whether these results can be extended to distance-hereditary graphs.
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HAMILTONIAN PROPERTIES OF BIPARTITE GRAPHS AND DIGRAPHS
WITH BIPARTITE INDEPENDENCE 2*

ODILE FAVARON?, PEDRO MAGO, CONSUELO MAULINO, AND OSCAR ORDAZ

Abstract. This paper studies the bipartite graphs G in which aBIp(G), the maximum order of an induced
balanced bipartite subgraph without edges, is equal to 2. When its order is at least 10, it is shown that G contains
a Hamiltonian path, provided that it is connected, and that, if its minimum degree is at least 2, then it is
bipancyclic.

Similar results concerning the bipartite digraphs D in which c2p(D) are given, and the maximum order
of an induced balanced bipartite subdigraph without 2-cycles, is equal to 2.

Key words, bipartite graph, independent set, Hamiltonian

AMS(MOS) subject classifications. 68R 10, 68Q05, 68E 10

1. Introduction. The graphs (respectively, digraphs) considered here are with-
out loops or multiple edges (respectively, arcs). We denote a bipartite graph by G
(A, B, E), where A and B are the bipartition sets, E is the edge set, and where there is a
bipartite digraph by D (A, B, E U F), where F is the set of the antisymmetric arcs of
D, and E the set of the symmetric arcs (i.e., 2-cycles), which are also called the edges of
D. Given this notation, the graph G is said to be associated to the digraph D. If H is a
subgraph of a bipartite graph (A, B, E), HA (respectively, HB) is the set of vertices ofH
in A (respectively, in B). An edge (respectively, arc) between a and b (respectively, from
a to b) is written ab (respectively, (a, b)). In a digraph, the words, cycles, and paths are
used in their directed sense.

An obvious necessary condition for a bipartite graph to be Hamiltonian (respectively,
to have a Hamiltonian path) is to be balanced, that is, [AI BI (respectively, to be
balanced or almost balanced; that is, A [B[I 1). A balanced graph or digraph
is bipancyclic if it contains cycles of all even lengths. The minimum degree of a graph
(respectively, minimum indegree or outdegree ofa digraph is denoted by 6 (respectively,
6- and 6+). We denote by d(x) the degree ofx in G. For S

_
A t2 B, we define N(S)

{ y: zy edge in G and z S} and N+(S) { y: (z, y) arc in D and z S }.
The notion of an independent set (set of pairwise nonadjacent vertices) of a graph

has been generalized to the directed case in three ways, two ofwhich are used as follows:
A set S ofvertices ofa digraph D is said to be a-independent (respectively, c2-independent)
if D[ S], the subdigraph induced by S, contains no arcs (respectively, no edges). The a z-
independent sets ofD are thus the independent sets of the graph G associated to D. The
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maximum cardinality of an ai-independent set is the ai-independence number and
00 .< 0/2

In a bipartite graph, the bipartite independence number aBIp is the maximum car-
dinality of a balanced independent set (note that OBIP is always even). In [1] and [7],
am was equal to halfthis number, but following 8 ], we find the second definition more
convenient. In a bipartite digraph, ap and C2Bip are defined in the same manner, so that
aiP O2BIP and a2Bip(D) aBip(G), where G is the graph associated to D. It is clear that
aalP(G) 0 if and only if G is a complete bipartite and, in this case, G is bipancyclic.
In the proofs of the theorems of 2 and 3, we will thus only consider the case where
amp(G) 2 or where a2aip(D) 2.

Few results have been obtained that extend to digraphs the Hamiltonian properties
of undirected graphs involving the independence number a and the connectivity k, the
most famous ofthem being that a _-< k implies Hamiltonicity (see the theorem ofChvital
and Erd6s). These results concern essentially digraphs of a small independence number
(see the survey ofJackson and Ordaz 8 ). According to the type ofindependence number,
a0 or a 2, that is considered, we will refer to the two following theorems.

THEOREM 1.1 (Chert and Manalastas [4]). Every strongly connected digraph with
a <= 2 has a Hamiltonian path.

THEOREM 1.2 (Chakroun and Sotteau [3]). For k 2 or k 3, every k-connected
digraph with az <= k is pancyclic, with afew specified exceptions.

On the other hand, general conditions of this kind are not interesting for bipartite
graphs since the independence number is always at least equal to the connectivity. For
these graphs, a specific independence parameter amp was introduced by Ash [1 ], and
Fraisse 7 proved the following important theorem (the statement of which is given
here with the new definition of aBIP).

THEOREM 1.3 (Fraisse 7 ). Every 2-connected balanced bipartite graph with min-
imum degree 6 and aBIP - t is Hamiltonian.

This is, at first, not a Chvfital-Erd6s condition. It is known [6], however, that the
hypothesis aaiP J of Theorem 1.3 is actually equivalent to O/aiP k and that
the condition of 2-connectedness may be removed.

Finally, Bondy’s metaconjecture incited us to study the bipancyclicity. For this, we
use Theorem 1.4, below, which is a bipartite version ofBondy’s classical result and which
allows us, when the existence of a Hamiltonian cycle is already known, to weaken the
required condition on the number of edges to guarantee the existence of cycles of all
even lengths (see also the short and clear survey [9]).

THEOREM 1.4 (Entringer and Schmeichel [5]). Let G be a Hamiltonian bipartite
graph on 2n >= 8 vertices. Ifthe number m ofedges ofG is greater than n2/2, then G is
bipancyclic.

In 2 we prove that every balanced bipartite graph oforder at least 10, with minimum
degree 6 and bipartite independence number equal to 2, has a Hamiltonian path if 6 >_-
and is bipancyclic if 6 >= 2. In 3 we show that, by replacing 6 by min { 6 +, 6- }, the

same results hold for the digraphs D satisfying aip(D) 2.

2. Bipartite graphs with tBIP 2. When aBiP 2, Theorem 1.3 establishes the
Hamiltonicity of G if 6 >= 3 but is not sufficient for 6 2. So we will prove it directly,
following the same idea as in Fraisse’s demonstration and using Veldman’s notation and
Theorems A, B, and C.

Two disjoint induced subgraphsH and H2 ofG are remote ifno edge exists between
H1 and H2. The a-independence number a(G) is the maximum number of mutually
remote connected subgraphs of order h of G. The degree d(H) ofa subgraph H of G is
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FIG.

the number of vertices in V(G) V(H) adjacent to at least one vortex of H. A cycle
C of a graph G is a Dx-cycle if all the connected components of G V(C) have order
less than . Thus a D-cycle is a Hamiltonian cycle and a Dz-cycle, also called a dominating
cycle by some authors is such that G V(C) is empty or consists of isolated vertices.

THEOREM A (Veldman [10]). Let k and X be positive integers such that k >= 2. If
G is a k-connected graph with cx <= k, then G admits a D,-cycle.

THEOREM B (Veldman [10]). Let G be a 2-connected graph of order p such that
the degree-sum ofevery three mutually remote connected subgraphs oforder >= 2 is at
least p- 3 + 5. Then G admits a D-cycle.

THEOREM C (see [6]). A balanced bipartite graph oforder at least 4 with aBIp 6
is 2-connected.

THEOREM 2.1. Let G be a balanced bipartite graph oforder 2n >= 4, with minimum
degree >= 2 and anle(G) =< 2. IfG is not isomorphic to one ofthe graphs ft and 2 (Fig.

), then G is Hamiltonian.
Proof. The result is clearly true for graphs of order 4 or 6, so we suppose that

2n>=8.
If G does not contain 3 remote edges and k is the connectivity of G, then O/2 2 __--< k

by Theorem C, and, by Theorem A, G has a Dz-cycle.
If G contains three remote edges ew awbw, w 1, 2, 3, then, since cBIp(G) =< 2,

each vertex ofA-{ a, a_, a3 } (respectively, ofB-{ b, b2, b3 } has at least two neighbours
in { b, b2, b3 (respectively, { al, a2, a3 )). Therefore Z 3w= d(ew) >= 4(n 3) and for
2n >- 12, G has a D2-cycle by Theorem B.

Case A. G contains no Dz-cycle.
From above, 2n 8 or 10, and G contains 3 remote edges ew awbw, w 1, 2, 3.

If 2n 8, the graph G is isomorphic to 2 or ft If 2n 10, let a4, a5 in A and b4, b5 in
B be the four other vertices of G. Since b >_- 2, G contains a spanning subgraph isomorphic
to H (Fig. 2) or H2 (Fig. 3, where H2 is drawn in two different ways).

Since G admits no Dz-cycle, it does not contain H, which is Hamiltonian, and thus
contain H2. Since the graph G is not Hamiltonian, a4b4, a4b, and asb4 are not in E,
and, since cBp(G) _-< 2, asb is in E. Similarly, asb2 and asb4 are not in E, since G is not
Hamiltonian. a3b2 is also not in E, since e2 and e3 are remote. Because the set { a3, as,
b2, b4 } is not independent, a3b4 is in E. Then, however, the cycle a3b4aba4bzazbab3a3

b4 b1 b2 b3 b5

FIG. 2
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FIG. 3

is Hamiltonian, a contradiction. Therefore G contains a D2-cycle, unless it is isomorphic
to or 9

Case B. G contains a Ds-cycle.
Suppose that G is a non-Hamiltonian graph and let C be a maximum D2-cycle. Let

a in A and b in B be two nonadjacent vertices not on C. We will show that in all cases
there is a D2-cycle containing C U { a, b }. This is a contradiction. Since 6 >= 2, each
vertex a and b has at least two neighbours on C. We discuss according to the relative
position ofthese neighbours. An arbitrary orientation of C being chosen, we use classical
notation. If x is a vertex of C, x/ (respectively, x-) is the successor (respectively, pre-
decessor) ofx on C. Ifx and y are vertices of C, then xC/y (respectively, xC-y) is the
path of Cjoining x to y following the directed (respectively, inverse) orientation.

At each step ofthe proof(labelled as subcases, below), we suppose that the conditions
of the previous cases, and of the analogous ones, obtained by changing a into b or the
orientation of C, are not satisfied.

Subcase B 1. The vertex a has two neighbours b and b2 on C such that b is adjacent
to b and b-. The cycle ab2C-bbbC+ba is a D2-cycle.

Subcase B2. The vertex a has two neighbours b and bs on C such that b is adjacent
to b and to another vertex a on bC+bs. Since the conditions of Subcase B1 are not
satisfied, aa-( and bb E. The balanced set a, b, b, ai-) is not independent. Thus
a-{b E and absC-abb{ C+a-{bC+ba is a Dz-cycle.

Subcase B3. The vertex a has two neighbours b and b2 on C such that b is adjacent
to b and to another vertex a on bzC+b.

Since the conditions of Subcase B2 are not satisfied, aa- and bb E. The balanced
set {a, by, b, at } is not independent. Thus a(b E and abzC+abbC+batC+ba
is a Dz-cycle.

Subcase B4. The neighbours on C of a and b are never consecutive. Let b
and bs (respectively, a and as) be two neighbours of a (respectively, b) on C. We may

+ and bb +suppose that a bC+b2. Since aaw are not in E and the balanced set
{a b+w b a+w} is not independent, a + +wbw is in E for w 1, 2. If a2 bsC+b, then
absC-a{b{C+abasC-ba-C+ba is a Dz-cycle. If as bC+b2 (in this case, we can
choose a and as such that as bC+a), then abzC-ab{C+asbaC-abC+ba is a
Dz-cycle.

Since Subcases B1-B4 lead to a contradiction, the graph G is Hamilto-
nian. []

THEOREM 2.2. Any balanced bipartite graph G of order 2n >= 8 with >- 2
and cmi, <= 2 is bipancyclic, except ifG is isomorphic to 9, 2 or Cg.

Proof. It is sufficient, by Theorems 2.1 and 1.4, to check that m number of arcs of
G verify m > nS/2.

Let abasb2"." anbn be a Hamiltonian cycle of G with aw in A and bw in B and let
dw be the degree of the vertex aw for w 1, 2, n. Since amp(G) 2, we get dw +
dw+ >= n for any w (with an+ a).
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By adding these n inequalities, we obtain 2m >_- n 2. Suppose that rn n2/2. This
implies that n is even, d d3 dn- p, and d2 d4 dn n p.
Again, by aBIp(G) 2, we have dl + d3 >-- n and d2 + d4 >= n 1. Therefore,
by parity, p n/2. Among the n subsets Bw N(aw) of order n/2 of the set B of even
order n >= 4, at least two, say Bw and Bj, have two or more common vertices. Indeed if
[B f’) B2[ < 2 and [B fq B31 < 2, then [B20 B3[ >- n/2 2. Thus [B2 f-) B31 >= 2
for n >_- 8. For n 6, the property is easy to verify directly. For n 4, the only case
where the four subsets Bw have pairwise at most one common vertex corresponds to C8,
which is excluded. Therefore n [Bw tO Bj] >_- 2 and ai >-- 4, a contradiction. Hence,
rn >/72/2, and G is bipancyclic. []

Note that the cycle C8 is an example of a Hamiltonian but not bipancyclic balanced
bipartite graph of order 8 with CBIP 6 2.

In the following corollary, we denote by ftl (respectively, 21) the graph obtained
from ft (respectively, ft by deleting an edge whose endvertices have degree 2.

COROLLARY 2.3. Let G be a connected balanced bipartite graph of order 2n > 8
with aBp----< 2. If G is not isomorphic to 2 or 21, then G contains a Hamilto-
nian path.

Proof. If 6 >= 2, then G is Hamiltonian or isomorphic to 2 or fl, and the result is
obvious. Henceforth, assume that 6 1. Since O/BIP 2 and n >= 4, there cannot exist
two vertices of degree in either A or B. Therefore there exists at most one vertex of
degree in A and in B, and these two vertices are not adjacent because ofthe connectivity
of G. Suppose that d(a) for a vertex a in A. Let b be the vertex of B of degree if
such a vertex exists; if not, let b be a vertex of B not adjacent to a. The graph G G
+ ab, which satisfies the hypothesis of Theorem 3.1, is Hamiltonian or isomorphic to
or ft and thus G, which is not isomorphic to f or fl, has a Hamiltonian path.

Note that the condition n >= 4 is necessary, as shown by the graph consisting of a
path P5 with a pendant edge incident to the third vertex.

COROLLARY 2.4. Let G (A, B, E) be a bipartite graph with IAI IBI / > 4,
aBp(G) =< 2, and d(y) >= 2 for every vertex y orB. Then G contains a Hamiltonian path.

Proof. The graph G obtained from G by adding a new vertex v to B and joining
it to every vertex ofA is Hamiltonian by Theorem 2.1. Thus G G { v } contains a
Hamiltonian path.

Note that the condition d(y) >= 2 for every vertex y in B is necessary, as shown by
the graphs obtained by adding a pendent edge to a vertex of the (r + 2) stable set of a

Kr,r+ 2. Moreover, if lAI 4, the graph obtained from f or ft by deleting a vertex of
degree 4 has no Hamiltonian path.

We end this section by the study of the Hamiltonian connectedness of G. Let us
recall that the p-biclosure of a bipartite-graph G is the graph Gp obtained from G by
recursively joining pairs of nonadjacent vertices in A and B whose degree sum is at least
p until no such pair remains. Also, if the (n + 2)-biclosure Gn + 2 of a balanced bipartite
graph G of order 2n is a complete bipartite, then G is Hamiltonian biconnected; that is,
G admits a Hamiltonian path between every pair of vertices in A and B (cf., for in-
stance, 2 ]).

THEOREM 2.5. Any balanced bipartite graph of order 2n and minimum degree
that satisfies BP( G) 2 and 6 >-_ 3 is Hamiltonian biconnected.

Proof. We will show that the (n + 2)-biclosure Gn + 2 of G is complete bipartite.
Let a be a vertex of degree i in A. Since cBp(G) 2, every vertex x in A { a } satisfies
d(x) >= n- 6 1.

If d(y) >= i5 + 3 for every vertex y of B, then d(x) + d(y) >_- n + 2 for all x in
A { a } and y in B. After adding all the missing edges between A { a ) and B, the
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sums d(a) + d(y) become at least n + 6 >- n + 2 for all yin B. So Gn +:z is a complete
bipartite. If there exists a vertex b in B with d(b) <- 6 + 2, then, since aBip(G) 2, every
vertex y ofB {b} satisfies d(y) >= n 6 3. Thus d(x) + d(y) >= 2n + 26 4 >=
n + 2 for all x in A { a } and y in B b } we add all the missing edges between
A { a } and B { b }. So Gn + 2 is a complete bipartite. V1

3. Bipartite digraphs with a llip =< 2. In the case of a balanced bipartite digraph,
the proofs of the existence of a Hamiltonian path and of the bipancyclicity use the same
method based on the study of the structure of the associated graph G. These two proofs
will thus be given together. First, however, we describe this structure when G is not 2-
connected.

The following lemmas are easy to check.
LEMMA 3.1. Any nonconnected balanced (respectively, almost balanced) bipartite

graph of order at least 8 (respectively, 7) with aBle(G) 2 has necessarily one of the
following three structures:

(1) G consists of a connected balanced (respectively, almost balanced) bipartite
graph H with aBle(H) 0 or 2 and a graph Kl,1 with vertices a in A and b in B;

(2) G consists of a connected almost balanced (respectively, balanced) bipartite
graph H with cBw(H) 0 or 2 and a trivial graph { b } with b in B;

(3) G consists ofa complete balanced (respectively, almost balanced) bipartite graphs
H and two isolated vertices a in A and b in B.

Furthermore, in the above cases and (2), we have

(3.1) ate(y) nl for any y in

and, in case ),

(3.2) d(y) >= HoI for any y in HA.

If the connectivity of the balanced bipartite graph G is equal to 1, let x be a cutvertex,
the graph G { x is a nonconnected, almost balanced bipartite with aie(G { x } 2
and is described in the previous lemma.

Noting that the third case of Lemma 3.1 cannot correspond to a connected graph
G, we get the second structure lemma.

LEMMA 3.2. Any balanced bipartite graph G oforder at least 8, ai, 2, connectivity
with cutvertex x has one ofthefollowing two structures"

(1) G consists of a connected almost balanced bipartite graph H with [HA[
HI / and aB,(H) 0 or 2, an edge ab with a in A and b in B, with a vertex x in B

that is adjacent to a and to some vertices in Ha, or
(2) G consists ofa connected balanced bipartite graph H with am,(H) 0 or 2, a

vertex b in B and a vertex x in A that is adjacent to b and to some vertices in He.
Furthermore, we have

(3.3) di(y) HAl for any y in He,

and, in case ),

(3.4) dti(y) HI for any y in HA.
As a consequence of these two lemmas, we find again that any balanced bipartite

graph G with p(G) =< 2 =< 6 is 2-connected (Theorem C).
THEOREM 3.3. Any balanced bipartite digraph D of order 2n >= 10 with 6 + >= 2,

6- >= 2 and ce <= 2 is bipancyclic.
THEOREM 3.4. Any connected balanced bipartite digraph D oforder 2n >= 10 with

6 + >= 1, 6- >= and ce(D) <= 2 contains a Hamiltonian path.



HAMILTONIAN PROPERTIES OF BIPARTITE GRAPHS AND DIGRAPHS 195

ProofofTheorems 3.3. and 3.4. The graph G (A, B, E) oforder 2n >= 10 associated
to D (A, B, E t.J F), as said in the Introduction, satisfies aBIp(G) 2. When it is not
2-connected, its structure is given by Lemmas 3.1 and 3.2. Below, we refer to the notation
of these lemmas:

(i) k(G) >= 2. In this case, by Theorem 2.2, G, and thus D, is bipancyclic.
(ii) k(G) 1. The graph G satisfies the hypothesis of Corollary 2.3. Therefore D

contains, as G, a Hamiltonian path.
For the bipancyclicity (with the additional hypothesis 6 + >= 2, 6- >= 2), we discuss

the two possibilities given for G in Lemma 3.2.
Case 1. Since d/(b) >= 2 and d-(b) >= 2, there exists a vertex a 2 in HA such that

(a 2, b) or (b, a 2) (not both) belongs to F, say (a -, b) is in F. The graph G G + ab
that satisfies aBp( G 2 and 6(G 2 by (3.3) and (3.4) is bipancyclic by Theorem
2.2. Hence, replacing the edge a:b by the arc (a 2, b), every cycle of G yields a cycle in
D that is also bipancyclic.

Case 2(a). If the degree of every vertex of HA is at least 2, the graph G G +
ba where (b, a is an arc ofD, satisfies aBip(G 2 and 6(G 2 and is bipancylic.
Replacing the edge ba by the arc (b, a), we thus see that D is also bipancyclic.

Case 2 (b). Suppose now that a vertex a of Ha has degree in H and let b be its
neighbour in HB. By (2.3), such a vertex is unique, the graph H H- { a, b } is
complete bipartite, and b is adjacent to every vertex of HA { a }, except perhaps a
vertex a. Furthermore, because of aBIp 2, X is adjacent to every vertex ofHB { b },
except perhaps a vertex b.

If one of the two arcs (a, b) or (b, a) belongs to F, the graph G G + ab is
bipancyclic of Theorem 2.2. D is also bipancyclic. If neither (a, b) nor (b, a) belong to
F, there exists at least one arc (a, v) or (v, a), say, for example, (a, v), with v in H
b, b }. By Theorem 2.2, the graph H + av is bipancyclic and D contains cycles of all

even lengths at most 2n 2. It remains to show that D is Hamiltonian. Because of the
degree of b, there exists at least one arc (u, b) with u in HA { a }, and, since n >= 5, x
has a neighbour b2 in H v, bl and b has a neighbour a2 in H { u, a }. The
complete balanced bipartite graph H { u, v } admits a Hamiltonian path with end-
vertices b2 and a2 that forms with the path azbavubxb2, a Hamiltonian cycle of D.

(iii) k(G) O.
We discuss the following three possibilities as given in Lemma 3.1 for balanced

bipartite graphs.
Case 1. By (3.1), (3.2), and Theorem 2.2, the graph H is bipancyclic. Since D is

connected, there exists at least one arc, say (b a), between H and { a, b }, that yields
a Hamiltonian path in D. Furthermore, if 6 + >- 2 and 6- >_- 2, there also exists an arc
(b, a ). The graph G G + ba -Jr- ab satisfies O/BIP(G 2 and 6(G 2. It admits
a Hamiltonian cycle that produces a Hamiltonian cycle in D.

Case 2(a). If all the vertices ofHa have degree at least 2, let (b, a and (a 2 b) be
arcs of D. The graph G G + alb + a2b that satisfies caip(G 1) 2 and 6(G l) 2 is
bipancyclic by Theorem 2.2. Therefore D is also bipancyclic.

Case 2 (b). Suppose now that a vertex a of Ha has degree in H and let b be its
neighbour in H. By (3.1), such a vertex is unique, and the balanced bipartite graph
H H- { a } is complete, except perhaps for one missing edge b lal. Therefore H is
bipancyclic, and D admits cycles of all even lengths at most 2n 2. Moreover, given an
arbitrary vertex a in Ha { a }, H admits a Hamiltonian path P whose endpoints are
b and a

If there exists an arc between a and b, say, for example, (a, b), let (b, a with a
in H be an arc of D. The graph G G + ab + ba is bipancyclic by Theorem 2.2. D
is also bipancyclic.
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If neither (a, b) nor (b, a) belong to F, let (b, a ) and (a2, b) with a and a 2 in
H be two arcs of D. The Hamiltonian path P of endpoints b and a in H joined with
the arc (b, a and the edge ba forms a Hamiltonian path in D. When, furthermore,
6 + >_- 2 and 6- >= 2, one may choose a different from a so that ba belongs to E, and
there exists (a, b2) with b2 in HB { b 1}. The complete balanced bipartite graph G2

G + { b a a, b } admits a Hamiltonian path between b2 and a2 that yields with the
path aZbalbab2, a Hamiltonian cycle of D.

Case 3. The complete balanced bipartite graph H is bipancyclic. Furthermore, there
exist arcs (b , a), (a, b2), (a b), (b, a2) that yield with H a Hamiltonian cycle, and
thus a Hamiltonian path, in D.

This last case completes the proof. V]

As a corollary, we obtain the existence of a Hamiltonian path in the case of almost
balanced bipartite digraphs.

COROLLARY 3.5. Let D (A, B, E U F) be an almost balanced bipartite digraph
with [A[ [B[ + >_- 5; 6 + >_- and 6- >= 1; and d+(y) >= 2 and d-(y) >= 2for y in B
and a2p(D) <= 2. Then D admits a Hamiltonian path.

The proof, the same as in Corollary 2.4, is obtained by adding a new vertex v joined
by an edge to each vertex ofA.

In conclusion, let us note that we cannot hope to obtain a bipartite version of the
Chen-Manalastas conditions involving a0Bip(D) as in Theorem 1.1. Indeed, for every
positive integer k, the following construction gives a balanced bipartite digraph of arbi-
trarily large order 2n, with minimum indegree and outdegree k, connectivity k,
a0Bp(D) 0, and no Hamiltonian path.

Letn> 3k, A =AUAE, B=BB2with ]AI ]BI n-k, and ]A]
B1] k. D is the bipartite digraph (A, B, E U F), where E is the set of all the edges

between Ai and B (i l, 2), and F is the set of all the arcs from A to B2 and from B1
to A2, together with (k independent arcs directed from B2 to A and (k 1.)
independent arcs directed from A2 to B1.

The digraph D has no Hamiltonian path, since N/(B2)I 2k- < IB2i 1.
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LIMITING DISTRIBUTION FOR THE DEPTH IN PATRICIA TRIES*

BONITA RAISer, PHILIPPE JACQUET:I:, AND WOJCIECH SZPANKOWSKI’

Abstract. Digital tries occur in a variety of computer and communication algorithms, including symbolic
manipulations, compiling, comparison-based searching and sorting, digital retrieval techniques, algorithms on
strings, file systems, codes, and communication protocols. The depth of the PATRICIA trie in a probabilistic
framework is studied. The PATRICIA trie is a digital tree in which nodes that would otherwise have only one
branch have been collapsed into nodes having more than one branch. Because of this characteristic, the depth
ofthe PATRICIA trie provides a measure on the compression ofthe keys stored in the tile. Here, n independent
keys that are random strings of symbols from a V-ary alphabet are considered. This model is known as the
Bernoulli model. This paper shows that the depth in the asymmetric case (i.e., symbols from the alphabet do
not occur with the same probability) is asymptotically normally distributed. In the symmetric case, which
surprisingly proved to be more difficult, the limiting generating function and the limiting distribution are presented.
In either case, the results point to the conclusion that the PATRICIA trie is with high probability a well-balanced
tree.

Key words, compact tries, analysis ofalgorithms, complex analysis, Mellin transform, limiting distribution
for depth

AMS(MOS) subject classifications. 68Q25, 68P05

1. Introduction. This paper establishes the limiting distribution for the depth of
keys in a PATRICIA trie. A PATRICIA trie is a variation of the trie, a well-known tree
structure, which is a frequently used data structure in many applications of computer
science and telecommunications. These applications include dynamic hashing 5 ], 7 ],
data compression [1], [2], pattern matching [1], and conflict resolution algorithms for
broadcast communications 3 ], 13 ].

The depth of a leaf in a trie, also known as depth of insertion or successful search
time, is the number of internal nodes on the path from the root of the trie to the leaf. It
is of particular interest since it provides useful information in many applications. For
example, when keys are stored in the leaves ofthe trie, the depth ofa key gives an estimate
ofthe search time for that key in searching and sorting algorithms 20 ]. Depth also gives
the length of a conflict resolution session for tree-based communication protocols or, in
compression algorithms, provides the length of a substring that may be copied or com-
pressed ].

The primary purpose of a trie is to store a set if of keys. Each key X XlX2X3
is a finite or infinite string of symbols taken from a finite alphabet z’ { Wl,..., oz}.
The tile over if is built recursively as follows. For if 0, the trie is, of course, empty.
For lifl 1, tile (if) is a single node. If lifl > l, if is split into V subsets if, ifz,

if’z, so that a key is in 6j if its first symbol is oj.. The tries: tile (ifl), tile (ifz),
tile if z) are constructed in the same way, except that, at the kth step, the splitting

of sets is based on the kth symbol. They are then connected from their respective roots
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to a single node to create tile 5). A tile may have nodes with only one branch leading
from it, and it is this waste of space that the PATRICIA tile eliminates by collapsing
one-way branches into a single node. Thus the depth of a key in a PATRICIA tile may
be less than that of the same key in a regular tile.

Consider the following example. Let /= { 0, 1, 2 ) and O { A, B, C, D, E, F},
as defined in Fig. 1. The PATRICIA tile built over the set O is shown in Fig. 1. We can
also vary both the tile and PATRICIA tile to a more general structure by allowing a leaf
to hold at most b keys [7 ], [12 ]. This is the case in algorithms for extendible hashing in
which the capacity of a page or other storage unit is b.

Tries have been analyzed by many authors under various probabilistic models, most
having independent keys 7 ], 12 ], 25 ], 16 ], 18 ], 22 ]. Frequently, the symbols of
/are also independent with Pr { xj wi } Pi for any j 1, 2 where /v= Pi
1, and we adopt these assumptions in this paper. Such a model is known as the Bernoulli
model, provided that the number of keys n is fixed. Ifp P2 Pv 1/V, then
the distribution ofsymbols is symmetric, otherwise it is asymmetric. Studies ofthe binary
symmetric model have been carried out by Knuth [20], Flajolet [7], and Kirschenhofer
and Prodinger 16 ]. The variance of the depth was also obtained in 16 (see also 18 ).
The limiting distribution for the depth of a regular tile was obtained independently by
Jacquet and R6gnier 12 (limiting distribution ), Pittel 22 (limiting distribution), and
Szpankowski [25] (all moments for the asymmetric independent model). The limiting
distribution ofdepth in tries using a Markovian dependency among symbols is presented
by Jacquet and Szpankowski in [14]. Pittel 21 has proved convergence in probability
for the depth for a more general dependency among symbols (i.e., mixing stationary
sequences).

PATRICIA tries have not been studied as extensively, but the moments of the
successful search for the asymmetric model (see also 16 ], 20 for the binary symmetric
case) and moments of the unsuccessful search for binary symmetric model have been
obtained in Szpankowski [26], and the variance ofthe external path length by Kirschen-
hofer, Prodinger, and Szpankowski [18 ]. Pittel [22 provided the leading term in the
almost sure convergence for the depth and the height. Also, Devroye 4 obtained results
for depth and height of PATRICIA tries under a model in which the keys are random
variables with a continuous density fon [0, ]. In this paper, we obtain the convergence
in distribution of the depth in the Bernoulli model. From the probabilistic viewpoint,
this is the best and the strongest possible result regarding typical behavior of the depth
in the PATRICIA.

000

010

012

100

200

221

FIG. 1. Example ofa 3-ary digital trie with n 6.
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Assuming independence among keys as well as symbols, our aim is to analyze the
limiting distribution of the depth for a PATRICIA trie. To accomplish this, we use the
Poisson transform and study the Poisson model, in which the number of keys in the trie
follows a Poisson distribution with parameter n. After deriving results for this model, we
use the inverse Poisson transform to obtain the results for our Bernoulli model. In either
model, the distribution ofthe depth in the asymmetric case is asymptotically a Gaussian-
like distribution. In our analysis of this, we use properties of the Mellin transform and
follow the method suggested by Jacquet and Rrgnier in 12 ]. However, in the symmetric
case where we obtain very different results, another approach is necessary.

The paper is organized as follows. The next section will give all necessary definitions
and tools not yet defined. It will also give a statement ofthe main results and consequences
of our findings. In the last section, we will prove all the results given in 2.

2. Main results. Before making precise statements of our results, it is necessary to
give some definitions and notation. We let the random variable Dn be the depth of a
randomly chosen key in a PATRICIA trie holding n keys. Then Pr { Dn k } is the
probability that the depth of a key is k when the PATRICIA trie holds n keys; that is, k
is the length of the path from the root to a randomly selected key. Then Dn(u) is the
ordinary generatingfunction, and D(z, u) is the Poisson generatingfunction, where

Dn(u) Pr{Dn=k}uk, D(z, u) Dn(u) e-z.
k=0 n=0

The first function Dn(u) is used in the Bernoulli model where the number ofkeys is fixed
at n and the probability of generating the ith symbol from the alphabet ’ is equal to Pi
for =< < V. When z is real, D(z, u) is the generating function for the Poisson model
in which the number of keys in the tile follows a Poisson distribution with parameter z.
These functions are well defined for any complex numbers z and u such that ul < 1.
However, in our analysis, we must analytically extend the functions to u[ < + 6 for
some 6 > 0. When we replace u by et, where is a complex number, we obtain the
characteristicfunction of the respective distribution.

We summarize the main results of our study in the following theorems. The first
theorem gives a complete characterization of the asymptotic behavior of the depth in a
PATRICIA trie under the Bernoulli model with an asymmetric alphabet.

THEOREM 1. Consider the asymmetric model of PATRICIA tries described above.
Then

(i) For large n, the average depth EDn ofa PATRICIA trie is

EOn log n + O(1),

and the variance var Dn ofthe depth is

H2- H2

var Dn H3 log n + O( ),

where H -= Pi log Pi is the entropy ofthe alphabet, and H2 E S= Pi log2
Pi;

(ii) The random variable Dn EDn / /var Dn is asymptotically normal with
mean zero and variance 1; that is,

e_t2/2lim Pr {D. =< EDn + x/var Dn } dt.
n--
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In addition, for all integer m, thefollowing convergence in moments holds:

0 m odd,

where the right-hand side ofthe above presents moments ofthe normal distribution.
The second theorem provides the limiting generating function, as well as the limiting

distribution for the symmetric case. Proofs for both theorems are presented in the next
section.

THEOREM 2. Consider the symmetric model ofPATRICIA tries described above.
(i) Limiting generating function. The limiting generating function D,( u) for the

depth in a PATRICIA trieror large n is

Dn(u) ulgvn exp
log V 2 log V

g* (s’’ u) n-Sk + O nn
where sk 2rik/log V, k 4: 0,

e log z
dz(21 a(u) (1 u)

e + u(1 e-x)

and

(3) g*(s, u) log [e + u(1 e-Z)]zs-I dz,

where a(u) is definedfor u (-oo, 0].
(ii) Limiting distribution. Let ko /logv n] and q e-n/vko. Toss a ko-long sequence

vJof biased coins with the probability ofheads (success)for the jth coin equal to q Let
XI be the number ofsuccesses. Toss an infinite sequence ofbiased coins with probability
ofheads (success)for the jth coin equal to q v-J. Let X2 be the number offailures. Then,
asymptoticallyfor such x that x + logv n is integer,

(4) Pr {D,-logvnx} Pr {X2-X X) q- O(1/Vn),
and XI and X2 are independent. Moreover, this characterization leads to

lim Pr { Dn logv n <= x fe(V-X),

where

(5) fe(y) Bm(yVm-1)e-yvm-
m=O

and

Bin(z) e , YI ev-;(v- ,)z 1).
Jc{ 1,2,’"} jJ

In particular, Bo(z) e and B(z) e X= (e v-;(v-)z ).
Remarks. (i) Symmetric PATRICIA. Although the limiting distribution is computed

here for the first time, it was shown previously [20 that, for large n, the average EDn
depth of a PATRICIA tile is

3’EDn logv n +
log V

+ logv / V) + + P (log n),
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and the variance var Dn of the depth is constant; more precisely 16 ], 26 ],

71-2 2
log II + + P2(log n)var Dn 6 log2 V

+
12 log V

where 3’ 0.577 is the Euler constant and Pl(logv n) and P2(logv n) are fluctuating
functions ofvery small amplitude. We also obtain these results from the limiting generating
function of ). These formulas follow from our limiting distribution (4). Finally, we
also note that

where

F (x) exp V-X),

lim Pr {On- logvn -< x} F(x). Fz(x),

F2(x Bm(V -x+m-l) exp (-V-x(v m-1 1)).
m=O

The function F (x) is a distribution function. In fact, it is known as the standard extreme
distribution (i.e., the so-called double exponential distribution exp (-e-x)). Let Z be a
random variable distributed according to F (x). Then EZ 3’/log V- 1/2 and var Z
7r2/(6 |og2 V) + 2, where the terms 1/2 and 1 are Sheppard’s corrections for continuity
(cf. [15 ]) of the average value and the variance, respectively. In fact, as discussed in
remark (iii), below, logv n + Z is distributed as the depth in regular tries.

(ii) Aldous’s representation for the symmetric case. For completeness, we include
an observation of Aldous, who noted that the problem of depth in the symmetric PA-
TRICIA tile can be alternatively described in the following way. Consider an infinite
row of boxes, and box receives a Poisson number of balls with mean v-i( 1/V).
Let DT be the number of the rightmost box containing a ball and let C be the number
of empty boxes to the left of box DT. In terms of tries, DT gives the depth of a key in a
regular symmetric tile, and C gives the number ofnonbranching nodes on the path from
the root to the key (in the Poisson model). Thus the depth in a PATRICIA trie D is
given by D- C. Unfortunately, the random variables DT and C are dependent, and
therefore this representation is rather useless for the limiting distribution analysis. How-
ever, it is interesting to note that in the symmetric binary case, Pr { C d } 2 -d as is
shown by Knuth 1. This distribution of C was independently discovered by Pittel and
Rubin 23 ].

(iii) Comparison with regular tries. When considering either the case of a symmetric
or asymmetric alphabet, we can make the following observations. Although the expected
depth of either the regular or PATRICIA tile is log n/H + O( ), the constant is not the
same. Examination of this constant shows that the expected depth of a regular tile is
greater than that of a PATRICIA tile. More importantly, the variance of the depth for
a PATRICIA is smaller than for regular tries. This leads us to conclude that the PATRICIA
tile is a better balanced tile than the regular tile.

We can offer further support of this claim in the symmetric case. In particular,
as shown in 26 ], the difference in the variance for small alphabet is significant. For exam-
ple, for binary regular tries, we have var Dr 3.507..., while, for binary PATRICIA,
var Dne= 1.000 In fact, as proved in [17], the variance is var Dne=
1.000000000000 (twelve zeros). We also note that the difference becomes smaller
for larger values of V, as expected. We can also compare the limiting distribution for the

Amer. Math. Monthly, 94 (1987), p. 189.
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depth in a PATRICIA tile with that for a regular tile. From [12], [22], we know that
the limiting distribution for a regular tile under the symmetric alphabet is given by

lz-x(6) lim Pr{D.-logvn <x} =e

A simple proof of this is given in Pittel [22 ], which proceeds as follows. First, observe
that Pr {D. _-< k} (1 V-k)n-. By letting k x + logv n and taking the limit
as n -+ o, Pittel obtains the limiting distribution fr(V-X) as given in (6), where
fr(x) e-X.

As is easy to see from Fig. 2, which comparesf(2 -x) andfV(2-x), the probability
ofthe depth ofa randomly chosen key being at most logv n + x is greater in a PATRIClA
tile than in a regular tile. Since the mean depth is logv n + O( for both structures, this
suppos the conclusion that the PATRIClA tile is better balanced than the regular tile.

(iv) How well is the PATRIClA balanced? A tree built over a V-aw alphabet is
well balanced if (a) the average depth of a key is logv n + O( ), (b) the variance of the
depth is significantly smaller than the average depth, and (c) large derivations from the
average value are vew unlikely. Many algorithms using trees need balanced trees (e.g.,
the extendible hashing algorithm [5 ]) to run efficiently, so oftentimes these algorithms
include a costly rebalancing step. This rebalancing operation is customarily justified by
the worst-case analysis. Our average case analysis, however, shows that this costly operation
seems to be unnecessaw, since, with high probability, the tree is already balanced; that
is, a random shape ofa PATRIClA tile resembles the shape ofthe well-balanced structure
of a complete tree [2 ]. In the symmetric case, we know that the expected depth of a
PATRIClA tile is logv n + O( and that its variance is O( ); thus we can expect that
the PATRICIA tile is well balanced. In the asymmetric case, we show that the limit-
ing distribution for the depth is normal with mean log n/H + O( and variance
((H2 H2) /H3) log n + O( ). The coefficient /H in the mean shows that the more
asymmetric the distribution of the symbols is, the more skew the PATRIClA tile is.
However, the standard deviation is O( log n ), so the PATRICIA tile is still, on average,
balanced. Efficiently preprocessing the asymmetric alphabet to obtain a more symmetric
alphabet will improve the balance of the PATRIClA tile.

(v) Poisson model. In the proofs of our theorems, we will also establish similar
convergence results for the Poisson model in which the number of keys is not fixed but
rather a random variable distributed according to Poisson law. That is, in the asymmetric

1.0

.75_

0_

,fP(2-=)

0 [1 [3 [4 z

FIG. 2. Comparison ofdistributions oftries and PATRICIA triesfor V 2.
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case, the depth of a key in a PATRICIA tile with Poisson number of records, once
normalized and centered, is asymptotically normal.

3. Analysis. The primary focus of this section is the proof of our results. As men-
tioned earlier, different approaches are necessary to compute the limiting distributions
for the depth of a PATRICIA tile in the symmetric and asymmetric cases. Before giving
details of our analysis, we briefly identify tools that are useful in manipulating the gen-
erating functions defined in the previous section in both the symmetric and asymmetric
cases. Then we will prove Theorems and 2 in the following sections.

An important tool that will enable us to obtain asymptotic results is the Mellin
transform, an integral transform from complex analysis, which is defined as follows [8
(cf. also [10]). Let F(x) be a piecewise continuous function on the interval [0, ). If
F(x) O(x) for x -- 0 and F(x) O(x) for x - oe, then the Mellin transform of
F(x), denoted F*(s), is defined for any complex number s in the strip -c < t(s) <
-/3 and

F* (s) F(x)xs- dx.

The importance of the Mellin transform is that it provides information concerning the
asymptotic behavior of a function F(x) around zero and infinity through the poles of
F*(s). In fact, the asymptotic expansion of F(x) is obtained directly from the poles of
its transform 8 as follows:

F(x) +_ _, Res{F*(s)x-s,s= X},

where Res { f(s), s ) } is the residue off(s) at s ), and o’g is the set of poles ofF*(s)
in the left (fight) half plane giving the asymptotic expansion as x 0 (x -- ). This
is obtained using the inverse Mellin transform [10

/-c +
| F*(s)x dsF(x) lc-ioo

where c e (-c, -/3), and residue theory holds. Provided that F*(s) is small at +ioe and
has only isolated singularities, for the case in which x -- oe, we can close the contour
to the fight and derive (cf. 8 ], 10

F(x) -Z Res {F*(s)x-s, s X} + O(x-M),

where the sum is taken over all poles ), such that -/3 _-< N() =< M for any M.
A second tool of great importance that will allow us to extract results for D,(u)

from the results for D(z, u) is the Poisson generating function. It is derived from Cauchy’s
integral formula, which says that 10]

(7) On(u) -i D(z, u)e
dz

zn+l

where the integration is taken over a circle of arbitrary radius centered at the origin. The
following important result is derived from this formula when the radius of the circle is
chosen to be n.

DEPOISSONIZATION LEMMA. Let So be a cone So { z arg z[ < 0, 0 < 0 <
r/2 }. If, for z So and z -- oe thefollowing holdsfor all u in a compact set ll

(8) ID(z, u)l < /llzl
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for some C/l, e > 0, and, for z So and all u ll

(9) D(z, u)eZ[ 321zlelzl

for some 0 < a < and a constant {32 > O, then, for large n uniformly in u ll, the
generatingfunction Dn( u satisfies
(10) On(U) D(n, u) + O(n-1/2)
with e < 1/2.

Proof. We proceed along the lines of[13] with some necessary modifications. We
apply Cauchy’s formula (7). By the change of variable z ne it, we have

(11)

D(neit u) exp (n(eit- it )) dt + O(ne-(-)n),nne-n 2V
where the last term of the above is a sim_p_e consequence of our condition (9). We note
that, by Stirling’s formula, n!/(nne-nV2rn + O( 1/n). Hence, 11 can be reduced
to Dn(u) + O(1/n))In(u) + O(n’e-(-")n), where

D(ne", u) exp (n(ei- it )) dr.
-0

Now we evaluate the integral In(u). After introducing a new change of variable
x t--n, we obtain

D(ne u) exp (n(eix/ ix/fn 1)) dx.I. u

The following expansions are easy to derive:

exp (n(e/ ix/n )) e-/ -n + O( 1/n)

and

D(neix/C u) D(n u) + n(eix/C 1)D’(n u) + O(1/n)

where D’(n, u) is the first derivative of D(z, u) with respect to z at z n. However,
again using the Cauchy formula in the form (cf. [10 ])

D’(n, u) =--I D(z, u)
7rt (z n) 2 dz

and our first condition (8), we finally prove that D’(n, u) O(n‘-I uniformly in u
//. This leads to (10) by noting that /V)f e-x2/2 dx (cf. [6]).

This lemma gives us the conditions necessary to transform our Poisson model results
into those for the Bernoulli model, so we call it the Depoissonization Lemma (in fact,
(10) can be called the inverse Poisson transform; see also [9] and [11]).

3.1. Asymmetric case. In this section, we adopt the approach ofJacquet and Rrgnier
12 ], making necessary changes required by the PATRICIA tile. At first, we give a rough

plan of our analysis, which leads to the proof of our main results. To get the limiting
distribution for depth in a PATRICIA tile under our Bernoulli model, we begin by
deriving its probability generating function Dn(u). Unfortunately, it is not easy to derive
the limiting distribution directly. However, we use the Poisson transform to compute
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the generating function D(z, u) for the Poisson model in which the number of keys
follows a Poisson distribution with parameter z. This model is easier to analyze, since
the generating function for the Poisson model has a closed form. This is not so in the
Bernoulli model.

Since we are interested in the asymptotic behavior of the Poisson probability gen-
erating function D(z, u), we use the Mellin transform. We also replace u by et, where
is complex. This will guarantee that each generating function in our sequence is analytic.
The limit function of a sequence of analytic function is again analytic, so all of its de-
rivatives are well defined. In this way, we also get convergence in moments.

We then show the following limit, where ix(z) is the mean and a(z) is the standard
deviation for the Poisson model with parameter z, and z iu for any real number u:

(12) lim e-"(z)/(Z)D(z, e/(z)) e/

which is a modification of Goncharov’s theorem (cf. 19, Chap. 1.2.10, Ex. 13 ]). By
proving (12), we show that the depth in the Poisson model is asymptotically normal
with mean/(z) and variance 2(z). The next step is to extract from (12) information
about the Bernoulli model, that is, to depoissonizate the above formula. We do this by
applying the Depoissonization Lemma to (12), and we obtain

lim e-""/"D(e/") er2/2

for all z iu and - < u < , where Dn(u) is the generating function of the depth
However, the above is exactly Goncharov’s theorem (cf. 9, Chap. 1.2.1 0, Ex. 3 ]),
which states that a sequence of random variables Dn with mean zn and standard devia-
tion an approaches a normal distribution if the above holds. In this way, we prove
Theorem 1.

Noting this plan, we present more details below. To simplify our notation, we
will hereafter assume a binary alphabet, noting that our derivation easily extends to any
finite alphabet. We denote the probabilities of the symbols w and w2 as p and q, where
p+q-1.

Let Jn be the set of all possible PATRICIA tries of n keys from the alphabet and
be a particular tile from Jn. If S- denotes the number of keys at depth k in -, then

the generating function associated with is given by

s.,-( u) Z SS- u.
k=O

Note that the sum is actually finite, since the maximum depth in a PATRICIA tile with
n keys is n 1. Clearly, the following statements are true when the left subtree -, and
right subtree -e hold k and n k keys, respectively, and 6j,k is the Kronecker delta (i.e.,
6j,k 1, ifj k, 69, 0, otherwise)

S.(u) n, n <= b,

s.(u) u{S.(u) + s.C,(u)} + ( u)(6., + n>b.

We note that the above recurrence holds for a particular tree - in Jn. The leading factor
u must be present, since the depth of a key in either -, or in - is one less than its
depth in the trie -. The second term avoids one-way branching. For example, if k 0,
then the fight branch is a one-way branch and S.- (u) uS-(u) + u)S- (u), which
means that the subtree begins at the root of ’-.
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Averaging S-(u) over all tries - in ’n, we derive a new generating function
Sn(u) E(S.-(u)). Of course, for n =< b, we have Sn(u) n. Otherwise,

(13) S(u) u , n
pkqn_k[Sk(U) + S-k(U)] (U-- 1)(p + q")S(u).

k=O k

Here the sum in the first term ranges over k from zero to n. We know that, in a PATRICIA
tile, there are no one-way branches; thus we must subtract those terms from the sum.
However, it is possible that all n keys begin with the same symbol from .st. This occurs
with probability p + q, and so we add this term. The last term in (13) makes the
analysis of the depth of the PATRICIA trie different from that of the regular tile.

Define S(z, u) ,,%o S,,(u)(z’/n!)e and note that S(z, u) is the generating
function of the depth in the Poisson model. Since Sn( n, we see that, for any z, we
have S(z, z. Using the relation in 13 ), we obtain the following functional equation:

where em(X + x + + x /m !.
The generating function D(u) S(u)/n is the probability generating function

22 for the depth of a leaf in a PATRICIA, since the coefficient of uk is the probability
that a randomly chosen key in a randomly chosen tile in Jn is at depth k. Thus the
Poisson generating function for depth of a leaf is D(z, u) S(z, u) / z and D(cz,
for all c and z. (Note, in fact, that D(z, u) e Zn

_
oD + (u)(z / n! ).) Consequently,

D(z, u) upD(pz, u) + uqD(qz, u) + (1 u)e-Zeb_ l(Z)

(14) + (1 u)[D(pz, u)pe-qz + D(qz, u)qe-pz]

+ u )e [Peb- l(PZ) + qe_ l(qz)].

We have in 4) the functional equation corresponding to the Poisson generating
function for the depth in a PATRICIA trie. The first three terms give the functional
equation for the regular tile 2 ]. Since we are interested in its asymptotic behavior, we
would like to solve it. This, however, is too difficult, so we use the Mellin transform to
calculate the asymptotics of D(z, u). Since the strip on which the Mellin transform of
D(z, u) is defined is empty, let D*(s, u) be the Mellin transform of D(z, u) 1.
Note that it is defined for all s in the strip where -1 < 92(s) < 0. (In fact, it is defined
on the larger strip -b < 92(s) < 0, since, as z -, O, D(z, u) O(zb), and z
D(z, u) O(z) for some e > 0; see the Appendix. Subsequent integral computations
require the smaller strip.) Computing D * (s, u) requires the evaluation ofmany integrals,
but ultimately we arrive at the following:

u)G*(s, u)
(15) D*(s,u)

u(p l-s + ql-s)

where

G*(s, u) (pe-qz[D(pz, u)- 1] + qe-PZ[D(qz, u)- 1])zs-1 dz

(16)
I’(s + b) b-1 pj+l ++ , I’(s + j) I’(s)(pq-" + qp-’).
s(b 1)! j=0 J!

S(z, u) u[S(pz, u) + S(qz, u)] + (1 u)e-Zzeb_l(Z)

+ (1 u)[S(pz, u)e-qz + S(qz, u)e-pz]

+ (u )e [PZeb- l(PZ) + qzeb- l(qz) ],

we have
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Although (15) looks very much like that for regular tries in [12 ], it is, in fact, quite
different. For regular tries, G*(s, u) is exactly the second term of 16 ), but in 15 we
see that D *(s, u) is only implicitly given, since G *(s, u) contains an integral depending
on D(pz, u) and D(qz, u). The analysis of D(z, u) is clearly more difficult in the case
of PATRICIA tries than in the case of regular tries.

Now, to prove (12), we let u et, where is complex. We want to evaluate the
asymptotics of D(z, et) as goes to zero. We can recover D(z, et) from D*(s, u) by
evaluating the integral

f-l/2 + ioo

z-SD*(s, u) ds.D(z, u) t d-1/2-ioo

This is the inverse Mellin transform [10]. We use Cauchy’s residue theorem to evaluate
this integral, but we must first find the poles of the integrand. These correspond to the
roots of

(17) et(p-S + q-S) 1.

Now, following [12], we analyze the roots of (17) lying in the strip (s) =< 1. We
denote them as s(t). Let also R(t) be the residues of 1/( et(p- + q-S)) at these
points for k 0, __+ 1, +2, Then we can write D(z, el) as follows:

D(z, el) Ro(t)G*(so(t), et)(1 et)z-t)
(18)

+ (1 et) R(t)G*(sg(t), et)z-t) + O(z-t),
k4O

for arbitrary M > 0. Now we compute the components of 18 ), and we begin with s0(t).
Since 17 and the equation

(19) e-t= pl-S + q-S

are equivalent, we solve above for s0(t). First, expand both sides using a Taylor’s series
up to terms of degree two. We then have

(20) + t2/2 + O(t 3) + Hso(t) + H2so(t)2/2 + O(so(t)3),

where H -(p log p + q log q) and H p log2p + q log2 q. Since s0(0) 0, we can
write

(21) So(t) at + bt2 + O(t3).

Substitute (21 into (19). Equating coefficients and solving for a and b, we see that
So(t) -t/H + 1/2( 1/H H2/H3)t + O(t3). We also note that its residue is Ro(t)
-1/H + O(t).

Now we are ready to show that (18) can be written as

(22) D(z, et) z-S(1 + O(tlzl-a’-))
for some constant A. We begin with the first term of (18). The behavior of R0(t)
and (I et) when 0 has already been determined, so we continue by examining
G*(so(t), et), which is given below in an alternate form than 16)"

G*(s, et) (pe-qz[D(pz, et) 1] + qe-PZ[D(qz, et) 1])z"-1 dz

(23)
b- (pJ+ + qJ+)

+ E(s + j) i,(s)(pq-S + qp-S).
jtj=l
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Near zero, I’(z) z -1 "y -- O(z) and n z log n + O(z2). Thus the last term
of (23) behaves as -H/t + O( ), and the middle term behaves as a constant as -- 0.
Finally, for the integral in (23), we note that, since D(az, et) is continuous and
D(az, 1, as 0, we have D(az, et) - 0 as -- 0. Therefore, the integral
will converge to zero, provided that it converges uniformly. This can be shown to be
true [10]. Thus, as -- O, G*(So(t), et) --,, H/t and Ro(t)G*(so(t), et)( et) -- 1.

Finally, for the Poisson model, it remains only to show that the sum in (18) is small
when is small. The proof of this is similar to the one that appears in 12 and 14 ]. It
relies on showing that Zk,0 R(t)G*(s(t), e’)l O( )and that 9t(sk(t)) >-_ so(t(t)).
This implies that, for some A > 0,

D(z, et)l _-< z-’(s(t))(1 + O(tlzl-At),
which behaves as z -’(s(t)) as -- 0. Therefore, the sum in (18) contributes z-S(t)o( ),
giving (22). Writing (22) in a more convenient form, we have

(24) D(z, et) exp log z g H3 log z + O(t log z (1 + O(t[zlAt2)).

This directly leads to 12); that is,

e-"(z)/(Z)D(z, et/(z)) et2/2( + o( )).

Hence, we see that the mean of the distribution of the Poisson model with parameter z
is u(z) log z/H + O( ), and its variance is r-(z) -[1/H- Hz/H log z + O( ).

Finally, to prove our main result for the Bernoulli model, we must use the Depois-
sonization Lemma. However, this requires us to verify hypotheses (8) and (9). (This is
rather technical and appears in the Appendix.) Then we can compute D,,(et) from
(24) and (10), and, by Goncharov’s theorem, we prove that the limiting distribution
of the Bernoulli model is normal with mean un log n/H + O( and variance 2
-[1/H- Hz/H log n + O( ). This completes the proof of Theorem 1.

3.2. Symmetric ease. Note that, in the preceding analysis, when p q 1/2, the
variance var Dn becomes O( because, in this case, H2 H2 log2 V. Hence, from
(24) we conclude that Goncharov’s theorem cannot hold, and we need a somewhat
different analysis. More precisely, the Mellin transform 15 in this case becomes

G*(s,u)
D*(s,u)

bte
slg v

The poles are all on the axis defined by 3t (s log V + log u) 0. Therefore, by the Mellin
inverse formula, we obtain

(25)
D(z et)

zt/lgv [log V
G*

+ O(z-M)

with M as large as we want. Then, from the Depoissonization Lemma, we have

D,,(et) D(n, et) + O(ir/e- 1/2).

This form for the limiting distribution in the symmetric case is unsatisfying, since it gives
little information except that the distribution is periodic with period log V. Thus we
must search for an alternative representation. We henceforth consider the case where
b=l.
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We begin another approach by again considering Sn(u). The recurrence relation
for Sn(u) is obtained from (22) by setting p q 1/2, as follows:

(26) Sn(u) u 2-"{S(u) + S-k(u)} + (1 u)2-n2S,,(u).
k 0

We cannot solve the recurrence in (26) directly, so we define S(z, u)
,,=o S,,(u)(z"/n!) as we previously did. This gives another recurrence

S(z, u) 2S(z/2, u){uez/2- u + 1}
similar to that derived in the asymmetric model. Finally, since D(u) Sn(u)/n (we set
Do(u) 0), by defining D(z, u) S(z, u)e-Z/z, we obtain the following Poisson gen-
erating function for the depth in a PATRICIA trie:

(27) D(z, u) D(z/2, u){e-z/2 + u(1 e-Z/2)}.
Iterating it and knowing that D(0, u) 1, we are able to express D(z, u) as an infinite
product (cf. 13

(28) D(z, u)= ]-I { e-z/2k + u(1 e-Z/2k)}.
k=l

We need this form of the generating function to prove our theorem. It should be noted
here that the function given in (28) is the generating function of k>__ Y, where the Y
are independent random variables that take on the values zero or with Pr { Y }

e-z/2’.
We start with proving Theorem 2 (i) concerning the limiting generating function of

the depth. Although (28) provides the generating function, it is difficult to extract infor-
mation concerning the distribution. However, since we are primarily interested in deriving
a limiting law, we can use the Mellin transform. We let l(z, u) log (D(z, u)) and
compute its Mellin transform. Note that l(z, u) can be written as

l(z, u) log [e-z/2 + u(1 e-Z/2)].
k=l

Let g(z, u) log [e + u( e-Z)]. Using a special property of the Mellin transform
concerning harmonic sums (cf. [8]), l*(s, u) can be computed as the product of
g*(s, u) and = (2-) -s. First, we determine the strip on which g*(s, u) is defined.
Note that, as z -- O, g(z, u) O(z), and, as z - , g(z, u) O( ). Thus the Mellin
transform of g(z, u), and therefore of l(z, u), is defined in the strip -1 < (s) < 0.
Furthermore, using (3) to compute g*(s, u), we obtain

-log u
(29) g*(s, u) + o(u) + O(s),

S

where c(u) is defined as in (2). Finally, we have

(30) l*(s, u)
2
sg*(s’ u).

Now we can use /*(s, u) to determine the asymptotic expansion of l(z, u). By
definition, the inverse Mellin transform is given by

f-1/2+i l*(s, u)z ds.l(z, U) - -1/2-i

This integral can be computed using Cauchy’s theorem on residues. Since we want the
expansion to hold for large values of z, we close the contour to the right, with the left
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boundary as the line (s) -1/2. Our next step then is to identify the poles of the
integrand l*(s, u)z with respect to s and to determine their residues.

Clearly, the only poles are those of l*(s, u). There are poles of multiplicity at
Sk 2rik/log 2 for all integers k, since 2 sk 0. However, So 0 is actually a double
pole, since it also is a pole ofg* (s, u). The residues at the single poles sk, k 4 0 are easily
calculated and are equal to (-g* (sk, u)/log 2 )z -sk The residue associated with So requires
more work.

We begin this computation by expanding all factors of l*(s, u)z-s. The expansion
of g* (s, u) is shown in (29). The other factors are then written as

2 -1
(31)

1-2-slog2 2
+O(s)

and

(32) z s log z + O(s2).

Multiplying (29), (31), and (32) and taking the coefficient of 1/s gives us the residue
at So, namely, -log z(log u/log 2) [c(u)/log 2 (log u)/2]. We can therefore write

log u
l(z, u) log z

log 2 loga(U)2 log2 u logl 2 k0

g*(Sk, U)Z-s + O(Z-).

Finally, D(z, u) ez’u). This gives us the Poisson generating function; so we have
a result for the Poisson model. From this, we obtain the results for the Bernoulli model,
the generating function Dn(u) of (1), by applying the Depoissonization Lemma from
the previous section. Of course, the hypotheses of the lemma must first be verified, but
this is a simple variation of the proof that appears in the Appendix. Thus the proof of
part (i) of Theorem 2 is complete.

We have not yet obtained the limiting distribution that is our ultimate goal. Ordi-
narily, this can be found from D,,(u)/(1 u) using Cauchy’s integral formula [10].
However, we cannot use this technique here, since the expression we obtained for Dn(u)
does not appear to be analytic within any circle about the origin, a necessary condition
ofCauchy’s formula, due to the presence oflog u. Therefore, another approach is necessary
to obtain the limiting distribution for the depth in a PATRICIA tile. We can, however,
compute all moments from this limiting generating function since all of its derivatives
exist at u 1.

Now we turn our attention to the limiting distribution and the proof of part (ii)
of Theorem 2. To show that Dn log2n can be written as the difference of the
random variables X and X2 as defined in Theorem 2, let Gx (u) and Gx2(u) be their
respective generating functions. Recall from probability theory [6 that Gx2-x, (u)
Gx(u) Gx, / u). Clearly, then,

k0
(33) Gx-x,(U) ]-[ [q- + u(1 q2-)] I-[ [u-’q2 + (1 q2)].

j=l j=0

By applying the Depoissonization Lemma, we have D,(u) D(n, u) + O( /Vn). Using
this in (28), dividing both sides of the result by u, and replacing e-n/2 by q, we have
exactly (33 ). This proves that asymptotically Dn log2 n X2 X.

To show the second part of Theorem 2, consider the functional equation of (27)
and define a new function F(z, u) D(z, u)/ u). The generating function F(z, u)
is then

F(z, u) uF(z, u) + e-Z/2D(z/2, u).
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For now, we assume that u < 1. Iterating repeatedly and again using the fact that
D(0, u) 1, we obtain

(34) F(z, u) uke-Z/2k+’D(z/2k+ U)
k=O

Define Bm(z) so that D(z, u) Z=0 Bm(z) urn. Then, substituting this into (34), we
obtain

(35) F(z,u) , u , {Om(Z/2k+l-m)e-Z/2k+l-m}.
k=0 m=0

So, we can obtain the limiting distribution if we can compute Bm(z) for m >_- 0. To do
this, consider (28). The coefficient of u in the expansion of this product is exactly
Bm(z). Clearly, then, with some algebraic manipulation, Bo(z) e and

B z) e (ez/2j’ 1),
jl

B2(z) e (ez/2j’ 1) (ez/-j2 1)
Jl= J2 1,j2

Other Bm(z) for m > 2 are similar to Bz(Z), having m sums with the condition that no
two ji’s are equal.

Again using the Depoissonization Lemma, F(n, u) Dn(u)/( u) + O(n /2),
making

k

Pr {D, =< k} Bm(n/Z+-m)e-n/Z+’-m.
m=0

Let k log2 n + x be an integer. Then

log +

(36) Pr { D, log2 n _-< x Bm(2 -(x + m))e-z-(x+’ -m),
m=0

The proof of Theorem 2 is now complete.

Appendix. In this appendix, we prove that conditions of the Depoissonization
Lemma hold for our problem, and we can use the inverse Poisson transform to prove
the limiting distribution of PATRICIA for the Bernoulli model. Although the proof is
written for the asymmetric case, it also holds in the symmetric case. We start with the
following proposition.

PROPOSITION 1. For each e > O, there exists a neighborhood of 1, ll ), such that,
for all u in o//( ), z in So, and [zl > 1, thefollowing holds: D(z, u)l < [zl .

Proof. Let us define o such that 0 > and o(p +" + q+) < e’, for some e’ >
0. Suppose also that p > q. Let us choose A such that A > /q and such that, for z So
and zl >-- A, the following holds:

(1 + p){lpzlle-pz] + ]qzl]e-qZ + le-Z{eb_(z)-peb_(pz)-qeb_(qz)}[}

Let us define a sequence of domains Ro { z z So, B <= zl --< A with < B < A
and, for m natural, R, { z z So, < zl < A/m}. An interesting fact is that z
Rm R,_ implies that qz Rm- and pz Rm- . We prove our proposition by recur-
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sion on domains Rm f’) So. Since Ro f3 So is compact, D(z, 1) 1, and z[ > 1,
there is a neighborhood o//( of such that, for all u e o//( and z Ro f3 So, we have
D(z, u) < z ". We can restrict u such that u < p (bY redefining o//( if necessary).

Now let us suppose that, for all z Rm f’) So and for all u V( ), Proposition
holds; that is, D(z, u)l < zl . We prove that the proposition is true for all z
Rm+l 0 So. Let z Rm+l Rm) N So and u in //( ). Then, by (14),

D(z, u) upD(pz, u) + uqD(qz, u) + (1 u){D(pz, u)pe-qz + D(qz, u)qe-pz }

+ u) { eb-i (z) Peb-1 (pz) qeb- (qz) }e

Since pz and qz are in Rm f’) So, we can use the fact that D(pz, u)l < Ipz[ and
D(qz, u)[ < [qzl . So

D(z, u)l < p(pl + + ql /)lzl / (1 / p){ Ipzlple-qzl + Iqzlqle-PZl)

+ (1 + p)l{eb-(z)--pea_(pz)- qea_(qz)}e-Zl.

According to the fact that zl > A and z So, we can use the following hypothesis about
A"

O(z, u)l < (1 ’)lzl / ’lzl= Izl ,
and this completes the induction step.

To verify the second condition of the Depoissonization Lemma, we must now only
check that D(z, u) outside cone So does not grow faster than exponential. We prove
this below.

PROPOSITION 2. There exists c < and a neighborhood ll of such that, for
all u 11( ), z So, and Izl > implies that [D(z, u)eZl <= Izlelzl

Proof. Essentially, we have cos 0 < c < because eZl ez) <= ecslzl for z not
in So. Let S be the complementary set of So in the complex plane. Let us choose A > 0
such that A > /q and such that, for z 6 S and [zl >- A, the following holds:

(1 + p){ Ipzlpep"lzl + Iqzlqeq"lzl + leb-l(z) peb_l(pz) qe-l(qz)l }

Using the domains Rm as defined in the previous proof, we can establish Proposition 2
by mathematical induction on domains Rm f’) SCo. Since the above sets are compact,
O(z, )e ez, and leZl < Izle"lzl there exists a neighborhood //(1) such that, for
all u in //( and z 6 R0 fq S, the following holds: D(z, u)eZl <= Izle

Now let us suppose that the property is true on Rm fq S, and we will prove that it
also holds for m + 1. Let z (Rm+l Rm) S with u in //(1). Then by (14) we
have

D(z, u)e upD(pz, u)e + uqD(qz, u)e + (1 u){D(pz, u)pepz + D(qz, u)qeqz )
+ (1 u){eb-l(Z) Peb-l(pz) qe_l(qz)}.

Therefore, taking into account the mathematical induction hypotheses, that is,
D(az, u)e-azl < azl e"alzl with a either p or q, we finally obtain

[D(z, u)eZ[ <= {ppl+eplzl [eqz[

<-_

and this completes the proof of Proposition 2 and also verification of hypotheses (8) and
(9) in the Depoissonization Lemma.
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REPRESENTATIONS OF PLANAR GRAPHS*
GRAHAM R. BRIGHTWELLt AD EDWARD R. SCHEINERMAN

Abstract. This paper shows that every 3-connected planar graph G can be represented as a collection
of circles, one circle representing each vertex and each face, so that, for each edge of G, the four circles
representing the two endpoints and the two neighboring faces meet at a point, and furthermore the vertex-
circles cross the face-circles at right angles. This extends a result of W. Thurston [The Geometry and Topology
of Three Manifolds, unpublished] and, independently, Andreev. From this we deduce two corollaries: (1) The
partial order formed by taking the vertices, edges, and bounded faces of G, ordered by inclusion, is a circle
order; (2) One can represent G and its dual simultaneously in the plane with straight-line edges so that the
edges of G cross the dual edges at right angles. This answers a question first asked by W. Tutte [Proc. LMS, 13
(3) (1963), pp. 743-768].

Key words, planar graphs, partially ordered sets, coin graphs

AMS(MOS) subject classifications. 05C10, 06A10

1. Introduction. Our aim in this paper is to prove various closely related results
concerning representations of 3-connected planar graphs. The central result is that ev-
ery such graph G can be represented in a natural way as a collection of circles in the
plane. The existence of such a representation extends a result of Thurston. We use this
representation of G to derive others: In particular, we solve a long-standing problem of
Tutte by showing the existence of a simultaneous straight-line drawing of G and its dual,
so that edges of G cross dual edges at right angles.

Our main result can also be thought of as a result about convex polytopes, and in
this form it has been found independently by Pulleyblank and Rote [12].

Throughout this paper, G will be a 3-connected planar graph. In this case, thefaces
of G are combinatorially well-defined, up to the free choice of an outside face. We shall
frequently blur the distinction between a planar graph and a plane map representing it.

Our starting point is the following result of Thurston [19], which has been indepen-
dently discovered by Andreev.

THEOREM 1 (Thurston’s coin-graph theorem). Every planar graph G can be repre-
sented by a set ofnonoverlapping circles in the plane, one circle for each vertex, so that two
vertices are adjacent in G ifand only if the corresponding circles are tangent.

A graph that can be represented in this way is sometimes known as a coin graph (see
Fig. 1). The converse of Theorem i is obvious, so we have that a graph is a coin graph if
and only if it is planar.

We remark that the proof of Theorem given in [19] uses some deep results from
the theory of orbifolds. In the course of this paper, we shall give a somewhat more
elementary proof, which is based on an interpretation of Thurston’s proof due to Lovfisz
and communicated to us by Pulleyblank.

Note. Since preparing this paper, we have received a manuscript from Sachs [13],
in which he sets out more of the history of the subject. It appears that the coin-graph
theorem, Theorem 1, was first proved by Koebe [9] in 1935. It seems that Theorem 6
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FIG. 1. A representation ofK5 e as a coin graph.

(or an equivalent version) was proved several times independently in 1990 and 1991.
Schramm [17] has proved a more general version. See also [6].

Scheinerman [14] used Theorem 1 to prove a result (Theorem 4) about circle orders
and planar graphs. A circle order is a partial order that can be represented as a set of
disks in the plane, ordered by inclusion. Circle orders have been the subject of much
study in the last few years--the major aim in the area has been to settle Conjecture 2
below. Here, as usual, the dimension of a partial order (X, <) is the minimum number
of linear orders on X whose intersection is exactly (X, <).

CONJECTURE 2. Everyfinite three-dimensionalpartial order is a circle order.
Evidence has been produced both for and against Conjecture 2. At the present time,

it seems that most researchers in the field believe that Conjecture 2 is false, and indeed
that the poset {0, 1, 2, 3}3, with the coordinatewise order, is a counterexample. However,
no one has succeeded in proving that this poset is not a circle order, and so it is of interest
to investigate other classes of three-dimensional orders to see if these consist of circle
orders.

For further information on circle orders, the reader is referred to Hurlbert [8],
Scheinerman and Wierman [15], Sidney, Sidney, and Urrutia [18], or Urrutia [21].

Given any graph G, the incidenceposet Pc of (7 is defined by taking as elements the
set of vertices and edges of G, ordered by inclusion, so z < y in Pc if and only if y is
an edge and z is one of its endpoints. Interest in Pc was stimulated by the following
beautiful result of Schnyder [16].

THEOREM 3 (Schnyder). A graph G is planar ifand only if the dimension of Pc is at
most 3.

In the same spirit, Scheinerman [14] proved the following.
THEOREM 4 (Scheinerman). A graph G isplanar ifand only if Pc is a circle order.
In [14], the "only if" half of Theorem 4 is deduced from Theorem 1--since the ideas

of that proof are central to what follows, we give the following brief sketch.
Let, then, G be a planar graph and take a collection of circles in the plane repre-

senting G as in Theorem 1. Now we form a representation of the dual of Pc as a circle
order by taking the vertex-circles to represent the corresponding vertices and the single
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points where two neighboring circles touch to represent the indicated edge. (In case the
reader is unhappy about taking single points rather than circles, we note that we can
simply add 1 to the radius of each circle, thinking of a single point as a circle of radius 0;
our new collection of circles will then have the same containment relations as the old.)
Since the dual of a finite circle order is always a circle order (see [2] for a more elaborate
discussion), this implies that Pc is a circle order.

A recent result of Brightwell and Trotter [3] extends Schnyder’s theorem. For G
a planar graph with a fixed plane drawing, let P(G) be the poset formed by taking the
vertices, edges, and (closed) faces of G, considered as subsets of the plane and ordered
by inclusion, with the outside face removed. If G is 3-connected, then P(G) does not
depend on the plane drawing chosen, but only on the choice of outside face. For conve-
nience, we state the theorem for the 3-connected case only: the result has been extended
to cover general plane maps by Brightwell and Trotter [4].

THEOREM 5 (Brightwell-Trotter). Let G be a 3-connectedplanargraph with a desig-
nated outsideface. The dimension ofP(G) is exactly 3.

A 3-connected planar graph G corresponds to a convex polytope in 3-space, and
P(G) to theface lattice of the polytope, i.e., the set of zero-, one-, and two-dimensional
faces, ordered by inclusion, except that one face is omitted. It can be shown that the
entire face lattice of a convex polytope always has dimension at least 4, and therefore,
since adding one point to a poset increases the dimension by at most one, Theorem 5
implies the dimension of the face lattice is always exactly 4.

Hence, the class of posets P(G), with G a 3-connected planar graph, forms a large
collection of three-dimensional posets, and it is natural to ask whether these posets are
all circle orders. We prove that this is the case, thus eliminating the posets P(G) as
possible counterexamples to Conjecture 2.

To apply the method of proof of Theorem 4 sketched above, we seek an extension
of Thurston’s coin-graph theorem to include the faces of our 3-connected planar graph..
Since, in the derivation of Theorem 4, we considered the vertex-circles to have positive
radius and the edge-circles to have zero radius, it seems natural to construct the face-
circles to have "negative radius." To make sense of this, it helps to view circle orders
rather differently, as we now discuss.

Consider the space R2 R and define a partial order on it by (z, t) < (y, t’) if and
only if Iz 1 < t’ t, where I" denotes the Euclidean metric. Thus the set of points
comparable to a given point (z, t) forms a cone in R. Another way of thinking of this is
to consider the space as Minkowski spacetime, with z representing position and t time.
Then, in units where the speed of light is 1, the order we give is the causality order, with
(z, t) < (y, t’) if (, t’) is in the future light-cone of (z, t).

We claim that the finite suborders of this causality order are precisely the circle
orders. To see this, consider any finite subset X of R2 x R. Take a reference plane
H defined by t to, where to is less than the "time component" of every point of X.
Now represent each point (z, t) X by the set of points in H, which are below (z, t) in
the order. Evidently, this set is a closed disk with center (z, to) and radius t to, and
we see that (z, t) < (, t’) if and only if the disk representing (z, t) is contained in that
representing (, t’). This procedure can clearly be inverted, so a finite partial order is a
suborder of the causality order precisely when it is a circle order. (This is not true for
infinite subordersmsee [2].)

For more information on how circle orders and their higher-dimensional analogues,
sphere orders, relate to the study ofspacetime, see Brightwell and Gregory [1], Brightwell
and Winkler [5], and Meyer [10], [11].
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FIG. 2. Points above and below H related in the causality order.

Returning to our problem of how to represent the faces of G as "circles of nega-
tive radius," the previous discussion suggests that we should represent vertices by points
above H, edges by points in H, and faces by points below H. Converting back to circles,
a point (z, t) to the past of H can be identified with the set of points in H, which are
above (z, t). Now it is immediate that a point (z, t) below H is less than a point (/, t’)
above H in the causality order if and only if the two corresponding circles intersect (see
Fig. 2).

Our proposed extension of Theorem I would then assert, for every 3-connected pla-
nar graph G, the existence of a set of circles in the plane, representing G in the following
manner. The set of circles is in 1-1 correspondence with the set ofvertices and faces of G.
The circles corresponding to vertices are termed vertex-circles, and those corresponding
to faces are theface-circles. The circles satisfy the following properties.

(P1) No two vertex-circles cross, and no two face-circles cross.
(P2) Corresponding to every edge e of G, there is a point in the plane where four

circles meet, namely, those corresponding to the two endpoints of e and the two faces
bounded by e. This point will be called an edge-point and is to be thought of as repre-
senting e.

(P3) A face-circle and a vertex-circle intersect only when the corresponding vertex
is on the boundary of the corresponding face.

(P4) The region bounded by the circle corresponding to the outside face contains all
other face-circles. With this exception, none of the disks bounded by one of the circles
contains another of the circles.

Note that our representation includes a circle for the outside face of G. This is
particularly important when we think of the circles as raised to the sphere, but it also
frees us from any problems associated with the choice of the outside face in the plane
representation of G. We shall discuss this further a little later.

It is remarkable that, for every 3-connected planar graph G, there is such a repre-
sentation. Even more remarkably, we can insist on one more property.

(P5) At each edge-point, the two vertex-circles cross the two face-circles at right
angles.

Let us now state our main theorem.
THEOREM 6. Let G be a 3-connected planar graph, with a designated outside face.

There is a collection ofcircles in theplane, one circle representing each vertex and eachface
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FIG. 3. A planargraph G, and a representation by circles satisfying (P1)-(P5).

of G, satisfying properties (P1)-(P5). Furthermore, this collection is unique up to linear
fractional transformations and reflections oftheplane.

We call such a representation of G a circle representation.
See Fig. 3 for an example showing a circle representation of the simple planar graph

G. The next section will be devoted to a proof of Theorem 6. Note that Theorem 6
implies Theorem 1, since the vertex-circles by themselves satisfy the requirements for a
coin-graph representation.

Given Theorem 6 and the idea of a face-circle having negative radius, it is a simple
matter to deduce that P(G) is a circle order.

THEOREM 7. If G is a 3-connected planar graph with a designated outside face, then
P(G) is a circle order.

Proof. Given a circle representation of G, we identify the dual of P(G) with a subor-
der of the causality order as in our previous discussion. Namely, for a vertex-circle with
center x and radius t, we take the point (x, t); for a face-circle with center y and radius
t’, we take the point (y,-t’), and for an edge-point at z, we take the point (z, 0).

Thus the dual of P(G) is a suborder of the causality order. Hence it is a circle order,
and therefore, so is P(G) itself.

Instead of the above proof, we can proceed more directly by a suitable interpretation
of the rule: increase all radii by the same large constant.

The fact that we can also insist on property (P5) points the way to our next theorem.
This result was first conjectured by Tutte [20], but has also occurred independently to
others and has recently been popularized by Sachs [13].

THEOREM 8. Let G be a 3-connectedplanargraph, and G* itsplanardual It ispossible
to draw G and G* simultaneously in theplane with straight-line edges so that the edges ofG
cross the edges of G* at right angles.

Proof. Take a circle representation of G. Place each vertex of G at the center of
the corresponding vertex-circle and each vertex of G* at the center of the corresponding
face-circle. Now put in straight-line edges between adjacent vertices of G and of G*. If
any two edges ofG cross, then either some pair ofvertex-circles cross, or one is contained
in another, contradicting either (P1) or (P4). So we have straight-line representations
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FIG. 4. The graph G ofFig. 3 and its dual, simultaneously drawn with straight-line edges, so that edges cross
dual edges at right angles.

of G and G*. Also, each edge in the straight-line representation of G goes through
the corresponding edge-point in the circle representation, at right angles to the vertex-
circles, and similarly for G*. Thus, by (P5), the edges of G cross the dual edges at right
angles, as claimed. [3

This proof avoids mention of the outside face F, but it is clear that we can incor-
porate it by running edges to infinity from all neighboring vertices of F in G*. These
edges can cross their dual edges at right angles: they will then all project to a common
point, namely the center of the circle representing F. It is easy to see that when G is a
triangulation, we cannot have these dual edges run to a common finite point.

Figure 4 shows the straight-line representation of the graph G and its dual derived
from the circle representation shown in Fig. 3.

Further motivation for this treatment of the outside face is provided by considering
our circles as living on the sphere. Indeed, Theorem 6 translates immediately to the
analogous result on the sphere, as stereographic projection from the plane to the sphere
maps circles to circles. Viewed this way, the circle representing the outside face should
be thought of as bounding its exterior on the plane. Mapped up to the sphere, this region
is simply a cap containing the point at infinity, requiring no exceptional treatment.

Let us then define P+ (G) to be the containment order of vertices, edges, and all
faces of a planar 3-connected graph G. It follows that P+ (G) is a cap order, i.e., each
element of P+ (G) can be assigned a "cap" on the surface of the sphere in an order-
preserving fashion. We might hope that P+ (G) is actually a circle order (eliminating
special treatment of the exterior face), but we note that P+(K4) is exactly the middle
three levels ofthe Boolean algebra 2[4] and is therefore, as shown by Jamison, not a circle
order. For a proof of this, see Brightwell and Winkler [5].

We state our theorem for the plane case partly because our proof is a little cleaner
in that case and partly because that form of the result is closer to its applications in
Theorems 7 and 8.
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2. Proof of Theorem 6. We will produce the required circles rather indirectly. To
motivate the first few steps, imagine that we have circles in the plane as desired. If we
draw lines between the centers of tangent vertex-circles and also between the centers of
tangent face-circles (the exterior-face-circle being handled as mentioned at the end of
1), the polygon defined by the outside vertices is divided into kite-shaped regions: in
fact, these kites can be seen in Fig. 4, as the lines we draw are those we put in for the
straight-line representation of G and G*. Our approach is to construct the kites, from
which the circles can be recovered immediately.

Each of the kites is defined by its two side-lengths corresponding to the radii of the
two circles it intersects. Our goal is to specify radii for all the circles so that the kites
defined do tile the plane in the desired manner. Circles a and give rise to a kiteK
only if one of a and is a face circle and the other is a vertex-circle corresponding to a
vertex on the face. Thus it is natural to consider the graph of this incidence relation.

So, let G be a 3-connected plane map and form the vertex-face incidence graph by
taking as vertices the vertices and faces of G (including the outside face) and putting in
an edge when a vertex of G is incident with a face of G. Thus t is a bipartite planar
graph, and, in fact, every face is a quadrilateral corresponding in an obvious way to an
edge of G.

LEMMA 9. Let G be a 3-connected plane map, and let be its vertex-face incidence
graph.

(i) If has v vertices, then it has 2v 4 edges, and so has a vertex x ofdegree 3.
(ii) If S is any subset of V((), which (a) is nonempty and (b) does not contain x or

any of its neighbor, then S spans at most 21S 2 edges of and is incident with at least
21S1 + 1 edges of G.

Proof. Part (i) follows immediately from Euler’s formula.
For part (ii), we take a fixed planar embedding of0 and let 0(S) be the map defined

by taking just the vertices of S and the edges spanned by S. Note that ((S) is also a
bipartite plane map. If (S) has at least two edges, then, since the graph is bipartite,
every face is incident with at least four edges (counting twice if "both sides" of the edge
are on the face), and so an application of Euler’s formula shows that the number of edges
in (S) is at most 21S 4. The cases where (S) has one edge or no edges are trivial.

For the second assertion of part (ii), set V() \ S. If there are as few as 21S
edges incident with S, then G(S) has 21S 4 edges. By^hy_pothesis, G(S) certainly
contains at least two edges, so this means that every face of G^(S) is a quadrilateral. One
such face contains some element of S, and the vertices of G on that face separate 0.
(Note that S contains some vertex not on this face.) These vertices correspond to two
vertices and two faces whose removal separates G, contradicting the assumption that G
is 3-connected. (When IS] > 2, the bound in (ii) can be improved to 21S 4.) [3

It turns out to be convenient to assume that the outside face of G is a triangle. By
Lemma 9(i), we have that the map G contains either a triangular face or a vertex of
degree 3. In the former case, we draw G so that some triangle is the exterior face: in
the latter, we draw (;* with a triangle as the exterior face. We will construct our circles
for the map thus chosen and convert back to the desired circles by means of a linear
fractional transformation of the plane at the end. (Alternatively, we can think of the
circles as being on the sphere.)

Let us return to our hypothetical kites tiling the plane. What conditions must the
radii ofthe defining circles satisfy so that the kites fit together in the appropriate manner?
One obvious condition is that, if c is any vertex or face of G, the kites constructed using
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c must fit together around the center of the corresponding circle. It turns out that this
necessary local condition is also sufficient for the construction to go through globally.

Let us proceed a little more formally. Wewill take v to denote the number ofvertices
of , counting the outside face, and use subscripts c, fl,.., to denote these vertices. To
each vertex c of (, except that corresponding to the outside face F0 of G, we associate a
variable r, which is to be thought of as the radius of the circle corresponding to a. For
the three outside vertices a, b, c, the radii r, rb, rc are fixed at 1 throughout. All other
r are to be regarded as variables. Let r denote the vector (r)eO_o.

We next define a function 0 (R+)’- --, (R+)v-4 by

where

Oa r - tan- ( r- )
_t.o

r

and this sum is over all neighbors ofc in . For the kiteK defined by c and a neighbor
fl, the angle between the two sides of length r is given by 2 tan-l(r/r), so 0(r)
represents half the total angle spanned by all the kites meeting at the center of the circle
corresponding to c. If the kites are to fit at this point, we must have 0(r) 7r. Thus we
must find a radius vector r to satisfy the equation 0(r) 7r, where 7r is the vector with
every entry equal to 7r.

The proof now splits into two parts: first, finding a solution to the above equation;
and second, showing that a solution will suffice to enable us to construct the kites and
hence the circles so as to satisfy all the conditions (P1)-(P5). For the moment, we con-
centrate on the first of these tasks.

We know of no way to produce an explicit solution to the equation 0(r) 7r. The
bestwe can do is describe an iterative process that converges to a solution. As set out, this
process requires two stages, although, as we shall see at the end of the proof, the second
stage is always superfluous. We should also remark that there are several other fairly
obvious iterative schemes, both discrete and continuous, which we expect to converge
to a solution as well. Indeed, our experiments suggest that the scheme we set out below
converges rather more slowly than some of the alternatives.

To begin with, note that the function 0 behaves in a uniform manner when just one
of the coordinates of r is changed. Indeed, increasingr while keeping all the other radii
fixed decreases O(r), but increases O(r) for/3 adjacent to c in G.

The process is loosely as follows. We produce a sequence ofvectors r (r, r,...),
starting with any strictly positive vector r. If any coordinate O(r) is less than 7r, we find

r+ by decreasing the variable r until 0() 7r. We shall show that iterating this pro-
cess and taking the limit results in a set ofvalues for r such that all the r are still strictly
positive and all the O(r) are at least 7r. In the second stage, if any O(r) is greater than
7r, we increase r to the appropriate level. We shall prove that all the r remain bounded
during this process and that the process converges to a solution of the equation.

Let us consider the first phase of this process. We define a sequence of vectors
r (r, r,...) inductively as follows. We initialize by setting r 1. (As we have
already indicated, the particular values chosen are not important.) In general, some of
the coordinates 0(r) will be greater than 7r, and others less than 7r. If we ever come to
a vector r satisfying O(r) > 7r, we move on to the second stage. Suppose that, for our
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current vector ri, some of the coordinates O(r) are less than 7r. We then define ri+1

according to the following roles. If O(ri) > 7r, then set r+1 If O(r) < 7r, then
set r+ equal to the unique solution of the equation

ta-I
+1 ="

is ever reduced to 0 by this process. Thus either the pro-Note that no coordinate r
cess terminates with a vector rk with all coordinates positive, satising O(rk) , or the
process continues indefinitely. In the latter case, each sequence Y(r)=0 is a nonincreas-
ing sequence of positive real numbers, so tends to some nonnegative limit r. We shall
show that in fact each limit r is nonzero. It follows immediately from the continui of
0 that O(r) , and we move on to the second stage of the process, taking r as the
initial vector.

Suppose then that some of the sequences (r) tend to 0 as j , and let S
{ limr 0}. Note that, for eve S, O(r) is less than r for some j, since
otheise, r would never be decreased below its initial value. so, once the sequence
(O(rY)) falls below r, it remains at most r thereafter, since r is only decreased far
enough to allow 0 (r+) r, and decreases in other r can never increase 0(r). Thus
we have

for all sufficiently large j. On the other hand, we have

Every edge cfl of(with both endpoints in S contributes exactly 7r/2 to this sum for every
j, since tan-(r/r) + tan-(r/r) 7r/2. Furthermore, if S contains c but not/3,
then jr/r as j oc, so limy_ tan-(r/r) 7r/2. Thus the contribution
to this sum of every edge with at least one endpoint in S tends to 7r/2. By Lemma 9(ii),
however, there are at least 21S / 1 such edges, so the limit of the sum as j oc is at
least 7rlS] + 7r/2, a contradiction.

Thus, either taking some rk or taking the limit r, we arrive at a strictly positive
vector so satisfying O(s) >

In the second phase, we define a sequence of vectors s (s, s,...) inductively,
starting from so as follows.

If 0(si) 7r, set s+ s.i If 0(si) > 7r, set s+ equal to the unique solution of

-tan-’ s+ )
=rr.

Note that no 0(sY) ever drops under 7r as we iterate this process and that the sequences
(s y= are nondecreasing.

If all these sequences stay bounded as j + , then they all tend to limits s. Again
by the continuity of 0, we will then have O(s) as required.

Suppose then that some sequence (s) escapes to infinity, and let S be the set of
c such that s - oc as j . Consider the sum ,s O(sJ). Each edge of t)
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with both endpoints a and in S contributes 7r/2 to this sum for each j, again since
tan-l(s/s) + tan-(s/s) 7r/2. However, the sum of the contributions from
other edges tends to 0 as j , since tan-(s/s) - 0 as s while s remains
bounded (i.e., whenever a is in S, but is not).

Let t(S) be the subgraph of t spanned by the vertices of S and suppose that (S)
has n vertices and e edges. From the above, we have that

as j o while, for every j, each individual O(sJ) is at least 7r, so the above sum is at
least nTr. Thus we have e > 2n, but this contradicts Lemma 9(ii). Hence S is empty, and
the process indeed converges to give a vector s satisfying O(s

We turn for a moment to the question of uniqueness. Suppose that there are two
for each outside vertex a. Letsolutions r and r’ to the equation O(r) 7r, with r r

}, and suppose that S is nonempty. Then we haveS {a’r > r

2]

}2

aes,/qts

tan-l(r/r)

es,s

but both the initial and the final sums are equal to IS[ 7r, a contradiction. Thus S is
Therefore, the two solutionsempty, and by symmetry there is no a for which r < r.

are identical.
From now on, let r (r, r,...) be the unique solution of O(r) 7r with ra 1

for each outside vertex a. The positive real number r will then be taken as the radius
of the circle representing the vertex a of .

In some sense, given these radii, there is very little left to do: We form our kites,
lay them down in the plane, draw in the circles, and note that they have the desired
properties (P1)-(P5). Indeed, the remainder of the proof is basically checking, but there
are still a lot of details to look after.

The next step is to give a more formal description of the kites and the manner of
laying them down in the plane. For each edge a/3 of G, we specify a kite-shaped quadri-
lateral K as follows. The kite has two sides, the a-sides, of length r, and the other
two sides, the -sides, of length r. The a-sides meet the/%sides at right angles. We note
once more that the angle where the two a-sides meet is 2 tan- (r/r) and similarly for
the/3-sides (see Fig. 5).

(6i)i= of simple cycles in G withConsider the plane map G. We find a collection k

the property that Cx bounds a single face F, each subsequent cycle 6i+1 bounds the
faces F,..., Fi together with just one more face Fi+, and the final cycle is the exterior
triangle. Our order of placing the kites onto the plane will be so as to form the faces F
in turn.

The plane representation of the original graph G contains the information ofwhich
kites should abut. For instance, if a is a face, and and 7 are consecutive vertices on its
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FIG. 5. A kite KaB.

boundary, reading clockwise, then the kitesK and K. are to meet, with the common
side being an a-side, andK being to the left of K. as viewed from the center of the
a-circle.

The various kites KFI involving the face F1 fit together in this manner to tile a
convex polygon, as guaranteed by the condition 0 (r) 7r. In fact, the polygon admits
an inscribed circle of radius rF1, which will of course be the circle representing F1. We
place this polygon on the plane arbitrarily. If v is a vertex on F1, the point where the
v-sides ofKv meet will be the center of the circle representing v: for the moment, we
shall think of this point as itself representing v. The other two corners of the kite Kxv
will be the two edge-points corresponding to the edges bounding F1 incident with v.

Oncewe have placed the kites involving faces F1,..., Fi, we form the polygon corre-
sponding to the face Fi+l, just as we did for F1. We shall place this in the plane according
to the map G, so that all the kites meet in the prescribed manner. We must check that
the requirements do not conflict.

Consider the boundary between F+I and those faces already dealt with. Due to
the manner of choosing F+I, this boundary consists ofjust one connected section of the
exterior of each region. Let zl, z2,.., be the vertices on this boundary, reading clockwise
around Fi+l. Some points of the plane have already been chosen to represent the z,
and we have to check that these choices do not prevent us from placing the polygon
corresponding to the new face.

The distance between the points representing zi and z+l is r, + r,+, both in the
plane and in the new polygon. Also, if zi, zi+l and z+2 are all in the boundary, then
all the kites involving zi+l are either already on the plane or appearing in the polygon,
so the angle around a:i+l in the plane is exactly 27r minus the angle in the new polygon.
Hence, the two boundaries fit snugly together.

Also, the region occupied by the tiles has corners only at the points representing
vertices on the bounding cycle C. Hence, when all the tiles are in place, there are only
three corners to the region tiled corresponding to the external vertices a, b, c, and each
of the three sides has length ra + ’b 2.

Thus, the kites tile an equilateral triangle, as required. Oncewe have the kites drawn
in the plane, we construct the vertex- and face-circles by inscribing them into the region
consisting of all the kites involved with the appropriate vertex/face. The outside face-
circle is inscribed in the bounding equilateral triangle, so it passes through the relevant
edge-points at the midpoint of each side of the triangle.

It remains to check that this system of circles satisfies properties (P1)-(P5).
(P1) The vertex-circles are inscribed into mutually disjoint polygons, so no two can

cross. The same is true for face-circles, except that we have to be a little careful with the
outside face-circle: we defer consideration of this for a while.
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(P2) If c is a vertex or face incident with an edge e of G, then by construction
the edge-point representing e is at distance r from the center of the circle repre-
senting c.

(P5) Let e be an edge of G with endpoints z and V, separating faces F and F2. The
straight line between the center of the circle representing z and the point representing e
follows the commonboundarybetween the kitesK andK.. The circle representing
z passes through the point representing e at right-angles to this line, and similarly for the
other circles through the edge-point. Property (P5) now follows from the fact that the
angle between the c-sides and -sides of each kite is a right-angle.

The outside face-circle again needs special treatment, but here all we need to note
is that it passes through the three edge-points on the bounding equilateral triangle, and
is tangent to the triangle at those points.

(P3) If a vertex and a face ofG are not incident, they do not share a kite and therefore
cannot intersect. Conversely, an incident vertex-face pair shares a kite, and clearly the
two representing circles intersect at the two edge-points at the right-angled corners of
that kite.

(P4) It is obvious that, with the exception of the outside face-circle, no representing
circle can bound another. We must now show that the outside face-circle bounds all
other face-circles--note that this includes the missing assertion from (P1).

The outside face-circle lies in the union of those kites involving one of the outside
vertices, so any face-circle that is not bounded by the outside face-circle certainly crosses
one of the vertex-circles corresponding to an outside vertex. So any offending face-circle
crosses an outside vertex-circle at right angles. Also, both crossings occur inside the
bounding equilateral triangle. This implies that such a face-circle does after all lie inside
the circle inscribed into the triangle, and the two circles can only touch if they do so at
one of the three external edge-points.

Incidentally, note that no circle can have radius larger than 1, which shows that the
second stage of our convergence process is indeed unnecessary.

We have now proved the result in the case where the outside face ofG is a triangle. If
this is not the case, then we have been working with a different planar representation of
G or G*. Our approach now is to take the point of the plane corresponding to the center
of the face (or vertex) that we wish to be the outside face and apply any linear fractional
transformation of the plane that maps this point to infinity. Our circles are mapped to
circles, and the right-angle crossings between circles are preserved, so we have a circle
representation corresponding to the required plane map.

Finally, we return to the question of uniqueness. We have already seen that, if the
radii of the three exterior vertex-circles are given, then all the radii are determined. It is
evident that, given the radii, once the first two kites are placed in the plane, the positions
of all others are determined. Furthermore, the only choice for the position of the second
kite is that of placing it to the right or left of the first. So, given the radii, the circles are
determined up to an isometry of the plane.

Now, if we have a circle representation and we take a linear fractional transforma-
tion of the plane, we obtain another circle representation, possibly with a different "out-
side face-circle." Also, given three pairwise tangent circles of radius 1 and three positive
reals r,, rb, r, there is a linear fractional transformation that maps the three circles to
circles of radius r,, rb, and r. (To see this, consider the three points of tangency of the
original circles and three points of tangency for suitable "target" circles. Take a linear
fractional transformation taking the first three points to the second three. The image
circles must now have the correct radii.)
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Therefore, all circle representations can be obtained from the one we find by a com-
bination oflinear fractional transformation and plane isometry. Since a sense-preserving
isometry is itself a linear fractional transformation, we have the desired result, namely
that the circle representation is unique up to linear fractional transformations and re-
flections.

This completes the proof of the result.
As a final remark in this section, let us note that the conditions of planarity and 3-

connectedness are necessary for the existence of a circle representation of a graph G.
Planarity is obvious, since we obtain from the circle representation a planar representa-
tion of G. It remains to be shown that, if G is not 3-connected, then there is no circle
representation.

Suppose then that G is a planar, non-3-connected graph with a circle representation.
The cases where G is disconnected, or has a cutvertex, are easy to rule out. In the re-
maining cases, there is a subset S of t, not including the outside face, which is incident
with just 21S] edges of (. For c t, let r be the radius of the circle representing
and define the functions 0 as in the proof of Theorem 6 above. Then, as usual, we have

7rlSI=O(r)= 7r/2+ tn- (r)
The right-hand side is at most (r/2) (21SI) 7r ISI, with strict inequality unless r 0
for every a S. This is not possible, so we have a contradiction.

3. Integral representations. The uniqueness of the circle representation up to lin-
ear fractional transformations of the plane suggests that one could investigate the set
of radii of the representing circles. In particular, is it always possible to arrange for
the circles to have integer radii? This would imply that every planar graph possesses a
straight-line embedding in the plane all of whose edge lengths are integers. Whether or
not such an integer-length embedding exists is an open question [7]. Since the represen-
tation is a drawing with many circles, it is also natural to ask if such a representation is
constructible, i.e., can be drawn with the classical construction tools: straight edge and
compass.

In this section, we show that some planar graphs admit no coin-graph representation
(and hence certainly no circle representation) with integer, or even constructible radii.

Each point (a, b) in the plane is naturally associated with a complex number a+ bi. It
is well known that a point in the plane can be constructed with straight edge and compass
if and only if the number a + bi lies in an iterated quadratic extension of the rationals;
i.e., a / bi can be computed from integers using only finitely many applications of the
operations +, -, , +, and v/-.

Call a planar graph G constructible if it admits a coin-graph representation all of
whose centers and radii are constructible.

We shall give an example of a planar graph that is not constructible. Let the bipyra-
mid graph B be the graph consisting of an n-cycle vv2... v,v together with two ad-
ditional vertices u and w: u and w are not adjacent, but each is adjacent to every vi.
Clearly, B, is a planar graph: indeed, it is a tdangulation as each of its faces (including
the exterior face) is a triangle. We shall prove that B28 is not constructible.

Note first that a coin-graph representation of a triangulation can be extended to a
circle representation by taking, for each face, the circle inscribed into the triangle defined
by the centers of the three incident vertex-circles. Thus the coin-graph representation
of a triangulation is unique up to linear fractional transformations and reflections of the
plane.
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Next, we give some lemmas concerning constructibility of graphs and circles.
LEMMA 10. For a triangulation G, the following are equivalent:
(i) G is constmctible,
(ii) G’s radii are constmctible,
(iii) G’s centers are constmctible.
Proof. It is enough to show the equivalence of (ii) and (iii). First, we suppose that

G’s radii are constructible and show that we can choose constructible centers for the
representing circles. Without loss of generality, we can put the center for one vertex, say
vl, at zl 0 and the center of one of its neighbors, say v2, at z2 r + r. We can build
up G by triangles, finding the center of a circle based on the its radius and the centers
and radii of two of its adjacent neighbors. Assuming that v, Vb, and v form a triangular
face of G and that ra, rb, re, za, Zb are constructible, we know that the center zc must be
at one of the intersection points of the circle with radius r / r centered at z and the
circle with radius rb / r centered at Zb. Both of these locations are constructible; hence
z is constructible.

Conversely, suppose that the centers z are constructible. To construct the radii,
note that any v has adjacent neighbors Vb and v. First, construct the point z, which is
the intersection of the angle bisectors of triangle ZZbZ; this is the center of the inscribed
circle of the triangle. Next, construct a perpendicular from z to line segment ZaZb, which
meets the segment in a point y. Finally, put r Iz tl, which is the correct (and
constructible) radius for v. This completes the proof. [3

LEMMA 11. Let C be a circle. There exist three constructible points on C ifand only if
the center and radius ofC are constructible.

Proof. Suppose that the three constructible points are p, p, and pa. Construct the
perpendicular bisectors of the three line segments determined by these points. This gives
the center of the circumscribing circle, C. Thus C’s center and radius are constructible.
Conversely, suppose that C’s center z and radius r are constructible. Then z + r, z r,
and z + ir are constructible points on C.

LEMMA 12. If z, z2, Z3 are three distinct constructible points and if Zl, z, z are
also three distinct constmctiblepoints, then there exist constmctible a, b, c, d so that #(z)

’fori 1 2,3.(az + b)/(cz + d)satisfies Iz(zi) zi
(We call such a # a constmctible linear fractional transformation.)
Proof. Recall that the cross ratio

(Xl x2)( 3

is invariant under linear fractional transformations, i.e.,

for any complex z, z2, z3, z4 (including ) and any linear fractional transformation #.
Thus, given any z, we can compute #(z) uniquely by solving the equation

[ZI Z2 Z3 Z] [Z Z2 Z3 Zt]

for z’; indeed, z’ is a rational combination of the zi’s, the zi s, and z. Hence if z is
constructible, then z’ #(z) is also constructible.

We know there is a unique #(z) (az + b)/(cz + d) with ad bc O, which takes
toz to z, we need to show that a, b, c, and d can be chosen to be constructible.
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FIG. 6. A representation of B28.

Consider #(0). In the case where #(0) oc, then we must have d 0 and, without
loss of generality, b 1. Otherwise, (#(0) c), and we can take d 1 and b #(0),
both of which are constructible. Thus, we know we can take b and d constructible.

Next, consider #(1). If/z(1) c, we have that c -d -1 (since #(0) c).
In this case, #(-1) (b a)/2, and, since b is constructible, so is a. Hence a and c are
constructible.

Otherwise, (#(1) oc); consider #(-1). If #(-1) , we argue as above that a
and c must be constructible.

Finally, if neither #(1) nor #(-1) are infinite, then we can solve for a and c in the
linear equations

a + b (c + d)#(1), b-a=(d-c)#(-1),

which show that a and c are constructible as required. (Note: these equations are solv-
able, provided #(1) + #(-1) 0. This must be the case, for otherwise, we find that
ad- bc 0.)

THEOREM 13. The bipyramid B28 is not constructible.
Proof. Let the cycle in B2s be vo, v,..., v27 and the other two vertices be u and w.

Suppose, for the sake of contradiction, that B28 were constructible. Fix a constructible
representation and identify the (constructible) points to, t9, and ts, which are the points
of tangencywhere the circles for vo, v9, and vs meet the circle for u. By Lemma 12, there
is a constructible #, which maps to 1, t9 i, and ts -1. Since the coin-graph rep-
resentation is unique once three points have been fixed, the transformed representation
must be as in Fig. 6.

Now, since the original representation is constructible, every circle in that represen-
tation contains three constructible points, by Lemma 11. Those three points are mapped
onto constructible points by #, and so by Lemma 11 the new representation is also con-
structible.

However, by joining the centers of every fourth circle in the cycle, we can construct
a regular 7-gon, which is known to be impossible. Thus B28 is not constructible.

In particular, note that B28 cannot be represented by circles with integer radii, since
if so it would be constructible by Lemma 10.

Although there are planar graphs that cannot be represented as coin graphs with in-
teger radii, it remains an open question as to whether an arbitrary graph can be straight-
line embedded in the plane with all edges of integral length [7].
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4. Open problems.

4.1. Other convergence methods. Consider the dynamical system
drc O(r)--Tr.
dt

We know that, provided that the incidence relation defining 0 is that of a 3-connected
planar graph, this system has a unique fixed point. Is this fixed point asymptotically
stable? Indeed, will

serve as a Liapunov function? (Our experiments suggest that it does.)
4.2. Stability. Is there any sense in which the circle representation is stable under

small changes to the graph? Put another way, what can be said about the change in the
radii of the representing circles if an edge is added to or removed from the graph "far
away"?

4.3. Higher dimensions. If C is a simplicial complex that embeds in R’, then is C
an n-sphere order, i.e., can it be represented by balls in R’ ordered by inclusion? By
contrast with Theorem 5, it is known that the face lattice of a convex polytope in R4

can have arbitrary high dimension, so an affirmative answer to this question would be of
great interest.
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THE ORDER DIMENSION OF CONVEX POLYTOPES*
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Abstract. With a convex polytope M in a, a partially ordered set PM is associated whose elements are
the vertices, edges, and faces of M ordered by inclusion. This paper shows that the order dimension of PM
is exactly 4 for every convex polytope M. In fact, the subposet of PM determined by the vertices and faces is
critical in the sense that deleting any element leaves a poset of dimension 3.

Key words, convex polytopes, planar graphs, dimension

AMS(MOS) subject classifications. 06A07, 05C35

1. Introduction. We consider a planar map M as a finite connected planar graph
G (V, E) together with a plane drawing D of G, i.e., a representation of G by points
and arcs in the plane z in which there are no edge crossings. We do not distinguish
between a vertex (edge) of G and the corresponding point (arc) in the plane. Deleting
the vertices and edges of G from the plane leaves several connected components whose
closures are thefaces of M. The unique unbounded face is called the exterior or outside
face.

With a planar map M, we associate a partially ordered set (poset) PM whose ele-
ments are the vertices, edges, and faces (including the exterior face) of M ordered by
inclusion. As an example, a planar map M and its associated poset PM are shown in
Fig. 1, below.

a b

d c

M

F0 F

b c d e

PM

FIG. 1

With a convex polytope M in a, there is associated a planar map, which we also
denote by M. Among all planar maps, a well-known theorem of Steinitz [13] character-
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izes those associated with convex polytopes in 3. These are exactly the three-connected
planar maps. For example, the planar map in Fig. 1 is such a map.

Dushnik and Miller [2] defined the order dimension of a finite poset P, denoted
dim(P), as the least positive integer t for which P is the intersection of t linear orders.
The principal result of this paper will be the following theorem.

THEOREM 1.1. Let M be a planar map associated with a convexpolytope in ]a, and
let PM be the partially ordered set of vertices, edges and faces ofM ordered by inclusion.
Then dim(PM 4.

Before proceedingwith the proof, we pause to make a few comments concerning the
origin ofthis problem. Our original motivation comes from the study ofconvexpolytopes
in ’*. Theface lattice of a convex polytopeM is the poset consisting of all vertices, edges,
faces, hyperfaces, and so forth, partially ordered by inclusion. In Birkhoff’s lattice theory
book [1], the problem ofdetermining the order dimension ofthe face lattice of a polytope
in I’ is posed and is credited to Kurepa (see also Golumbic’s book [3, p. 137]). In I2,
the poset ofvertices and edges of a convex polygon has the following form. The point set
is {xi 1 < i < m} t.J {yi 1 < i < m}, and the order is given by x < y and x < y+l
(cyclically) for i 1, 2,..., m, where m > 3 is the number of vertices. Such posets are
easily seen to be three-dimensional. They belong to a well-known family of posets called
crowns [14]. (See Fig. 2.)

FIG. 2

If n > 4, there exist convex polytopes in R’ for which the face lattice has arbitrarily
large dimension. This phenomenon is due to the existence of cyclical polytopes that
have the property that they contain large sets of vertices each pair ofwhich is contained
in an edge. Spencer [12] showed that the order dimension d(m) of the poset of all 1- and
2-element subsets of an m-element set satisfies log log rn < d(m) < 2 log log m.

Accordingly, the problem is of interest only in R. Sedmak [11] reports on the ex-
istence of (nonconvex) polyhedra in 1 with face lattices of arbitrarily large dimension.
However, our Theorem 1.1 implies that the order dimension of PM is 4 whenever M is
associated with a convex polytope in R, so for example, the poset shown in Fig. 1 has
order dimension 4.

Also, we are motivated by the work of Schnyder [10], who proved the following
elegant characterization of planar graphs.

THEOREM 1.2. Let ( (V, E) be a graph and let QG denote the poset consisting of
the vertices and edges ofGpartially ordered by inclusion. Then G isplanar ifand only ifthe
order dimension ofQG is at most 3.

It is relatively easy to show that G is planar ifdim(Q) < 3. Schnyder’s argument to
show that dim(Qa) < 3when G is planar is quite complex and requires the development
of some entirely new concepts for planar graphs. However, Schnyder is able to capitalize
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on the fact that in this part of the proof, it can be assumed that G is a maximal planar
graph. In this case, a plane drawing of G without edge crossings produces a planar
triangulation M, i.e., a planar map M in which every face (including the exterior face)
is a triangle.

It is natural to ask what happens to the order dimension of the poset associated
with a planar graph if we add the faces determined by a particular drawing. It is not
at all clear why the order dimension should be bounded by any absolute constant, and
it is conceivable that a planar graph can be drawn as two different maps for which the
associated posets have different order dimension.

In the final section of this paper, Schnyder comments that it follows easily from his
Theorem 1.2 that if M is a convex polytope in 13 in which every face is a triangle, then
dim(PM) < 4. By duality, the upper bound dim(PM) < 4 also holds if every vertex has
degree 3. For these reasons, the problem of finding an upper bound (if one exists) when
M is an arbitrary convex polytope in is a natural one.

We comment that Schnyder’s theorem can be derived easily from our results. Also,
we have been successful in establishing the upper bound dim(PM) < 4 when M is an
arbitrary planar map--allowing loops and multiple edges. As this result requires addi-
tional machinery, it will appear in a subsequent paper. For the general theorem, the
results and techniques of this paper will serve as an essential first step.

In the next section of this paper, we collect some facts from dimension theory. The
major part of the proof of Theorem 1.1 in 3 and 4 involves the construction of a
family of paths in a planar map. We fix three special vertices v, vz, va on the outside
face and then, for each other vertex z, find three vertex-disjoint paths from z to the vi.
Menger’s theorem tells us that, provided no pair of vertices separates any other vertex
from {vx, v, va }, we can find such a family of paths in the graph. We show that the fam-
ily we construct has certain other properties related to the plane representation of the
graph. This enables us to define three partial orders on the vertex set of the map, which
we use in turn to define three linear extensions of PM. In the fourth linear extension,
we require only that the outside face is below all vertices not on that face. These four
linear extensions then intersect to give PM.

2. Necessary tools from dimension theory. In this section, we describe briefly some
basic concepts of dimension theory needed in this paper. We refer the reader to the
monograph [17] by Trotter, the survey article by Kelly [5] and by Kelly and Trotter [6] and
the chapters in [15], [16] by Trotter for additional background material and an extensive
list of references.

Let P be a finite poset. We write zllg to indicate that z and g are incomparable
points in P. A family F {L1, L2,..., Lt } of linear extensions of P is called a realizer
of P if P L1 f3 L2 f3... f3 Lt, i.e., x < /in P if and only if x < y in L for i 1, 2,..., t.
The dimension of P is then the minimum cardinality of a realizer.

An ordered pair (x, /) of incomparable points is called a criticalpair if z < z implies
z <//and w > implies w > x for all z, w P. In Fig. 3, we show a critical pair in a
poset.

If (x,//) is a critical pair in a poset P and L is a linear extension ofP, we say L reverses
(x, /) if /< z in L. A family {Li, L2,..., Lt} of linear extensions of P is a realizer of P
if and only if, for every critical pair (z, /), there is some i so that L reverses (z, /).

When M is a planar map, a vertex, and F a face not containing , then (, F) is a
critical pair in PM" So every realizer must (at least) reverse each critical pair of this type.
We let D(PM) denote the least positive integer for which there exist t linear extensions
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FIG. 3

L1, L2,..., Lt reversing all critical pairs of the form (y, F), where y is a vertex and F is
a face not containing . Of course, we always have D(PM) < dim(PM).

We say that a planar map M is wellformed if the critical pairs of PM are exactly the
pairs of the form (V, F), where V is a vertex, F is a face, and V F. It is an easy exercise
to show that if M is a planar map associated with a convex polytope in ll3, then M is
well formed so that dim(PM) D(PM).

When L is a linear order on the vertex set V of a planar map M, V is a vertex and F
is a face of M, we write y > F in L when V > z in L for every vertex z E F. It is easy
to see that if L is any linear order on V, then there exists a linear extension L* of PM SO

that > F in L* whenever > F in L. Accordingly, to show that dim(PM) < 4 when
M is a well-formed planar map, we must produce four linear orders, L1, L2, L3, L4 of
the vertex set V so that for every critical pair (V, F), there is some i with V > F in Li.

3. Normal families ofpaths. When z and V are distinct vertices on the exterior face
of M, we denote by M[z, ] the sequence of vertices encountered in proceeding clock-
wise around the exterior face ofM beginning at z and ending at y. For the sequence ob-
tained by proceeding in a counterclockwise direction, we write M [z, V]. For example, in
the planar map M shown in Fig. 4, M[f, a] (f, t, v, t, a) and Mr[e, a] (e, v, b, a).

We call a triple (v, v2, vz) of distinct vertices from the exterior face of M a triad if
v+ M[v, v+] for a 1, 2, 3. (Throughout this paper, subscripts are interpreted
cyclically.) The triple (v, v2, vz) is a triad for the map M, shown in Fig. 4.

When P, P2,..., Pk are paths in M, we denote by S(P, P2,..., Pk) the set of all
points in the plane that belong to an edge in some Pi together with those points inside
any cycle formed by edges in the union of the edge sets of these paths. For example,
in Fig. 4, let P1 M[v, v2], P2 (c, a, g, v), P3 (c, b, d, v2). Then S(P, P2, P3)
contains the points from the edges in these paths and points inside the triangles T and
T.

Now letM be a planar map and let (vl, v2, v3) be a triad for M. Let " {P(x, v)
x E V, a 1, 2, 3} be a family of paths in M. We say that " is a normalfamily of paths
for (v, v2, v3), provided the following five properties are satisfied.

Path Property 1. For all x V and each a 1, 2, 3, P(x, va) is a path from x to va.
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Path Property 2. For all x E V {vl, v2, v3} and each a 1, 2, 3, the paths P(x, v)
and P(x, v+) have only the vertex x in common.

Path Property 3. For each c 1, 2, 3, P(v, v+l) M[v,,, v+] and P(v+, v)
M[v+, v].

Path Property 4. For all x, y E V and each c 1, 2, 3, if P(x, va) is the path
(x u0,u,...,ut va) and y ui for some i, then P(y,v) is the path (y
ui, ui+l,..., u v), i.e., P(y, v) is a terminal segment of P(x, v).

Path Property . For all x V and each c 1, 2, 3, let S(x, c) S(P(x, v+),
P(x, v+2), P(v+, v+2)). Then, for all x, y V and each c 1, 2, 3, if y S(x, c),
then S(y, c) c_ S(x, c).

For the planar map shown in Fig. 4, it is easy to see that there are two normal fam-
ilies of paths for the triad (v, v2, va). The only option is to choose P(b, v3) as either
(b, c, f, v3) or (b, d, e, v3). We say that x and y are c-equialent when S(x, c) S(y, c).
The reader is invited to compare Schnyder’s proof [10] of Theorem 1.1 and his con-
struction of families of paths in a planar triangulation. Note that when M is a planar
triangulation, Schnydr’s argument gives an explicit construction of a normal family of
paths for which there is no pair of (x-equivalent vertices.

Recall that a -conncted planar map is well formed. In the next section, we will
show that a 3-connected planar map has a normal family of paths for every triad. To
provide clear motivation for the concept of a normal family, we show how such a family
is used to establish the upper bound dim(PM) <_ 4 whenM is 3-connected. First, we will
need some additional properties of normal families ofpaths and binary relations defined
in terms of them. In what follows, let (v, v2, v3) be a triad for a planar map M and let

(P(x, v) x V, c 1, 2, 3} be a normal family of paths for (Vl, v2, v3).
LEMMA 3.1. /fc E {1,2,3}, x e V, y S(x,c)andy P(x,v+)t3 P(x,v+2),

then x P(y, v+) t3 P(y, v+2).
Proof. If x P(y, v+) t3 P(y, va+2), then x S(y, c), so S(x, c) c_ S(y, c).

However, y S(x, c) and y P(x, v+) t3 P(x, v+2) require S(y, ) c S(x, c). The
contradiction completes the proof.

For each c {1, 2, 3}, the binary relation Q defined on the vertex set V of M
{(x,y):S(x,a) S(y,c)} is obviously a partial order. Note that when

S(x.c,)

_
S(y, c)and S(y,c)_ S(x, c), we have xlly in Q. We simplify this bywriting
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S(x, a) S(y, a). However, we also have xlly inQwhen x and y are distinct a-equivalent
points, i.e., S(x, o) S(y, a). Note that when xlly in Q, there is a unique e {a +
1, a + 2}, so that S(x, ) S(y, ).

The general plan is to take a linear extension L of the partial order Q for each
c 1, 2, 3. However, we need for each L, to satisfy certain other conditions. Ideally,
we would like x > F in L whenever x it F and F c_ S(x, o). Since L extends Q, this
will certainly occur unless F contains a vertex y, which is c-equivalent to x. Indeed, it
may well be that x and y are a-equivalent, say with y P(x, c + 1), and there are faces
F and G in S(x, o) with F containing y but not x and G containing x but not y. In this
situation, we clearly cannot have both x > F and y > G in L. Can we put x > F in
one of the other linear extensions? Not in L+, since (x, y) Q+I. If F contains a
vertex w with (x, w) Q+, then we cannot put x > F in L+: either. Fortunately, if
F contains such a vertex w, then G cannot contain a vertex z with (y, z) Q+, (see
Lemma 3.4), so we may put (y, x) L, and force x > F in L. On the other hand, if
F contains no such vertex w, then we want to put (u, x) L+z for every u e F, to get
x > F in L+. We then must check that these relations do not conflict and that we can
find linear extensions L1, L2, L3 satisfying these various requirements.

More formally, we proceed by defining for each c { 1, 2, 3} a suitable extension
Q’ of the order Q, and then taking a linear extension L of Q’. To accomplish this,
we must first define some new binary relations on V. For each c {1, 2, 3}, define
z {(x, y) v w xlly in Q and S(y, a + 2) c S(x, a + 2)} and7 {(x, y)
V x V" xlly in Qa and S(y, a + 1) c S(x, a + 1)}.

Recall that the dual of a binary relation Q on a set V is the relation { (x, y) V x V
(y, x) Q}. The following result is then immediate.

LEMMA 3.2. For each c { 1, 2, 3},/a and arepartial orders on V, andT is the
dual of.

We think of/: and 77. as denoting "left" and "right," respectively. In what follows,
we will define binary relations c_ Z: and T c_ ; however, and :R will not
be dual. First set Z: {(x, y) :a" there is a face F and a vertex u y such that (1)
u,x F, (2)y e S(u,a+ 1), and (3) u P(y, va)}. IfF and u are as above, we say that
(F, u) witnesses (x, y) ..

Nowwe set/ {(x, z) Z:" there is some y with (x, y) : and (y, z) Qa or
y z}. If y is as above and (F, u) witnesses (x, y) Z:, we say that the triple (F, u, y)
witnesses (x, z) Z:. Thus, : is designed to capture both of the cases discussed above,
where we must impose (x, y) e L, although (x, y) Q, at least where (x, y) e .

We define 7 and 7 in the corresponding way. Thus we set { (x, y) 7:
there is a face F and a vertex u y, such that (1) u, x F, (2) y S(u, a + 2), and
(3) u P(y, va)}. As before, in this situation we say that (F, u) witnesses (x, y) 7.
Again, just as before, we set {(x, z) a there is some y with (x, y)
and (y, z) Q or y z}. If here (F, u) witnesses (x, y) e , then we say (F, u, y)
witnesses (x, z)

The next lemma provides some information about the binary relations : and
There is, of course, a symmetric version forT and 7.

LEMMA 3.3. Let c { 1, 2, 3} and suppose that (F, u, y) witnesses (x, z) ..
(1) If x and z are a-equivalent, then F c_ S(x, a), and y z (i.e., (x, z) .).
(2) If S(x, a) llS(z, a), then u and y are (a + 1)-equivalent, and both y and u are on

P(z,v+2).
Proof. We first verify statement (1). Suppose, then, that x and z are c-equivalent.

If z y, then S(y, a) c S(z, a) S(x, c), which is not possible. Thus, in this case,
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z y. If F S(x, a), then F C_ S(y, o + 1), so in particular u e S(y, a + 1). Since
also y E S(u, o + 1), this implies that u and y are (c + 1)-equivalent, so we must have
u P(y, v), a contradiction. This completes the proof of (1).

We now prove (2). Since S(x, a)llS(y, a) and (x, y) , it is clear that F c_
S(y, o + 1). Thus S(u, o + 1) c_ S(y, o + 1). However, we also have S(y, o + 1) c_
S(u, o / 1), so u and y are (c + 1)-equivalent. We do not have u P(y, v), so we must
have y P(u, v,). If y z, this completes the proof, so suppose that (y, z) e Q. Then
u S(z, c), but x is not in this region, so u is on P(z, v+2). Finally, y S(u, o + 1) c_
S(z, o + 1), and, since also y S(z, c), this implies that y is on P(z, Vc+2). [-I

Note that when (F, u) witnesses (x, y) E , the face F can be located in S(x, o) or
in S(x, t + 2). See Figs. 5(a) and 5(b).

(a) (b)

FIG. 5

Our goal is to prove that the binary relation given by Q’ Q uE toR is acyclic,
and then to take L’ to be a linear extension of the transitive closure of Q’.

LEMMA 3.4. If c { 1, 2, 3}, (x, z) and (z, w) , then x w and (x, w)

Proof. Take (F, u, y), witnessing (x, z) g, and (G, v), witnessing (z, w) g.
First, we consider the case where S(x, )llS(z, ). t R be the region bounded

by P(x, v), P(z, v), P(z, v+), and the clocise path from x to u round F. Note
that there are o slightly different situations, depending on whether F is in S(x, ) or
S(x, + 2). (See Figs. 6(a) and 6(b).) We claim that w R.

Since z is in the interior of S(x,+2) and shares a face with v, v is also in S(x,+2),
and hence, so is w. Mso w S(z, + 1). If F S(x, ), this suffices to prove our claim,
so suppose that F S(x, + 2). Now if v S(u, + 2), then so is w, and we are
done. However, z P(u, v+), so the only other possibili is that v 6 R, in which
case w is also in R, as required. Note that this also roles out the case where w x and
F S(x, + 2), since that requires v R.

Consider the path P P(w, v+) and the point it leaves R. If P joins the path
P(z, v+) and ets via u, then u S(w, ), so y S(w, ), and hence either (y, w)
Q, when (x, w) 6 , or y and w are -equivalent when (w, z) Q, a contradiction.
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FIG. 6

The path P does not cross P(z, v), so the only remaining possibility is that it crosses
P(z, v). In this case, z S(w, c), and so (z, w) Q, unless S(z, ix) S(w, c).

By an earlier remark, we cannot have z w and F c_ S(z, + 2), so if S(z, c)
S(w, a), we have F c_ S(x, a). Now v is on P(x, Vc+l), but is not in S(z, oz), since, then,
P(v, Vo,) cannot go via w. Finally, P(v, v+2) exits R via u, but this contradicts Lemma
3.1. This completes the proof in the case where S(x, o)llS(z, o).

Now suppose that x and z are c-equivalent. We know that in this case y z. Sup-
pose next that z and w are also c-equivalent. If w is on P(x, V+l), with w x, then
(F, u) witnesses (x, w) /2, so we may suppose that w P(x, v,+2). Then (G,v)
witnesses also (z, x) . If v S(u, a + 2), then x S(v, a + 2) c_ S(u, a + 2),
which is clearly not possible. By symmetry, we are also done if u S(v, c + 1). So sup-
pose v S(u, o + 1) and u S(v, o + 2). (Clearly, we cannot have, for instance, v in
the interior of S(u, cQ.) Then v is in the region R bounded by P(y, v,+2), P(u, v,),
and F. Now consider P(v, v,+z). It cannot cross P(u, v,), since that would imply
u S(v, o + 1). Thus the path must join P(y, v,+:) and leave R via x. This clearly
contradicts x S(v, oz + 2).

Finally, suppose that x and z are c-equivalent, but that z and w are not. If (x, w)
Q,, then (x, w) 7., and x S(w, o + 2) S(v, oz + 2). If v is on P(x, v,), then so is
w, which implies (x, w) Q. If v is not on P(x, v,), then (G, v) witnesses (z, x) ,
which we have just seen is not possible. [3

Now for each c 1, 2, 3, let Q’ Q tA tA R.. We will show that Q’ is an acyclic
binary relation on V so that the transitive closure of Q’ is a partial order extending Q.

LEMMA 3.5. For each a 1, 2, 3, the binary relation Q is acyclic.
Proof. Suppose to the contrary that Q’ is not acyclic and choose a sequence zx, x,...

x so that (xi, x+) Q’ for i 1, 2,..., s. Without loss of generality, we may assume
that this sequence has been chosen so that s is minimum. Then the points x, xu,..., x
are all distinct. Furthermore, (xi, xi+z) it Q’ for i 1, 2,..., s.

Since Q is acyclic, we know that at least one ofthe pairs in {(xi, xi+) 1 < i < s}
belongs to tA R. By symmetry, we will assume one (or more) of these pairs is in.
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Since E c_ , we know that the relation is acyclic. It follows that there is some
i < s for which (x,x+) f_. and (x+,x+) Q, t_l R. If (x+,x+) Q,, then
(xi, xi+2) is clearly in ; whereas if (G, v, y) witnesses (xi+, xi+2) 7, then by the
previous lemma we have (xi, y) Q, U E, so (xi, xi+2) Q u.

With the preceding lemma,we are now ready to establish the upperbound, dim(Pi)
< 4, when M is a 3oconnected planar maly--under the assumption that M has a normal
family of paths.

THEOREM 3.6. Let (Vl, v2, v3) be a triad for a planar map M and suppose that
{P(x, va)" x E V, a 1, 2, 3} is a normalfamily ofpathsfor (vl, v2, v3); then D(PM) <

Proof. As before, for each a 1, 2, 3, let Q’ be the acyclic binary relation on the
vertex set V defined by Q’ Q u ’ u R’. Then the transitive closure of Q’ is a
partial order on V. LetL be a linear extension of this partial order. Then let La be any
linear order on V for which x < y in La whenever x is on the exterior face of M and y
is not.

Now let (y, F) be a critical pair in PM. We show that y > F in some L. If F is
the exterior face, then y > F in La. So we assume F is an interior face. In this case, we
actually prove a stronger statement. We show that there is some a { 1, 2, 3} for which
(x, y) E Q’ for every x F. For such an c, we have y > F in L.

To see this, choose a {1, 2, 3} so that F c_ S(y, o). Then S(x, o) c_ S(y, o)
for every x F. If S(x, a) c S(y, a) for every x F, then y > F in Q, and thus
y > F in Q’. So we may assume that there is a point x0 E F for which S(xo, a)
S(y, oO. By symmetry, we may assume that (x0, y) E. If F contains a point u for
which S(y, a + 1) c_ S(u, o + 1), then (F, u) witnesses (x, y) ’ for every x F with
xlly in Q. For any other x F, we have S(x, a) c S(y, o) and (x, y) E Q. Together,
these statements imply (x, y) Q’ for every x F.

It remains only to consider the case where F contains no point u for which S(y, a +
1) c S(u, o + 1). In this case, we claim that y > F in Q’ To see this, observe thatcq-l"

for each x F, either S(x, a + 1) c S(y, a + 1) or xlly in Q+. However, when
in Q+, the face F and the vertex x0 witness (x, y) R’ Then (x, y) E Q’+ forc+l"
every x F.

Since D(PM) dim(PM) when M is 3-connected, Theorem 3.6 yields the upper
bound of our principal theorem once we have established the existence of a normal fam-
ily of paths.

4. Constructing normal families of paths. Let M be a planar map, and let X, Y,
and Z be vertices or sets of vertices in M, with X f3 Z . We say that Z separates X
from Y if every path in M from X to Y includes a vertex in Z.

Let M be a planar map and let (vx, v2, va) be a triad for M. We say that M satisfies
the star-property for (Vl, V2, V3) if for every vertex x E V {Vl, v2, V3}, no pair {y, z} C_
V-{x} separates x from {Vl, v2, v3 }. From Menger’s theorem, it follows thatM satisfies
the star-property for (vl, v2, va) if and only if there is a family {P(x, v) x V,
1, 2, 3} satisfying Path Properties 1 and 2.

LEMMA 4.1 (normal family lemma). Let M be a planar map and let (v, v2, v3) be a
triadfor M. Then M has a normalfamily ofpathsfor (v, v, va) ifand only ifM satisfies
the star-propertyfor (v, v2, v3).

Proof. As noted previously, necessity follows from consideration of Path Properties
1 and 2 alone. We now prove sufficiency. We proceed by induction on the sum $(M) of
the number of edges and the number of faces of M. The lemma is true for the two maps
(K3 and K1,3) where S(M) is at most 5.
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So we consider a planar map M, having $(M) > 5, with a triad (v, vz, va) and we
assume that the lemma holds for all planar maps M’ with S(M’) < S(M).

The remainder of the argument is organized into a series of cases. In treating these
cases, we will consider maps M0, M, Mz, and so forth. These maps are either submaps
of M or are formed by making minor changes in submaps of M. When working with
such a map, say M, we will use the notation - for a normal family in M, and a path
from x to /in Mi will be denoted Pi(x, 1). The vertex set of Mi will be denoted V/, and
so forth. If P(z, 1) and P(/, z) are paths having only the vertex /in common, we denote
by P(z, 1) P(/, z) the path from x to z formed by their concatenation. We also use the
notation P(z, 1) P(z, w) for the path formed by the union of two vertex disjoint paths
for which /z is an edge.

Case 1. M has a cut-vertex.
Suppose M {z) is the union of r components C1, C,..., C with r >_ 2. If Ci is

one of these components and C {vx, v, va} }, then any vertex in C is separated
from {vl, v2, v3} by z. So each Ci contains at least one element from {vl, v2, v3}. Since
r > 2, we may assume without loss of generality that C contains exactly one element
from {v, vz, va }, say v. Ifv is not the only element ofC, choose a point C-{v}.
Then y is separated from {vl, v, va } by z and vs. So it follows thatv is the only element
of C and that the edge e v,x is a bridge.

Clearly, M0 M {v} satisfies the star-property for the triad (x, v+, v+).
Now let .T’0 be a normal family of paths in M0. Then define .T" by P(y, v) P0(, x)
(x, v) for every /E V {v}, while P(v, v) is trivial.

It is straightforward to verify that .T" is a normal family for M. The only difficulty is
to make sure that P(x, v+) and P(x, v+) have no vertex in common other than x.
However, if z is common to these paths, then x is separated from {vl, v, va} by v and
z. So in the remainder of the proof, we will assume M has no cut-vertices.

Case 2. For some c E {1, 2, 3}, vv,+ is an edge in M.
Consider the planar map M0 obtained by deleting the edge vv+ from M. It

is easy to show that (v, v, va) is a triad for M0 and M0 satisfies the star-property for
(v, va, va). Let ’0 be a normal family of paths for (v, v, va) in M0. Construct 9v from
’0 by setting P(v, v+) (v,, v,+) and P(V+l, Va) (Va+l, Va) as required by
Path Property 3. All other paths are the same in Y" as in ’0. Clearly, " is a normal family
of paths for (v, v, va), so in what follows, we assume that {v, vz, va} is an independent
set.

Now we pause to make an important observation about the faces of M. If F is an
interior face, then the boundary of F is a simple cycle. If we label the vertices of F as
Xl,X,... ,xt in clockwise order, then xx+ is an edge for each i, but these are the
only edges among the vertices of F. For if xxj is an edge, and these vertices are not
consecutive, then one of x+ and X+l is an interior vertex separated from {v, v, va}
by xi and x.

Also, a similar argument shows that if F and G are interior faces having one or more
common vertices, then their common vertices occur consecutively on their boundaries.

Case 3. For some a {1, 2, 3}, there exists an interior face F that contains v and
a point from M[v,+, v,+].

Label the points on the boundary of F in clockwise order x, xz,..., xt so that x
belongs to M[v,+, v+:] but xt does not. Let i be the largest integer for which x
M[V+l, v+]. Then either i 1 or i 2, for if i > 2, then x is separated from
{vl, v, v} by x and x.
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Suppose next that xx v+x. Choose avertex x E M[v, v+t] with x 6 {v,v+}.
Then x is separated from {vx, v2, va} by
v+. Similarly, x # v+2.

The removal of x and v from M disconnects the map and leaves v+ in a com-
ponent C. We let M be the submap generated by the vertices in Cx together with
x and v,. Then (v,, v,+,xi) is a triad for M1, and M satisfies the star-property for

The map M: is formed in an analogous fashion considering the component Cz con-
taining v+z when x and v, are removed. Then Mz satisfies the star-property for the
triad (v, x, v,+z).

Now let ’x be a normal family in Mx for (v,, v+x, x), and let’ be a normal family
in M for (v,,x, v,+:). Define the normal family " in M as follows. For a vertex
x Ct with x v, set P(x,v,) P(x,v,) and P(x,v,+) P(x,v,+) while
P(x, v.+2) P (x, xi) @ M[xi, v.+2]. For a vertex y C2 with x v., P(y, v.)
P2(y,v.) and P(y,v.+2) P2(y,v.+2) while P(y,v.+) P2(y,x) M(x,v.+).
If i 1, we may choose P(xi, vo) as either M[x, v] or M[x, v].

It is straightforward to verify that " is a normal family for (v, v2, v3), so in the
remainder of the proofwe will assume that there is no interior face containing some v
and a vertex from M[v+, v+2].

A set {F, F2, F3} of three distinct faces is called a ring if there exists a simple cycle
C with the following three properties:

1. Every edge of C belongs to exactly one of the faces F, F2, F3.
2. No point in the interior of C belongs to the interior of any of the three faces

Fa.
3. If c { 1, 2, 3} and v is a vertex on C, then there is some i e { 1, 2, 3} for which

v, Fi Fi+.
Note that in the definition of a ring, we allow one of the three faces to be the exterior

face. Also note that the cycle C is uniquely determined.
Case 4. M has a ring {F, F2, F3}.
Let C be the uniquely determined cycle that demonstrates that {F, F2, Fa} is a

ring. Then there exist unique vertices u, uz, ua on C so that u belongs to F and F+
for i 1,2,3.

For each i 1, 2, 3, let ui ui if ui has two or more neighbors outside C, i.e., ui is
the unique point shared by Fi and Fi+x in M. Otherwise, let u be the unique neighbor

also belongs to Fi and Fi+of u outside C. In this situation, ui
We illustrate these definitions in Fig. 7. For the map shown, {Fx, F2, Fa } is a ring

and the cycle C {u, a, u2,
Let M0 be the submap of M induced by the vertices inside and on the cycle C.

We may assume that the faces F1, F, and Fa have been labeled so that (Ul, u, ua) is
a triad for M0, i.e., u+: M0[u,, u+] for each c 1, 2, 3. We now observe that
M0 satisfies the star-property for (u, u:, ua). To see that this statement is valid, let
x V0 {u, ue, ua}. In the map M, there are three paths Px, Pu, Pa so that P is a path
from x to v andP fqP+ {x} for each c 1, 2, 3. It is clear that there is some/3 for
which u P+ for each c 1, 2, 3. Thus the initial segments of P, P, and Pa show
that M0 satisfies the star-property for the triad (u, u, ua). By the inductive hypothesis,
there is a normal family of paths U0 in M0 for (Ul, u:, ua).

Next, let M1 be the submap of M induced by the vertices outside C together with
those elements of {u, u, u} that are on C. Then form Me from M, by adding a new
vertex u0 in the area formerly occupied by the interior of C and making uo adjacent to
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u,u and u. The modified faces adjacent to u0 in M2 are denoted by F, F, and F
withu F/, F+ for each c 1, 2, 3. We illustrate this definition for the map shown
in Fig. 8.

V2= U;

F1

F2
1 a

v3=u2

F3

M

FIG. 7

u0

v3=u2

V1

M2

FIG. 8

We now show that (vl, v2, va) is a triad for M2 and that M2 satisfies the star-property
for (v, v, va). It is obvious that (v, v2, va) is a triad for M2 if F, F2, and Fa are interior
faces. Now suppose that one of them, say Fa, is the exterior face. In this case, the
path M[u, u] is a portion of the boundary of M. In M2, this path is replaced by u @
(u, uo, u) u’a, so that (vl, v2, va) is also a triad for M2.
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Next, we show that Mz satisfies the star-property for (vx, v, va). To the contrary,
suppose that there exists a vertex z E Vz {v, vz, va} for which there are two vertices, z in Vz {z} that separate z from {vx, v, va } in M.

First, consider the case where z u0. Choose a E {1, 2, 3} so that u {y, z}.
Clearly, zt {vx, vz, va}, so that in M, there exist paths P, Pz, Pa, so that P is a path
from u’ to va and Pa Pa+l {u’} for each/3 1 2, 3. Since y, z V { }, at
least one of these paths, say P-r, misses and z in M. If P-r is a path in Mz, we are done.
Otherwise, P-r contains at least two elements of {Ux, uz, ua}. Let P. be the terminal
segment of P-r beginning with the last occurrence of an element of {ux, uz, ua} in
Then u0 @ P. is a path from u0 to v. inM {y, z}.

Next, consider the case where x V (u, u, u}. Since M satisfies the star-
property for (vx, v2, v3), there exist paths P, P2, P3, so that P is a path from x to v
and P f3 P+l {x} for each c 1, 2, 3. Any one of these three paths that is not a
path in M2 must contain at least two elements of {ul, u2, u3}, so at least two of P, P2,
and P3 are paths in M2. So we may assume that P and P+ are paths in M: with
y P and z P+. We may also assume that P+2 contains at least two elements
from (ul, u2, u3}. Let uf be the first element from this set that belongs to Pa+2 and let

u. be the last. Then replace the portion of P+2 beginning at u and ending with
with (u, u0, u.) to obtain a path from x to v+ inM {y, z}.

Now suppose x E {u, u, u}. If neither y nor z is u0, then y and z are vertices
in M, so there is a path P in M from x to {Vl, vz, va}, with P avoiding y and z. If P is
a path in M, we are done. So we conclude that P contains at least two vertices from
(Ul, uz, ua}. Let ua be the last vertex from {u, uu, ua}, which belongs to P, and let Pt
be the terminal segment of P beginning at u. Then (x, u0, u) Pt is a path from x to
(Vl, vz, v3} in Mz, which avoids y and z.

and one of the separating vertices,It remains only to consider the case where x u
say y, is equal to u0. If x has a neighbor w in Mu (y, z, u, u, u}, then we have that
there is a path P in Mz from w to (v, vz, va} avoiding y and z. Then (x, w) @ P is
the desired path in M:. On the other hand, if x has no neighbor in Mz outside the set
(y, z, ul, u, u}, then it is adjacent to one of the other ui (y, z}, say u. Now ifu has
a neighbor w in M:-{y, z, u], u, u}, then again there is a path P from w to {Vl, v, va}
in M: avoiding y and z, which yields a path (x, u)P as required. Finally, ifu also has

where {a,no neighbor outside {y, z, u, u, u}, then the two vertices z and u.r,
separate u’ (and also u) from {vx, vz, va} in M, a contradiction.

This completes the argument that M: satisfies the star-property for {v, v, va}.
Now let ’ be a normal family of paths in M: for the triad (Vl, v, va). We may as-

P(uo for asume without loss of generality that u, v,) each 1, 2, 3. We use ’0
and 2-2 to construct a normal family for M as follows. Let x V. If x V0, set
P(x, v,) Po(x, u,) P(u, v,). If x V V0, set P(x, v,) P2(x, v,) when
uo Pz(x, v,). If x V Vo and uo P=(x, v,), choose the unique elements u,
for which u precedes u0 and u follows u0 in P2(x, v,). Replace this portion of the
path by u’ Po(u, u.) u’. Verification that the resulting family of paths is normal is
straightforward. Accordingly, we will assume in what follows that M does not contain a
ring.

Case 5. We now present the closing argument.
Let v be the second vertex on the path M[v, v2]. Let Mo be the submap of M

obtained by deleting vx. On the path P M0[v3, v], rub out all vertices of degree 2
that are strictly between the end points of P. Call the resulting map M.
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Suppose there is a face G interior toM whose intersection with P does not form a
single subpath. Let V and z be distinct vertices of P on G, with V on M0[va, z], such that
M0[y, z] f3 G {y, z}.

There are two paths from z to y around the face G. Let Po be the one "nearer" to
M0[y, z], and let T be the region bounded by P0 and Mo[y, z]. This region has nonempty
interior and contains some vertex w of M other than y and z, since M has no multiple
edges. Clearly, w 6 {vx, v2, ’/33 }, SO there is a path from w to {v, v2, va} in M avoiding
{V, z}. There is no such path in M, so this path must go to v via an edge from some
vertex strictly between y and z on Mo.

Let wl,..., wk be the vertices strictly between y and z on P, in the order they occur
on P: we have just shown that k > 1. If k 1, let F and F2 be the two faces incident
with the edge vlw in M. Then (F, F2, G) forms a ring, with the cycle C being the
boundary of T, contradicting our assumption that M has no ring. If k > 1, let Fx be the
face incident with edge vwl and not including w2; and let F2 be the face incident with
vxwk and not includingw_x. Again, (Fx, F2, G) forms a ring, with the cycle (7 consisting
of the boundary of T, with Mo[w, wk] replaced by the two edgeswv and vw. Again,
this is a contradiction, so there is no such face G.

In particular, M1 has no multiple edges.
Now it is easy to see that (v, v2, va) is a triad for M. We next show that Mx satisfies

the star-property for (V’l, v2, v); suppose not. Choose x Vx {v, v, v} for which
there exist two vertices y, z E Vx {x} that separate x from {v, v2, v3} in M1. Since
M satisfies the star-property, there exists a path P’ from x to one of {v, v2, va } with P’
missing y and z. It is obvious that P’ terminates at v. Thus P’ contains a vertex w from
the path P M0[v3, v].

Hence y and z both lie on P, one either side of w. We may suppose that y
M [v3, w] and z M [w, v]. If y and z do not share a face inside M1, then Mx y z
is connected, a contradiction. Thus, y and z do share a face G inside Mx, which there-
fore contains the whole of M [y, z]. So w lies on M [y, z] and has degree 2 in M1, a
contradiction.

Thus, Mx satisfies the star-property for (v, v2, v3). Now let 2"1 be a normal family
of paths in M for (v, vg., v3). We construct a family 2" of paths in M as follows:

1. For every vertex x V, P(x, v, P (z, v, for c 2, 3.
2. For every vertex x Vx, let y be the first vertex on PI(X, v), which is adjacent

to x in M and let P (x, y) be the initial segment of this path ending at g. Then set
P(x, v Px (x, y)

3. For everyvertex E V-VI with x v, set P(x, v) (x, v), P(x, v2) Mo[x, v2]
and P(x, v3) M)[x, v3].

It is an easy exercise to verify that " is a normal family of paths. This completes the
proof of Lemma 4.1. [3

5. The lower bound. For the sake of completeness, we include a proof of the fol-
lowing result, which is also proved in [7].

THEOREM 5.1. IfM is a convexpolytope in 13, then dim(PM) > 4.

Proof. Suppose to the contrary that dim(PM) < 3. Choose linear extensions L, L2,
L3 of PM, so that PM L1 f3 L2 f3 L3. Of all the faces, let F0 be the Lz-least. Then
let x,x2,... ,xt be the vertices of F0 and let G, G2,..., Gt be the faces that share an
edge with F0. We may assume that these vertices and faces have been labeled so that
x G f3 G+ fori 1,2,...,t.

Now xi < F0 < Gj in L3 for each i, j with 1 _< i, j _< t. However, the subposet
P0 of PM generated by {xi 1 _< i <_ t} U {Gi 1 _< i <_ t} is isomorphic to a three-
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dimensional crown. The linear extension La reverses no critical pairs ofP0, which means
they must all be reversed by L1 and L2. Since dim(P0) 3, this is impossible.

Note that this argument actually shows that the subposet ofPM consisting ofvertices
and faces has dimension at least 4.

6. Irreducible posets and duality. For t _> 2, a poset P is said to be t irreducible if
dim(P) t and dim(P ) < for every P. The only 2-irreducible poset is a 2-
element antichain. In [5] and [17], the collection of all 3-irreducible posets is determined.
The posets in this collection can be grouped into seven infinite families with an additional
eleven sporadic examples. For >_ 4, constructions of -irreducible posets are given in
[4], [8], [9], and [14].

We find it interesting to note that each convex polytope ina determines a 4-irreduc-
ible poset in a natural manner.

THEOREM 6.1. Let M be a convexpolytope in a and let Fo be an arbitraryface ofM.
Then the subposet Q0 PM {F0} is three-dimensional.

Proof. Consider a plane drawing ofthe mapM so that F0 is the exterior face. Choose
vertices v, v2, va on F0 so that (v, v, va) is a triad. Then let " be a normal family of
paths for (v, v, va).

Now consider the critical pairs in Q0. In addition to the Type 1 critical pairs of the
form (y, F), where F is an interior face and y F, we also have Type 2 critical pairs of
the following form.

Type 2: (x, e), where x is a vertex on an interior face F, e is an edge common to F
and the exterior face F0, and z is not an end point of e.

Let L1, L2, and La be the linear orders on V defined in the proof of Theorem 3.6.
Extend L1, Lz, and La to linear extensions of Q0 by inserting the edges and faces as low
as possible in each of the three orders. Call the resulting orders L, L, L. We show
Q0 L N L N L. It suffices to show that each Type 2 critical pair is reversed in some

L. (We know from 3.6 that the Type I critical pairs are automatically reversed.)
Let (z, e) be a Type 2 critical pair. Let y and z denote the two end points of e. Choose

a so that F C_ S(x, a). Then y,z M[v+, v+2], q- S(y, a) S(z, a) c S(x, a). So
it follows that (y, x) and (z, x) belong to Q. Thus, x > e in L. [:]

WhenM is a planar 3-connected map, the planar dual Md ofM is also 3-connected.
Furthermore, it is easy to see that the poset associated with the dual ofM is the dual of
the poset associated with M. With this observation, we obtain the following dual form
of the preceding theorem as well as the corollary summarizing the net effect of the two.

THEOREM 6.2. Let M be a convexpolytope in 3 and let x be an arbitrary vertex ofM.
Then the subposet Q PM {x} is three-dimensional.

COROLLARY 6.3. Let M be a convex polytope in 3. Then the subposet ofM deter-
mined by the vertices andfaces is 4-irreducible.

7. Concluding remarks. As mentioned earlier, we have been able to establish the
upper bound dim(PM) < 4, on the dimension of PM when M is an arbitrary planar
map. In the most general setting, we allow disconnected maps, loops, and multiple edges.
However, we do not have an independent proof of this result. Our argument depends
heavily on having the results and techniques of this paper in hand.

It is perhaps interesting to note here that the analogue of Theorem 6.1 does not
hold for general planar maps. In the map M shown below (see Fig. 9), each critical pair
(x, F) must be reversed in a different linear extension of PM.
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X2

X3

FIG. 9

It is relatively straightforward to show that for maps drawn on a surface of genus n,
there is an upper bound of the form dim(PM) < f(n). It would be of some interest to
determine f(n). Perhaps the correct answer is f(n) n + 4.
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MINKOWSKI ADDITION OF POLYTOPES:
COMPUTATIONAL COMPLEXITY

AND APPLICATIONS TO GR(JBNER BASES*
PETER GRITZMANN? AND BERND STURMFELS*

Abstract. This paper deals with a problem from computational convexity and its application to computer
algebra. This paper determines the complexity of computing the Minkowski sum of k convex polytopes in
which arc presented either in terms of vertices or in terms of facets. In particular, if the dimension d is fixed,
the authors obtain a polynomial time algorithm for adding k polytopcs with up to n vertices. The second part of
this paper introduces dynamic versions of Buchbcrgcr’s Gr6bncr bases algorithm for polynomial ideals. Using
the Minkowski addition of Newton polytopcs, the authors show that the following problem can be solved in
polynomial time for any finite set of polynomials T C K[xl,..., Xd], where d is fixed: Does there exist a
term order - such that T is a Gr6bncr basis for its ideal with respect to -? If not, find an optimal term order
for T with respect to a natural Hilbcrt function criterion.

Key words, computational complexity, Minkowski sum, polytope, hyperplane arrangement, mathematical
programming, computational convexity, computer algebra, Grtibner bases, polynomial, term order, Newton
polytope, Hilbert function

AMS(MOS) subject classifications. 68U05, 68Q15, 68Q40, 52A25

1. Introduction.

1.1. General introduction. Although geometric and combinatorial properties of
Minkowski sums of convex polytopes have been studied for a long time [7], these prop-
erties and techniques have only recently been applied to questions in mathematical pro-
gramming and computer science [2], [6], [13]. An important special class of polytopes to
be mentioned in this context are the zonotopes [20], which are obtained as the Minkowski
sum of line segments.

The present paper has the twofold objective of investigating the computational as-
pects of Minkowski addition of polytopes and of applying the results, via Newton poly-
topes of polynomials, to a class of problems in computer algebra. The main emphasis of
our complexity analysis lies on deciding polynomial-time computability.

This paper addresses readers from both (computational) convexity and (computer)
algebra, aiming to provide a bridge between both subjects. It is organized in such a way
that either of the two parts can be accessed separately.

In 1.2 and 1.3 we start out with two introductions containing the basic background,
sufficiently detailed for understanding the application of Minkowski sums of polytopes
to Gr6bner bases theory. In 1.4 we summarize our main results. Section 2 deals with
the Minkowski addition of polytopes, first, in 2.1 from a geometric and combinatorial
point of view. Emphasis will lie on the question of how many faces of given dimension
such Minkowski sums can have. In 2.2 we will briefly discuss algorithmic aspects of
zonotopes and their relation to arrangements of hyperplanes. This relation enables us
to utilize the algorithm in [14], [15] for constructing arrangements. Section 2.3 deals
with the complexity of computing Minkowski sums of polytopes. Section 3 contains our
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new results on Grfbner bases. We will give a dynamic version of Buchberger’s algo-
rithm (3.1), study in detail the relation between term orders and the Minkowski sum of
Newton polytopes (3.2), and introduce methods based on Hilbert functions for finding
optimal term orders (3.3).

We recommend that readers who are only interested in one of the two subjects read
1 and the respective 2 or 3. General references for the topics of our paper are [7] for
Minkowski addition, [21] for the theory of polytopes, [13] for computational geometry,
[17] for computational complexity, and [9] for Gr/Sbner bases and computer algebra in
general.

1.2. Preliminaries on the Minkowski addition ofpolytopes. Apolytope is the convex
hull of finitely many points in ]a. In particular, polytopes are convex compact subsets
of a, but we do not require that they be full-dimensional. The Minkowski sum P + P2
of two polytopes P and P in Ia is the polytope

P1 + P2 { x E Rd 3xl Pl,X2 P2 x x +x2}.

Here P and P2 are called summands of P + P2, and the binary operation + is called
Minkowski addition (ofpolytopes). Minkowski addition is commutative and associative
and thus generalizes naturally to more than two polytopes.

A special case that has received considerable attention in the applied mathematics
literature is the case where the polytopes degenerate to line segments: Their Minkowski
sum is a zonotope. Zonotopes turn up--explicitly or implicitly--in linear programming
[20], in the problem of maximizing quasiconvexfunctionals [6], in theflow shop problem
[2], and in the reinsure problem [20], [23].

Another reason for the importance of zonotopes is the fact that they are equivalent
under polarity to arrangements of hyperplanes (see 2.2), which play a central role in
computational geometry (cf. [13]). Arrangements of hyperplanes are the geometric cell
complexes induced by the dissection of Rd by a given set of hyperplanes. In the GrSbner
bases application to be discussed in 3.2, the special case of zonotopes corresponds to
the word problem for commutative semigroups.

In 2 of this paper, we study computational aspects of the general problem of
Minkowski addition of k rational polytopes in d-space. For our complexity analysis, we
distinguish the case of the dimension d and the number k of polytopes being part of the
input from the cases in which one (or both) of these numbers is regarded as a constant.
Special emphasis will be placed on the case when the dimension d is fixed and k is large.
It turns out that (unless d is a constant) the results depend on how each input polytope is
presented, namely, either as the convex hull of finitely many points or as the intersection
of finitely many closed half-spaces.

A 1;-presentation of a polytope P c a consists of integers n and d with n > d > 1,
and n points v,..., v, in 11a such that P conv{vl,..., v,}. The number nd is called
the size in the real model, or for short the real size, of this presentation. An 7-t-presentation
of a polytope P consists of integers n and d with n > d > 1, a real n x d matrix A, and
a vector b a such that P {z IalAz < b}. The number nd + n is called the real
size of this presentation.

The binary size of the given presentation of a rational polytope P (usually denoted
by L) is the number of binary digits needed to encode the data of the presentation. Here
P being rational means Vl,..., v,, Qa if P is V-presented, or the matrix A has rational
entries and b E Qa if P is 7-/-presented. When speaking of binary size, we always assume
that the polytope is rational. Note that the Newton polytopes to be considered in our
Gr6bner basis application are V-presented and have integer vertices.
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A 3;- (7-/-) presentation of a polytope is called irredundant if the omission of any
of the points v,..., v, (of any of the inequalities in Az < b) changes the polytope.
Geometrically, a V-presentation is irredundant if each point vi is a vertex of P, and,
if P is d-dimensional, an 7-t-presentation is irredundant if each inequality induces a facet
of P.

Each polytope P c ]Rd admits a l-presentation and also admits an -presentation,
andwe refer to [12], [33], [34] for algorithms that convert one presentation into the other.
However, because P may have many more vertices than facets (and vice versa) [26], it
can happen that the minimum size of one presentation is much larger than the minimum
size of the other presentation.

In the following, we assume that the desired (input and output) presentations of
our polytopes are specified beforehand. More precisely, we assume that we are given a
sequence

II (]; ]/]1,/]2,...), where W,I/Yi {V,7-/} (i 1,2,...).

With this notation, we can formalize the problem to be studied in 2.
II-MINKADD.
Input: d, k N, and a 42-presentedpolytope P in d,for each 1,..., k.
Output: An irredundant W-presentation ofthe Minkowski sum P +... + P.
The case of fixed k or/and fixed d will be denoted by FIXED-K-II-MINKADD, FIXED-

D-II-MINKADD, and FIXED-K-D-II-MINKADD, respectively. In the case that the sequence
II is constant, say II (W; 42, 42,...), we will sometimes use the abbreviation W for 1-I
and write, for example, V-MINKADD instead of II-MINKADD.

1.3. Preliminaries on Gr6bner bases and Newton polytopes. Gr6bner bases are a
unifying method in computer algebra that simultaneously generalize the following well-
known algorithms:

(1) the Euclidean algorithm, in the case of univariate polynomials,
(2) Gaussian elimination, in the case of linear polynomials, and
(3) classical elimination theory, in the case of d homogeneous polynomials in d vari-

ables.
The basic procedure (Algorithm 1.3.3) for computing a Gr6bner basis of a polynomial
ideal is due to Buchberger [8]. It is implemented in all major computer algebra systems
(e.g., MAPLE, MACSYMA, REDUCE, MATHEMATICA), and calculating examples
with one of these systems is a good way of familiarizing ourselves with the subject. In
spite of their striking simplicity, Gr6bner bases can be used to solve a wide range ofprob-
lems from computational algebraic geometry. Examples are solving algebraic equations
(over the complex numbers), computing dimension, singularities and irreducible decom-
positions of algebraic varieties, implicitization of parametric representations of curves
and surfaces, or symbolic inversion of polynomial mappings (e.g., inverse kinematics in
robot programming) [10].

Let K[x] denote the polynomial ring in d variables x (Zl,..., Zd) over a field K.
Via the usual identification of a monomial x with its exponent vector a, we can think
of (the underlying vector space of) K[x] as the (infinite-dimensional) K-vector space
spanned by the basis Na. A linear order "-<" on the set of all monomials is called a term
order if it respects the semigroup structure of Na, that is, if 1

_
x and (x -< x

xx -< xex’) for all monomials x, x, x’ K[x]. Note that here the monomial
1 x 0 0zz.., z] corresponds to the basis element (0, 0,..., 0) 6 Na. The following
representation lemma is due to Ostrowski [29], [30, Thm. IV] (see also [32]).
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LEMMA 1.3.1. Let -< be a term orderon K[x] and let R E N. Then there exists apositive
weight vector w IR such that, for all monomials x, x oftotal degree < R, x - x if
and only if (, w) < (, w).

Here (c, w) denotes the dot product. It is easy to see that, conversely, every positive
weight vector w ]R_ defines a term order -< on K[x], provided it separates the mono-
mials. For example, if d 3, then the weight vector w (10000, 100, 1) represents the
purely lexicographic order 1
x2 -< xx3 -< x2x -< -< Xl -< XlX3 -< for all monomials l23-’-’Jk of total degree
i+j+k<99.

In the following, let -< be any fixed term order on K[x]. The initialmonomial init (t)
of a polynomial t K[x] is then defined as the largest monomial in 11d that appears in
t with a nonzero coefficient. Given any ideal 2- c K[x], then its initial ideal init_<(2-)is
generated bythe monomials init(t), where t 2-. A finite subset G {gl, g2, gt} of
2- is called a GrObnerbasis for 2- provided init_< (2-) is generated by init () {init (gl)
,..., init(gt)}. Note that minimality is not required here. It follows as a consequence
that 2- is generated by G.

EXAMPLE 1.3.2. Consider the ideal 2- c K[xl,x2], which is generated by tl :-
x + x22 1 and t2 "= 3XlX2 1. Let -< be the purely lexicographic order induced by
x2 -< xl. Then init (2-) is generated by the monomials x and x2, and a GrSbner basis
for 2 is given by {xl + 3x32 3x2, 9x2 9x22 / 1}. Note that from the GrSbner basis
G we can easily compute coordinates for the four intersection points of the unit circle
given by t 0 and the hyperbola t2 0. We remark that lexicographic Gr6bner bases
are always tanguladzed in the sense that 2- fq K[xl,..., x] =< G N K[xl,..., x] > for
i 1,..., d [9, Lemma 6.8].

THEOREMAND ALGORITHM 1.3.3 (Buchberger). Thefollowingprocedure transforms
any generating set o of2- into a GrObner basis:

REPEAT
i:=i+1

+I := t3 ({ normalformq,,(S-polynomial(pl,p2))Ipl,P2 6 } \ {0})
UNTIL Qi+I Qi.

We must explain the two abbreviations used in this algorithm. Given two polynomi-
als pl, p2 E K[x] (with leading coefficient 1--otherwise the following has to be modified
in an obvious way), then S-polynomial_< (pl, p2) denotes the polynomial m1" pl m2. p2,
where m and m2 are the unique monomials satisfying

ml init_<(pl m2 init_<(p2) least common multiple(init.<(pl ), init_<(p2)).

For instance, in Example 1.3.2 we have

S-polynomial_< (tl, t2) 3x2. tl Xl. t2 Xl + 3x23 3x2.

A normal form of a polynomial p with respect to a polynomial set {pl,..., pt} is ob-
tained by successively replacing occurrences of init_<(p) (as factors of terms) in p by
p init_< (p). The following example shows that these normal forms are usually not
unique (but any choice will do in Algorithm 1.3.3). Given p x2x2 and tl, re, -< as in
Example 1.3.2 (and assuming char(K) 3), then both -x + x= and Xl are normal
forms ofp with respect to {t1, t= }.
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COROLLARY 1.3.4. A set C K[x] is a Grfbner basis ifand only ifthe S-polynomial
ofany two elements of reduces to O.

We next summarize some important results about GrSbner bases; see [3], [9], [25],
[32], [36] for details and further references. As before, we fix a term order

(1) A set c K[x] is a Gr6bner basis (for the ideal it generates) if and only if every
p K[x] has a unique normal form with respect to

(2) If the initial monomials of elements in 7 are pairwise relatively prime, then is
a Gr6bner basis.

(3) Every ideal 2 c K[x] has a unique reduced Gr6bner basis {, #z,..., gt}.
This means that no monomial of gi is a multiple of init(9j) for i j and that
all # have leading coefficient 1.

(4) Let 2 c K[x] be an ideal generated by polynomials of (total) degree < R and
let be its reduced Gr6bner basis. Then all polynomials in have degree _<
Ru, and all intermediate computations involve only polynomials of at most that
degree.

(5) While this doubly-exponential degree bound is optimal in general, for many
important special cases (e.g., zero-dimensional ideals) singly exponential degree
bounds are known.

(6) Every ideal2 c K[x] contains afinite subset b/(called a universal Grfbnerbasis),
which is a Gr6bner basis for 2 with respect to every term order on K[x].

Throughout this paper, we assume that the degrees of all monomials can be bounded
beforehand. When dealing with a fixed ideal, this is a legitimate assumption by (4). We
therefore identify term orders -< with their representing weight vectors w

The following definitions are fundamental for our algebraic application of
Minkowski sums. The Newton polytope N(t) of a polynomial t ,i=lCiX’ is the con-
vex hull of its monomials in ]Ra, that is, N(t) := conv{c, a,..., Cn}. Its Minkowski
sum Nr(t) := N(t) + ]Rd with the negative orthant is called the affine Newton polyhe,
dron of t. We remark that Ostrowski in his work on factorization of polynomials [29],
[30] uses the term "baric polyhedron of t" for N(t).

PROPOSITION 1.3.5. If t K[x] is a homogeneouspolynomial, then the vertices of its
Newtonpolytope N t) are the initial monomials oft with respect to allpossible term orders.
Forgeneral t K[x], the initial monomials are the vertices ofthe affine Newtonpolyhedron
N(t).

Proposition 1..5 is a special case of the results to be proved in 3.2. Let us point
out that taking the Minkowski sum of Newton polytopes corresponds to the algebraic
operation of multiplication (cf. [0, Thm. VII).

REMARK 1.3.6. N(tlt2"" "tk) N(tl) + N(t2) + + N(t)forall tt,t2,... ,t

Minkowski sums of Newton polytopes play a crucial role in determining the compu-
tational complexity of the following decision problem.
Gr61aner Basis Detection.

Input: A set 7" c K[x] ofpolynomials.
Output: A term order w ]Rd such that 7" is a GrObner basis with respect to w, if
such w exists; "NO" otherwise.

This problem is not well defined unless we specify the representation of the poly-
nomials in 7". Throughout this paper, we assume that any multivariate polynomial t
cx /... / c,x’ is presented by its nonzero scalar coefficients ct,..., c, K and its
corresponding nonnegative exponent vectors ct,..., a, Zd. In this sparse representa-
tion, the cardinality of 7" and the numbers n are regarded as part of the input. Moreover,
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the logarithm of the total degree is part of the input via the exponent vectors. It is im-
portant to note that (in this sparse representation) the total degree itself is not part of
the input. When dealing with the binary model of computation, we will further assume
that the coefficient field K is the field Q of rational numbers.

1.4. The main results. We will now outline the main results of this paper (with num-
bers referring to the theorems in the corresponding section). Section 2.1 contains some
preliminary geometric and combinatorial results. In particular, we give the following
upper bound on the number of/-dimensional faces of P +... + P; this bound is com-
putationally relevant for FIXED-D-II-MINKADD.

THEOREM 2.1.10’. Let P1, Pk bepolytopes in Id, let n be the numberofnonparallel
edges ofP1, Pk, and let E {0,..., d 1 }. Then the number of 1-dimensionalfaces of
Px +"" + Pk does not exceed

j=0

In the case of special interest, where the number of vertices of the Pi are given and
we would like to know an upper bound on the number of vertices of P1 + + Pk, we
obtain the following asymptotic result.

COROLLARY 2.1.11. Let PI,.. Pk be polytopes in ]d with at most n vertices each.
Then the number ofvertices of P1 +... + Pk is in O(kd-ln2(d-)).

Section 2.2 deals with zonotopes and hyperplane arrangements, whereas in 2.3 the
complexity classes of computing Minkowski sums of polytopes under various assump-
tions are (almost completely) characterized.

The problem of computing Minkowski sums of polytopes has been addressed pre-
viously by Guibas and Seidel [22], who show that the Minkowski sum of two polytopes
in a can be computed in time proportional to the size of the input plus the size of the
output. Here we are dealing with Minkowski sums of an arbitrary (finite) number of
polytopes in arbitrary (finite-)dimensional real space and the complexity is measured as
a function of the input size. We prove that, for no choice of H, the problem II-MINKADD
can be solved in polynomial-time in either of the two models (Remark 2.3.4). This re-
sult persists even for fixed k if at least one of the polytopes is 7-/-presented (Proposition
2.3.1). However, there exist polynomial-time algorithms for FIXED-K-))-MINKADD in
the binary model of computation (Proposition 2.3.2) and for FIXED-K-D-))-MINKADD in
both models of computation (Proposition 2.3.5). As the main result of 2.3 we show that
the problem FIXED-D-)2-MINKADD can be solved in polynomial time, both in the binary
and in the real model of computation. An improved algorithm for d 2 will be given in
Proposition 2.3.9.

THEOREM 2.3.7’, 2.3.11. For d > 2 theproblem FIXED-D-)2-MINKADD can be solved
in o(kdn2d-1) arithmetic operations, where n denotes the maximum numbers ofpoints in
the given V-presentations. Likewise, it can be solved inpolynomial-time in the binary model
ofcomputation.

It is this algorithm for FIXED-D-)2-MINKADD that plays the crucial role for the ap-
plications to Gr6bner bases. In 3.1 we will deal with general dynamic versions of Buch-
berger’s Gr6bner basis algorithm. We will show (Algorithm 3.1.3) that it is possible to
change the term order in every single step of Buchberger’s algorithm without harming
the termination and correctness. This gives enough margin to change term orders when-
ever it seems profitable. The main result of 3.2 is Theorem 3.2.6.
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This result means that we can detect a Grfbner basis in polynomial time for d fixed.
It will also give rise to criteria for deciding how to dynamically change term orders in
order to speed up the Gr6bner basis algorithm. In 3.3 we define a natural Hilbert func-
tion measure for "closeness to being a Grhbner basis." With respect to this measure, we
can compute optimal term orders in polynomial time (Theorem 3.3.6).

2. Minkowsld addition of polytopes. This section contains geometric, combinato-
rial, and computational results for the Minkowski addition of polytopes.

2.1. Geometric and combinatorial results. In the following, we derive some geo-
metric and combinatorial results that are important for the subsequent sections. In par-
ticular, we give bounds for the number of vertices of the Minkowski sum of k polytopes
in a in terms of the vertex numbers of the input polytopes. The question most relevant
for the complexity of our main problem FIXED-D-II-MINKADDand for the applications
in 3 is to determine the asymptotic behavior of these numbers for fixed d and k .
However, in view of possible future applications, we keep the exposition more general
in this section.

Given a polytope P in a, we write ’(P) for the set of/-dimensional faces ofP and
f(P) for its cardinality. The set of all faces of P is abbreviated .T(P).

PROBLEM 2.1.1. Let d, k N\ {0, 1}, l, m {0,..., d- 1} and n,..., n N\ {0}.
Furthermore, let, for i 1,..., k, n 1 or ni > m / 2. Determine the number

Vt,m(d; k; nl,..., nk) :-- max{ft (P1 +... + Pk)IPI,..., Pk are polytopes in Rd

with fm(P1) nl,. fm(P/c) n/c}.

The restrictions in the hypothesis of this problem only rule out trivial cases. In par-
ticular, the numbers vt,,(d; k; nl,..., n/c) are all finite (and thus the "maximum" is at-

tained). Observe, however, that some of these numbers are 0, namely, if -i=ni is too
small compared to 1. The numbers vt,0(d; k; 2,..., 2), which are also the face numbers
of generic zonotopes (and upper bounds for the face numbers of general zonotopes),
are well known and can be found in [11], [21], [37]. Usually these are stated as the face
numbers of simple hyperplane arrangements (see 2.2).

PROPOSITION 2.1.2 (see [11]). The number of l-faces ofa d-zonotope generated by k
line segments in generalposition equals

vt,o(d;k;2,...,2) =vt,(d;k;1,...,1) 2
j=o 3

In the following, we are mainly interested in nontrivial upper bounds that are--
whenever possible--polynomial in k as k ---, . For small k, the trivial upper bounds
can in general not be improved. As an example, we consider the case where m
0. Because every vertex of a Minkowski sum of polytopes is a sum of vertices of the
summands, the number v0,0(d; k; nx,..., n/c) is bounded above by ]-I n. This bound
is sharp if the number k of polytopes is small relative to the dimension d.

Hi=I hi.REMARK 2.1.3. Let 2k < d. Then Vo,o(d; k; n,.. n/c) k

Proof. Let LI,..., L/c be pairwise orthogonal linear subspaces of ]d of dimension at
least 2 and consider for i 1,..., k a polytope P in L with n vertices. In this situation,
each such sum of vertices is extreme, and we have fo(P +"" + P/c) 1-I= n. U
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This argument can be modified to prove a result similar to Remark 2.1.3 also for the
situation where all k polytopes have full dimension d. In that case, we replace each Pi by
a suitable multiple pyramid over Pi. A similar construction can also be given for other
pairs (1, m).

To identify the faces of the Minkowski sum ofpolytopes, we must consider the cones
of outer normals (at relatively interior points of faces) of the participating polytopes.
Let P be a polytope in IRe. Given any face F of P, we let A/’(F; P) denote the rela-
tively open polyhedral cone (with apex 0) of outer normals of P at F. The collection
{A/’(F; P)[F E ’(P)} forms a polyhedral cell complex whose underlying point set is IRe.
This complex will be denoted by A/’(P) and called the normalfan of P. Note that, if F is
an/-dimensional face of P, then its normal cone A/’(F; P) is a (d -/)-dimensional cell of
the normal fan iV(P). The cells of A/’(P) are partially ordered by inclusion of their clo-
sures, and the assignment F Af(F; P) defines an order-reversing bijection between
’(P) and JV’(P).

Let us introduce one more definition. Given a direction vector z E IRa \ {0}, we
write

S(P;z) := {:c Pl(z,z) max(/, z)},

where (/, z) denotes the Euclidean inner product of/and z. Thus S(P; z) is the face ofP
consisting of all maximal points with respect to the linear functional (z, .). Equivalently,
S(P; z) is the intersection of P with its supporting hyperplane in direction z.

LEMMA 2.1.4. Let P1,..., Pk be polytopes in IRa and let z IRa \ {0}. Then, for any
nonzero direction vector z IRa, we have the relation

s(P + P= +... + P; z) s(P; z) + s(P=; z) +... + s(P; z).

Proof. The assertion follows directly from the definition.
As a consequence of this lemma, we obtain a characterization of the faces of the

Minkowski sum P1 +"" + Pk in terms of the normal fans A/’(P1),..., Ac(P). The com-
mon refinement Af(P1) A A JV’(Pk) of the complexes N’(P1),... ,N’(Pk) is defined
as the smallest complex Af such that the closure of each cell in one of the complexes
Af(P1),..., Af(Pk) is the union of the closure of cells of Af. In other words, the cells of
Af(P1) A A A/’(Pk) are obtained by taking all possible intersections C/k=IN’(Fi; Pi),
where F1 .’(P1),..., Fk ’(Pk).

LEMMA 2.1.5. A/’(P1 +’" + Pk) A/’(P1) A A A/’(P).
Proof. By Lemma 2.1.4, each cell of A/’(P +... + P) is of the form

{u e e \ {o)ls(P1; ) +... + s(P; ) s(P1; z) +... + s(P; z)}

for some fixed z. This cell is equal to

{u e \ {O}lS(Px; u) s(P; ),..., s(P; ) s(P; z)},

which is a cell of A/’(P1) A... A A/’(P). i]

This result implies that the number of/-faces of Px +... +P is equal to the number
of (d-i)-dimensional cells ofA/’(Px A... AA/’(P). Given two polyhedral cell complexes

and 8, then we write 8x

__
if is a refinement of.

LEMMA 2.1.6. Let P, P1 bepolytopes in IRa. Then A/’(P1)

_
Af(P) ifand only ifthere

exists a A IR+ such that AP1 is a Minkowski summand ofP.
Proof. See [21, pp. 318-319]. rq
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The idea of a construction leading to upper bounds used in 2.3 is as follows. We
replace each polytope P by the "smallest possible" zonotope g whose normal fan Af(g)
is a refinement of N’(Pi). This will imply that the face numbers fi(Z + + Z) are
upper bounds for the face numbers fi(P +... +P). More precisely, given any polytope
P in a, we define its edgotope Z(P) -EeI(p)E to be the zonotope that is generated
by all edges of P.

Note, as a side remark, that Z(P) is a Minkowski-summand of P’s shellotope

A(P) Z conv {v, v2 }.
1,e’o()

VlV2

Observe that each vertex of A(P) corresponds to an orientation of the edges and the
diagonals of P according to the values of a linear functional. Hence the vertices of A(P)
are in one-to-one correspondence with the line shellings of P*, the polar of P, which
are induced by all lines through the center of polarity. If P is a d-simplex, then the line
shellings of P* correspond to the permutations of {0,..., d}, and the edgotope coincides
with the shellotope and is isomorphic to thepermutohedron

conv { (Tr(0),..., r(d)) 17r is a permutation of {0,..., d} }.
Note that--with respect to normal fans--taking edgotopes commutes with Minkowski
addition.

REMARK 2.1.7. Let P P bepolytopes in Rd. Then

Af(Z(P +... + P)) Af(Z(P) + + Z(P)).
PROPOSITION 2.1.8. Let P be a polytope in Ra and Z(P) its edgotope. Then Af(P)

Af Z P with equality ifand only ifP is a zonotope.
Proof. Let C Af(Z(P)) and z, z2 C. We must show that z and z2 lie in the

same cell ofA/’(P). Suppose that this were not the case, which is equivalent to S(P, z)
S(P, z2). After replacing z by a convex combination #z + (1 #)z2, if necessary, we
may assume that the face S(P, z) has dimension >_ 1 and that S(P, zx) is not a face of
S(P, z2). Then there exists an edge E of S(P, z) that is not an edge of S(P, z2). Hence
E is a Minkowski summand of S(Z(P),z) Z(S(P,z)) but not of S(Z(P),z)
Z(S(P, z)). These two subedgotopes being distinct is a contradiction to the choice of
zl, zg.. We omit the easy proof of the "if and only if" part of Proposition 2.1.8.

Using Lemma 2.1.6 and Proposition 2.1.8, we see that the edgotope Z(P) is the
smallest zonotope that has P as a Minkowski summand. Furthermore, we obtain the
following bound on the numbers of/-dimensional faces of Minkowski sums of polytopes.

COROLLARY 2.1.9. Given polytopes PI, Pk in Rd, we have

fi(P +"" + Pk) <_ fi(Z(P) +... + Z(Pk)) for i O, 1,.. ,d- 1.

Proof. The proof follows immediately from Remark 2.1.7 and Proposition
2.1.8. D

THEOREM 2.1.10. Let P P bepolytopes in Ra, let n denote the number ofnon-
parallel edges ofP Pk and let E {0,..., d 1}. Then

f(P -+-... q.- P:) <_ v,(d;n;1,...,1)

j=0 3
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with equality if all polypopes P,..., P are zonotopes and their generating edges are in
generalposition.

Proof. The proof follows from Corollary 2.1.9 and Proposition 2.1.2.
The special case to be considered in 2.3 and 3 is the case where m 0. By first

replacing n by f(P) +... + f(P) and then each f(P) by its upper bound (fo(P,)),
we obtain the following asymptotic result.

COROLLARY 2.1.11. Forfixed d, we have

vo,o(d; k; n,..., nk) O(kd-(max{n,..., nk})2(d-)).

2.2. On zonotopes and hyperplane arrangements. As was mentioned earlier, zono-
topes and arrangements of hyperplanes are equivalent structures (see [13], [21]). This
correspondence is particularly transparent in the case of linear arrangements, where all
hyperplanes contain the origin. Consider a linear arrangement A {H1,..., H,} of
hyperplanes Hi {x ]dl(x zi) 0} defined by the normal vectors zl,..., z, ][d.
The face lattice of (the cell complex induced by) A is antiisomorphic to the face lattice of
the zonotope Z ’i[-1, 1]zi. In fact, the geometric polarity between arrangements
and zonotopes follows as a special case from our arguments in 2.1.

Thus, our edgotope construction can also be expressed in the framework of hyper-
plane arrangements. This fact is of some algorithmic interest, since it allows us to utilize
an algorithm given by Edelsbrunner, O’Rourke, and Seidel [14] (cf. [15] for a correction)
to determine the face lattice of an arrangement of hyperplanes. (This algorithm can, in
turn, be rephrased in terms of zonotopes.)

PROPOSITION 2.2.1. Let Px Pk bepolytopes in dand let Z Z(P)+. .+Z(Pk
be the Minkowski sum ofthe associated edgotopes. Then the normalfan .M(Z) equals the
linear hyperplane arrangement 4 {lin.A/(Fi; Pi)li 1,..., k, F 6 .T (Pi) }.

Proof. The assertion follows immediately from Lemma 2.1.5 and the fact that the
normal cones at the two vertices of a segment P =conv {v, v2 } are the open half-spaces
with boundary hyperplane perpendicular to aft{v1, V2 }. [’]

Proposition 2.2.1 shows that, to estimate the number of/-faces of Px +... + P, we
may, in principle, proceed as follows.

ALGORITHM 2.2.2.
(1) Determine the complexes Af(P),..., Af(Pk).
(2) Take for each (d-l)-cell of any of the complexes Af(P),...,Af(Pk)

its linear hull. (This determines a linear arrangement ofhyperplanes A.
(3) Determine the number of (d-/)-cells of .4.

This algorithmic scheme will be extended in the next section (Algorithm 2.3.6).
2.3. The complexity ofcomputing Minkowski sums ofpolytopes. In this section, we

determine the complexity of computing the Minkowski sum P +... + Pk of k polytopes
P in real d-space. The emphasis is, generally, not on giving best bounds but on deciding
whether there exist polynomial time algorithms. We will deal with the various problems
that occur if we regard none, one, or both of the parameters d and k as constants. Some
of the results below are (at least implicitly) known, and some of the proofs are quite
standardmthe full material is included to give the complete picture here.

2.3.1. The case of varying d but fixed k. The following result shows that in most
cases there is no polynomial-time algorithm for the problem FIXED-K-II-MINKADD.

PROPOSITION 2.3.1. Let P be a Wi-presentedpolytope for i 1, 2, let P PI + P2
be (irredundantly) W-presented and suppose that 7-[ {V, W, W2}. Then there is no
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polynomial in the (binary or real) sizes of P1, Pz that is an upper boundfor the (binary or
real) size of P.

Proof. We first note that an 7-t-presentation of a simplex can be converted into a V-
presentation in polynomial time, and vice versa; this is the case for the (binary) Turing-
machine model as well as for the real RAM model of computation. Now, let P1 be a
d-simplex and let Pz -P. Then the Minkowski sum P + Pz is a centrally symmet-
ric polytope that has 2a+ 2 facets. Thus there is no polynomial-time algorithm for
computing an -presentation of PI / Pz. This settles all cases with )/Y 7-/.

Let us now deal with the caseswhere )/Y V. We define P to simply be the singleton
{0}, which has the -presentation P1 fj= d{zl(+ej, z) < 0}, where e denotes the
jth standard unit vector in Rd. Furthermore, let Pz be the unit cube [-1, 1] d, which has
the -presentation Pz I’lj=l a{zl(+e, z) < 1}. Then the Minkowski sumP+Pz
Pz is the cube again, and hence, P1 + Pz has 2d vertices. This settles the cases where
]/)1 ’ or Wz . ]

So the only remaining case is FIXED-K-)-MINKADD. Here we have the following
result.

PROPOSITION 2.3.2. In the binary model of computation, FIXED-K-)-MINKADD can
be solved in polynomial time. More precisely, if L is an upper boundfor the binary sizes of
thepolytopes Pi, then there is an algorithm that solves this problem in O( (s + d)s2 + (s +
d)’s)L) arithmetic operations and O(((s + d)s2 + (s + d)’5s)L2(log L)(log log L)) bit
operations, where s n "nk is theproduct ofthe vertex numbers ofthe inputpolytopes.

Proof. Let, for i 1,..., k, Pi =conv {vi,1,..., vi,,}. Set, for i 1,..., k, Ji :-
{ 1,..., ni }. Then

Now, observe, that from this V-presentation we can obtain an irredundant V-presenta-
tion in polynomial time. To this end, we solve, for each of the nx.....n-tuples (vx,;,...,
vk,j ), the feasibility problem

If this problem is feasible, we remove (vl,j,..., vk,j;) from our set of candidates of
vertices of P +... + Pk.

The linear programming problem can be solved in polynomial time (recall that here
k is a constant). In fact, since we have systems in at most s n "nk variables
and with d + 1 equality constraints, the total algorithm requires no more than O(((s +
d)sz + (s + d)’Ss)L) arithmetic operations and no more than O(((s + d)sz + (s +
d)’s)Lg(log L)(log log L)) bit operations [19], [31], [35]. ]

An obvious method for improving the above algorithm is the following.

(1) split the set of polytopes into subsets C1,...,C[k/c] of size at
most c, where c is a positive integer;

(2) construct the Minkowski sums Pc -PEC P for i 1,...,
(3) replace original polytopes by Pcl,...,Pco/cl; replace k by [k/c];
(4) repeat steps (1)-(3) as long as Fk/cq >_ 2.
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Clearly, this general procedure will be more efficient than the approach given in
Proposition 2.3.2 if P1 + + P has less vertices than s n n. This is, in
particular, the case when k is very large compared to d. In the case of fixed k and d
on the other hand, the number ofvertices of P,..., P can be as large as n.....n (see
Remark 2.1.3). This means that the last linear program we have to solve in this modified
approach has s variables and d + i equality constraints, which is exactly the same as in
the program that we solve in the proof of Proposition 2.3.2.

Note that Proposition 2.3.2 does not settle the problem for the real RAM model
since the number of arithmetic operations depends on L. In fact, it is one of the most
prominent unsolved problems in mathematical programming whether or not there is
an algorithm that solves linear programs in a number of arithmetic operations that is
bounded by a polynomial in the dimension and the number of constraints.

PROBLEM 2.3.3. In the real RAM model of computation, can the problem FIXED-K-
V-MINKADD be solved in polynomial time?

2.3.2. The case of varying d and varying k. Note that if FIXED-K-II-MINKADD can-
not be solved in polynomial time, then there is no polynomial time algorithm for II-
MINKADD, either. By the results of the previous analysis, this is the case whenever 7-/
appears in the string II. The remaining case, )-MINKADD, is settled by the following
remark.

REMARK 2.3.4. Neither in the binary nor in the (real) RAM model of computation
there is a polynomial time algorithm for ])-MINKADD.

Proof. For i 1,..., d, let P [0, 1]e be the unit segment on the ith coordinate
axis. Then f0(Y-d= P) 2e, whereas the total (binary or real) size of the problem
))-MINKADD is of order O(d2).

2.3.3. The case offixed d and fixed k. For fixed dimension, the crucial difference be-
tween V- and 7-/-presented polytopes disappears. In fact, we can pass from one presen-
tation to the other in polynomial time. Thus, in the following we deal with the problem
FIXED-K-D-)-MINKADD.

Let P conv {v,,..., v,,, } for i 1,..., k, let P P +... + P, and let

S {v,j +... + vk,jljl 1,...,n;...jk 1,...,nk}.

To give an irredundant V-presentation of P, we must identify the extreme points of S.
We apply a result of Megiddo [27] to see that this can be done in O(s) arithmetic

operations, where s n.....n. Suppose without loss of generality that the barycenter
of the point set S is the origin. Because d is constant, we can find aft(S) in O(s) oper-
ations. Hence, we may assume that P is d-dimensional, and thus, 0 int (P). Under
polarity the points of S transform to (oriented) hyperplanes and the problem is equiva-
lent to reducing this set to an irredundant 7-/-presentation. This tasks splits, again, into
at most s linear programs in dimension d and with s constraints. Hence, using Megiddo’s
[27] linear programming algorithm, this problem can be solved in time O(sZ).

Note that FIXED-K-D-V-MINKADD can also be solved by any convex hull algorithm
applied to S. This gives an algorithm for the complete face lattice of P that runs in time
O(s [(d+)/2j (see, e.g., [13]).

However, the extreme points of a finite point set in Rd can be computed more
quickly. Indeed, Matouiek and Schwarzkopf [24] combined a multidimensional version
of Megiddo’s parametric search technique with appropriate data structures for so-called
half-space-emptiness queries to show that for fixed d the extreme points of an arbitrary
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point set in Ia of cardinality n can be found in time O(n2-(2/(+la/2j))+6) for any fixed
positive . This implies the following result.

PROPOSITION 2.3.5. FIXED-K-D-Y-MINKADD can be solved in 0(82-(2/(l+[d/2J))+6)
athmetic operations, where s nl ..... n and is a fixedpositive real.

Proposition 2.3.5 implies as a corollary that regardless of the presentation of the in-
put polytopes and the desired presentation (V or 7-/) of the output polytope, the
Minkowski sum of k polytopes can be computed in a polynomial number of arithmetic
operations. The same is true for the binary model of computation.

2.3.4. The ease of fixed d and varying k. In the following, we apply the technique
used to prove Corollary 2.1.11 to give a polynomial time algorithm (in the binary and
in the real model) for our problem in fixed dimension. Again, since for fixed dimension
d any 7-/-presentation of a polytope can be converted to a V-presentation in polynomial
time, we only deal with the problem FIXED-D-V-MINKADD. The structure of the follow-
ing algorithms is an extension of Algorithm 2.2.2.

ALGORITHM 2.3.6.
Input: Polytopes P,..., P.
Output: A complete list ofallfaces ofP +... / Pk.
(1) Determine the edges of P1,...,P.
(2) Compute the hyperplanes through 0 that are perpendicular to these

edges; let t denote the corresponding linear arrangement.
(3) Determine the (relatively open) cells of t.
(4) For each cell of t compute a sample point z F.
(5) Compute S(P1 +’" + Pk; z).
(6) Store S(PI+’"+Pk;z) in if it is not already contained there.

We remark that in step (3) we need only consider the maximal cells of A. Then the
algorithm will generate precisely all vertices of P +... + P. Because the dimension d
is fixed, we can then use any convex hull algorithm to compute the entire face lattice of
PI+"" + P.

The following theorem is the main result of 3.3.
THEOREM 2.3.7. For d >_ 3, the problem FIXED-DQ)-MINKADD can be solved in

O(ka-ln2a-1) arithmetic operations, where n denotes the maximum numbers ofpoints in
the given V-presentations.

Proof. By use of any algorithm that computes the convex hull of a point set, we can
determine the entire face lattice of the polytopes P. It is known that this can be done in
time O(nI(d+l)/zj (recall that d > 3) for each polytope (see, e.g., [13]). In this way, we
reduce the given );-presentations to irredundant );-presentations. In the following, we
will therefore assume that the given presentations are irredundant.

Let n denote the number of vertices of P, let ,4 denote the linear arrangement
induced by A/’(Pi), and let ,4 be the common refinement of all the Ai’s. By Corollary

k2.1.11, ,4 is a linear arrangement of at most 7 -i= hi(hi 1) hyperplanes, which has at
most O(ka-ln2(a-)) maximal cells. Using the algorithm in [14] and [15], the arrange-
ment ,4 can be constructed in time O(ka-ln2(a-x)), once the normals of the hyperplanes
are given. However, these normals are the edges of Pi, which have already been com-
puted. By "constructing an arrangement," we mean computing the entire face lattice of
the arrangement, as well as a reference point in the relative interior of every face.

The last step is to find for each reference vector z in a d-dimensional cell of ,4 the
(uniquely determined) vertex v;, of P that is maximal with respect to the linear rune-
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tional induced by z. Observe that this can be done by computing the inner product (v, z)
for each vertex v of Pi. Then E,k__x v,;, is a vertex of -,k__x p, and all vertices of the
Minkowski sum are obtained that way. The total number of required arithmetic opera-
tions is of order o(kdn2d-l). [-I

COROLLARY 2.3.8. Let d > 3 and let Px, P be V- or 7-t-presented polytopes in
11a. Then the face lattice of Pi + + P can be determined in O(kan2a-i) arithmetic
operations, where n denotes the maximum numbers ofvertices ofP Pk.

In the plane, this bound can easily be improved as follows.
PROPOSITION 2.3.9. In dimension d 2, the problem FIXED-D-I?-MINKADD can be

solved in 0(kn log n) arithmetic operations.
Proof. Let Px,..., P be the given V-polygons. In O(kn logn) arithmetic opera-

tions, we can compute the vertices of all polygons and their adjacent vertices. Thus, we
can compute all normal fans A/’(P),..., N’(P) in a total of O(kn log n) arithmetic op-
erations. We can assume that for each i 1,..., k the vertices of P and the edges of
.A/’(Pi) are ordered with respect to increasing angle to the positive x-axis, respectively.
Furthermore, the edges of 3f(Pi) are labeled with the corresponding pair (v+, v-) of
vertices of P in the given order.

Next, we amalgamate the ordered lists of edges ofN’(P),..., N’(P) so as to obtain
the corresponding ordering of the edges of A/’(Px) A.../x Ac(P). This can be done in
time O(kn).

We assume that the edges of A/’(P1),... ,N’(P) are all different. Otherwise, the
following construction can be carried through after suitably perturbing the polygons.

In the last step, we compute all vertices of P1 + + P. We do this in a counter-
clockwise order. First, we compute a reference point z in the interior of the 2-cell (or
possibly one of the two 2-cells) that contains the positive x-axis. By solving a point lo-
cation problem for this reference point in each of the complexes A/’(Pi), we can identify
the vertices of Px,..., P whose sum w is the vertex of P1 +’" +P that corresponds to
z. Then we move in counterclockwise order to the next 2-cell of .Af(P1)/k.../k AY(Pk).
We pass exactly one of the edges of A/’(P1) A.../x A/’(P)say the one with label (v, v’).
Then w’ w v + v’ is the next vertex of P1 +"" + P.

Hence, all vertices of P1 +’" + P can be computed in O(kn log n) arithmetic op-
erations.

Proposition 2.3.9 can also be obtained by combining a convex hull algorithm with
the topological sweeping method given in Guibas and Seidel [22]. The approach of [22]
leads to remarkable output sensitive algorithms for various problems, including the con-
struction of the Minkowski sum of two polytopes in I3. Note that the methods in [22]
cannot be applied directly for further improving our complexity bounds because here we
are allowing redundant V-presentations of our input polygons.

The algorithms given in the proofs of Corollary 2.3.8 and Proposition 2.3.9 lead like-
wise to a polynomial time algorithm in the binary model. Here we may apply an LP-
approach similar to the one used in the proof of Proposition 2.3.2 to reduce the given
V-presentations to irredundant V-presentations.

COROLLARY 2.3.10. Theproblem FIXED-D-I?-MINKADD can be solved inpolynomial-
time in the binary model ofcomputation.

3. Gr6bner bases and Minkowski sums of Newton polytopes. We propose to use
techniques from computational convexity to improve the performance of Buchberger’s
Gr6bner bases algorithm (Algorithm 1.3.3). The key idea is to find good term orders
by analyzing the Newton polytopes of the input (or intermediate) polynomials. Our
approach is motivated by the observation that, for specific classes of sparse polynomial
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sets, varying the term order before or during the Buchberger completion may result in
substantial time savings. It needs to be pointed out that the methods presented here
will hardly be practical for input polynomials that are dense and sufficiently generic,
for Bayer and Stillman [4] proved that in the generic situation the reverse lexicographic
order is always optimal (with respect to the total degree of the output). However, even
in this worst case, our polyhedral computations do not cause significant overhead for
the Buchberger algorithm as they require only polynomial time when the number d of
variables is fixed.

3.1. Dynamic versions of the Buchberger algorithm. Several papers in the com-
puter algebra literature have addressed the question of how the specific choice of term
order effects the computation of a Gr6bner basis for a polynomial ideal. We start out
with a brief summary of some results of Mora and Robbiano [28] and Bayer and Morri-
son [3].

Let 2 c K[x] be a fixed ideal. Two term orders wt and wz are said to be equivalent
(with respect to 2") provided inito (Z) inito (Z). It is shown in [28] that there are
only finitely many equivalence classes, and under the identification ofLemma 1.3.1, each
equivalence class corresponds to an open, convex, polyhedral cone in ]Ra. The polyhedral
cell complex g;(2") defined by these cones is called the GrObnerfan ofthe ideal 2. Suppose
now that 2 is homogeneous (i.e., generated by homogeneous polynomials). In that case,
also negative weights are permitted, and the Gr6bner fan (2) covers all of ]Ra. In [3]
we find the following convexity theorem.

THEOREM 3.1.1 (see [3]). There exists a lattice polytope Pz in a whose normalfan
A/’(Pz) equals the GrObnerfan (Z).

Every polytope Pz with the above property will here be called a statepolytope of the
ideal 2". (This definition is slightly more general than the usual one from geometric in-
variant theory, where the "state polytope" is the convex hull of the weights of a certain
GLa(K)-module; see [3].) The vertices of any state polytope Pz are in one-to-one corre-
spondence with all possible (equivalence classes of) Gr6bner bases of 2". Note that state
polytopes are a direct generalization of Newton polytopes: If 2 =< t > is a principal
ideal, then its Gr6bner fan (2) equals the normal fan of the Newton polytope N(t) (cf.
Proposition 1.3.5).

For readers who are familiar with combinatorial optimization, we mention paren-
thetically that Gr6bner bases algorithms also generalize the greedy algorithm for repre-
sentable matroids. Suppose that 2 c K[x] is a homogeneous ideal generated by linear
polynomials, then the linear relations modulo 2 define a matroid on the set of variables
{z, z,..., za}, and every representable matroid arises in this manner. In this case, two
weight vectors w,w ]Ra are equivalent whenever they give rise to the same weightiest
matroid base. Here the state polytope Pz equals the matroidpolytope, which was intro-
duced by Edmonds [16]. Of course, the situation is much more complicated for non-
linear ideals, and it is one objective of the present paper to stimulate further research
on the applicability of techniques from polyhedral combinatorics to computer algebra
algorithms.

We recall that the classical Buchberger algorithm is static in the following sense. Its
input consists of a set of polynomials Tand a term order w, and the output is a Grfbner
basis of the ideal < > with respect to w. In a dynamic version, on the other hand,
the term order becomes part of the output.

Dynamic Griibner basis.
Input: A set T c K[x] ofpolynomials.
Output: A term orderw anda Grfbnerbasis for the ideal < T> with respect to w.
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The following example illustrates the advantages of this dynamic point of view.
EXAMPLE 3.1.2. Suppose that we are interested in finding the complex zeros of the

(nonhomogeneous) polynomial ideal generated by

+ + + + + + c

For such a task computer algebraists usually recommend computing a purely lexico-
graphic Gr/Sbner basis [9, 6.6]. In our example, there are six lexicographic Gr6bner
bases, one for each ordering of the variables.

Unfortunately, each ofthe six lexicographic Gr6bner bases for < 7" > contains high-
degree polynomials with very large coefficients. For instance, a typical polynomial in the
lexicographic Gr6bner basis induced by z -< z2 -< z has degree 21 and the maximal
appearing integer coefficient is the 19-digit number 1553067597584776499. This means
that the Gr6bner basis computation is rather slow, and subsequent numerical approxi-
mations of the zeros, if desired, are difficult for reasons of numerical instability.

For this specific example, the problem DYNAMIC GROBNER BASIS has a much nicer
solution. Suppose that the output term order is defined by theweightvector w (3, 4, 7).
Our input set 7" has the leading monomials z, z, zaa with respect to this term order.
These monomials are relatively prime, and using [9, Lemma 6.4] we conclude that the
set 7" is already a Gr6bner basis; no algebraic computation was necessary. In 3.2 and
3.3 it will be explained how "lucky" orders can be detected systematically, namely, by
first computing the Minkowski sum of the corresponding Newton polytopes, here the
three tetrahedra N(ti).

From the three leading monomials, we can read off that our ideal < 7- > is zero-
dimensional [9, Method 6.9]. More precisely, there are 30 5.2.3 zeros up to mul-
tiplicities in affine 3-space Ca. If we wish to compute some or all of these zeros, then
we can do so either symbolically or numerically. On the numerical side, we can use the
method suggested by Auzinger and Stetter [1], which amounts to solving a joint eigen-
vector problem for three integer (30 x 30)-matrices. The largest integer entry in these
three matrices is found to be 128 (in comparison to 1553067597584776499). If a symbolic
solution is preferred, we may now apply the algorithm of Gianni [18] for transforming
our Gr6bner basis T into a lexicographic Gr6bner basis. As in shown in [18], this detour
toward a lexicographic Gr6bner basis will often be significantly faster than starting with
the lexicographic order in the first place.

As we have seen, the following is an important special case of DYNAMIC GROBNER
BASIS.

Gr/ibner basis detection.
Input: A set T c K[x] ofpolynomials.
Output: A term order w such that T is a Grbbner basis with respect to , if
such w exists; "NO" otherwise.

In the next section, we will investigate the computational complexity of GROBNER
BASIS DETECTION. This problem amounts to enumerating all (equivalence classes of)
term orders for a given polynomial set T {t,...,t}, which, in turn, is equiva-
lent to computing the Minkowski sum of the Newton polytopes of the t, thus reducing
GROBNER BASIS DETECTION to FIXED-D-)?-MINKADD, the problem studied in 2.3.

As the reader will have noted by now, the polynomial set T we chose for Exam-
ple 3.1.2 was rather special and artificial, and, in most instances we will have to expect the
output "NO" in the GROBNER BASIS DETECTION problem. However, an enumeration of
possible term orders will not be wasted computation time if it enables us to make a good
choice among these term orders. Therefore, we need to find an easy-to-compute mea-
sure for "closeness to being a Grbbner basis" for pairs (T, w) consisting of a polynomial



262 PETER GRITZMANNAND BERND STURMFELS

set 7" and a term order w. In 3.3 we will derive such measures from the Hilbert function
characterization of Gr6bner bases in the homogeneous case. These enumerative mea-
sures satisfy the important requirements that they solve GRt3BNER BASIS DETECTION as
a special case, and that (for fixed d) optimal term orders can be computed in polynomial
time.

As the main new result in this section we prove the termination and correctness of
the following general algorithm for DYNAMIC GRt)BNER BASIS. The important point
here is that this procedure will not end up in an infinite loop, even for a succession of
worst possible choices of term orders.

THEOREM AND ALGORITHM 3.1.3. Given anyfinite generating set o ofan ideal c
K[x], then the following algorithm terminates with a Grfbner basis i for Z with respect to
the last term order wi

i=-1
REPEAT

i := i + 1;
Choose a term order wi

i+x := i U ({normalformg,,w, ($-polynora+/-a’l w, (Pl,P2))IPl, P2 E ;i} \ {0})
UNTIL

Before proving this theorem we need to make a few comments. For clarity of ex-
position, our generic algorithm is formulated as a trivial extension to Buchberger’s Al-
gorithm 1.3.3. It follows from the proof below that Algorithm 3.1.3 remains valid if the
term order is allowed to be changed even more often than stated above, namely, after
every individual nonzero S-polynomial reduction. Note that our extension is completely
independent from other known speed-up techniques (such as intermediate reductions,
predicting unnecessary S-polynomials, throwing in resultants, factoring, and so forth; cf.
[9, 6.4]). Any practical implementation will contain some of these techniques. Natu-
rally, we also wish to make the choices of wi as effective as possible, and at this point we
can include a subroutine based upon Corollary 3.3.6.

ProofofAlgorithm 3.1.3. Recall that two term orders v and v2 are equivalent with
respect to our ideal2 :=< G, > ifthe corresponding initial ideals initvl (2") and initv. (2")
are equal, and by [28, Lemma 2.6] the number of equivalence classes is finite. Let
{Vl, v2,..., vr} be a system of representative term orders for 2".

Let M denote the set of all monomial ideals in K[x]. We partially order the set M
by inclusion. By Dickson’s lemma or by Hilbert’s basis theorem [9, p. 192], the poset M
is Noethedan, that is, there are no infinite ascending chains M1 C M= C M3 C of
monomial ideals. This implies that also the product poset Mr := M x M M,
defined by componentwise inclusion, is Noetherian.

Now suppose that Algorithm 3.1.3 did not terminate. This means the operation
+x := t_J produces an infinite sequence {} of strictly increasing generating
sets for 27. Let hi denote one of the new nonzero reduced S-polynomials in+ com-
puted with respect to the term order wi. The leading monomial of hi is contained in the
monomial ideal < inito,(+l) > but not in < inito,() >.

With every i, we associate an element in the product poset Mr, namely, the vector

(< initvl (Gi) >, < initw.(Gi) >,..., < init,(Gi) >)

of initial ideals with respect to the term orders v. Because {v } forms a system of repre-
sentatives, there exists an index j such that w is equivalent to v,. This implies that the
vector (< init (i+1) >,’", < init (i+1) >) is larger in Mr than the previous vec-
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tor (< initvl (i) >,’", < initv, (i) >). This is a contradiction to the Noetherianess
of the poset M, which implies that Algorithm 3.1.3 terminates.

The correctness ofAlgorithm 3.1.3 is easily seen. The termination condition i+1
7i is satisfied only if all S-polynomials of pairs in i reduce to zero with respect to wi.
Hence, i is a Gr6bner basis with respect to wi by Buchberger’s criterion (Corollary
1.3.4).

3.2. Newton polytopes and the complexity ofGr6bner basis detection. The Newton
polytope N(t) of a single polynomial t -1 cx is the convex hull of its monomials,
that is, N(t) conv{cl, c2,..., c,} c d. We now define the Newtonpolytope of a set
of polynomials 7" {tx, t2,..., tk} to be the Minkowski sum

N(T) N(t) + N(t2) +... + N(tk)

of the respective Newton polytopes, or, equivalently (by Remark 1.3.6), as the Newton
polytope of the product tt2.., tk. To generalize Proposition 1.3.5 to this situation, we
define the affine Newton polyhedron of :T to be the Minkowski sum

Nar(7") := N(T) + d_

of the Minkowski polytope with the negative orthant.
Two term orders wl and w2 on the polynomial ring K[x] are said to be equivalent

with respect to a finite subset 7" c K[x], provided that inito (t) inito (t) for all
t E 7". Note that this is a finer equivalence relation than the one defined for ideals in
the previous section. The proof of the following theorem is self-contained; however,
we wish to draw the reader’s attention to the close connection with Lemma 2.1.5. In
fact, two term orders are equivalent if and only if the corresponding weight vectors are
contained in the same maximal cell of A/’(N(T)) Af(N(tl)/x.../X A/’(N(tk)).

PROPOSITION 3.2.1. Let 7" be afinite set ofpolynomials in K[x]. Then the vertices ofthe
affine Newton polyhedron Naa(7") are in one-to-one correspondence with the equivalence
classes ofterm orders with respect to 7".

Proof. Suppose that ti -.l cijx’ for i 1, 2,..., k. By Lemma 1.3.1, we may
identify each term order with a weight vector w E I_. In this identification, only those
vectors w appear that do not produce a tie among two monomials cj. Two term orders
wl and w2 are equivalent with respect to 7" if and only if

max{<a, w>ll _< j _< hi} max{<aij, wu>ll _< j _< m}

for all i 1,..., k. Consider the set of (transversal) index vectors

J’={j=(j,j,...,j)6Nll<j<n for all/ 61,.. ,k}.

With each element of J, we associate the (possibly empty) open polyhedral cone

C := {w e R_l<cij,,w > <cij,w> for alli e {1,...,k},j e {1,...,n} \ {j}}.

Aweight vector w is contained in Cj if and only if monomials indexed by j are the leading
terms of 7- with respect to w. Hence the equivalence classes of term orders with respect
to 7" are in one-to-one correspondence with the nonempty C’s.

The Newton polytope N(T) is the convex hull of the points aj := -i= ai,, where
j (jl,..., jk) ranges over all elements of J. The set of vertices of the affine Newton
polyhedron Nan(T) is a subset ofthe vertices ofN(T). Apoint a is a vertex ofNr(T)
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N(T) + lu__ if and only if aj is the maximum of some linear functional from 1_. This
means that there exists a positive vector w such that (a, w) ]i=(a,, w) is larger than
(aj,, w) for every other j’ E J. This condition, however, is equivalent to w E C. We have
shown that the nonempty C’s are the normal cones to the vertices of the polyhedron
Nar(T). This proves the claim.

For the important special case of homogeneous polynomials, we get the following
result.

COROLLARY 3.2.2. Let Tbe afinite set ofhomogeneouspolynomials in K[x]. Then the
vertices ofthe Newtonpolytope N(7") are in one-to-one correspondence with the equivalence
classes ofterm orders with respect to T.

Proof. Suppose that t is homogeneous of degree R and let R := R1 + R +
+ Rk. Then the Newton polytope N(T) is contained in the affine hyperplane {y

lll ]j=la YJ R}. If a vertex aj of N(T) is extremal with respect to some direction vec-
tor w, then it is also extremal in the direction w+ (c, c,..., c) for every c R+. Choosing
c sufficiently large, we find that a is also a Vertex of Nafr(T). U

In Proposition 3.2.1 and Corollary 3.2.2, we have seen that enumerating all possible
term orders for a set of multivariate polynomials reduces to the problem of construct-
ing the Minkowski sum of convex polytopes in V-presentation. We obtain a system of
representatives for the term orders relative to a set 7" of homogeneous polynomials by
choosing one weight vector in the open normal cone of each vertex of N(T).

COROLLARY 3.2.3. Let Pz be a statepolytope ofa homogeneous ideal Z and let bl c Z
be any universal GrObner bases ofZ. Then there is a A + such that APz is a Minkowski
summand ofN(H).

Proof. By Theorem 3.1.1 and Corollary 3.2.2, the maximum cells of the normal fan
A/’(Pz) are unions ofclosures ofmaximum cells ofthe normal fan A/’(N(bl)). This implies
that A/’(N(H))

_
A/’(Pz). The assertion follows from Lemma 2.1.6. [3

The special case where N(T) is a zonotope is of considerable interest for theoretical
computer science. Suppose that all input polynomials t are differences of monomials,
that is, t x’ x, for i 1,..., k. In this case, the ideal membership problem is the
word problem for commutative semigroups [9, 6.10]. Besides the practical importance
of this problem, it is noteworthy that the doubly-exponential lower-bound construction
of Mayr and Meyer [25] has this special form. Here the Newton polytope N(T) equals
the Minkowski sum of k line segments conv{ai, i}, and, by our discussion in 2.2, the
vertices of this zonotope are in one-to-one correspondence with the maximal cells in the
hyperplane arrangement {{z a[(ai- i,z) 0}[i 1,2,... ,k}.

Returning to the general case, we will now prove a complexity result for GROBNER
BASIS DETECTION. To this end, we need two lemmas. The first lemma deals with the
the size of weight vectors that correspond to term orders with respect to a given set of
polynomials. It is formulated in the language of lattice polytopes.

LEMMA 3.2.4. Let P conv{vl,..., v,} be an irredundantly V-presentedpolytope in
a and let v, vn Za with absolute value of coordinates bounded by a constant R.
Then, for every index i 1,..., n, there is a vector wi Af({vi}, P), which has integer
coordinates whose absolute values are bounded by (2dR)2a.

Proof. Let a V {v,..., vn}. Consider the following system of linear inequali-
ties:

(a, w) (v, w) > l forvV\{a}.
Clearly, this system is feasible, and all solutions lie in A/’({a}, P). Hence, the set of
all such solutions is a polyhedron contained in the cone A/’({a}, P) and therefore has a
vertex. Any such vertex w0 is given as the solution to a system of d linear equations
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(a, w) (v, w) 1 for some d points v e V \ {a}.

Hence, by Cramer’s rule, w0 is a rational vector (with common denominator) such that
the absolute values ofthe numerators and the denominator of its coordinates is bounded
by d!(2R)d. Thus, there is a vector in Af({a}, P) fq Zd with coordinates bounded by
(2dR)2d. D

The next lemma is concerned with the number of different monomials that are
smaller than the leading monomial (with respect) to a given weight vector. Again, it
is formulated in term of solutions of a system of diophantine inequalities.

LEMMA 3.2.5. Let v, w e Za, v, w > O, let the coordinates of v be bounded by r and
let the coordinates ofw be at most s. Then the number ofinteger solutions x ofthe system

is bounded above by (drs + 1)d.
Proof. The hyperplane (w, x) (w, v) intersects the ith coordinate axis at distance

A := (w, v)/(w, ei) from the origin. Hence, the set of solutions to the above system
is contained in the box ia__ [0, A]ei. The number of integer solutions is, therefore,
bounded by Hid__ (A + 1). This implies the bound stated in the lemma.

THEOREM 3.2.6. Let 7" {tl, t2,..., tk} C K[xl,..., Xd] where d is fixed, and
suppose that each ti has at most n monomials oftotal degree at most tL Then GROBNER
BASIS DETECTION can be solved in at most O(kd+2n2d-R(2d+)d) adthmetic operations.

Proof. The Newton polytopes N(tx),..., N(tk) have at most n vertices with integer
coordinates whose t?l-norms are bounded above by R. To deal with affine Newton poly-
topes, we consider the unit cube Cd conv ({-1, 1}d). Observe, that the size of Cd

(in any model under consideration) is constant. Then, by Lemmas 3.2.5 and 2.1.5, the
equivalence classes of term orders with respect to 7" correspond to those vertices of

P := N(T) + Cd N(t) +... + N(tk) + Cd,

whose normal cone is contained in 11_. By Theorem 2.3.7, we can compute P in at most
o(kdn2d-) arithmetic operations. Furthermore, we compute for each vertex of P a
reference point in the interior of the cone of outer normals. With the aid ofLemma 3.2.4,
we see that we can assume that these vectors are integral and have coordinates whose
absolute values are bounded from above by (2dR)2d. In the following, this fact will only
be used for estimating the number of reduction steps. Because the reduction algorithm
is invariant under changes to equivalent weight vectors, the weight vectors stemming
from Theorem 2.3.7 are fine for the reduction. Let w,..., Wm be those reference points
whose coordinates are all positive. Clearly, m O(kdn2d-1). The vectors wl,...,

correspond to the equivalence classes of term orders with respect to 7". In the following,
let w E {w,..., w,}.

According to Corollary 1.3.4, 7" is a Gr6bner basis with respect to w if and only if the
S-polynomial of any two elements of 7" reduces to 0. Let p,p2 E 7" and let s
S-polynomial o(P, P2). The total degree of s is at most 2R, whence N(s) is contained in
_

N {Z[Zl +... + za < 2R}. After a reduction step with respect to any of the elements
in T, the new polynomial s might have total degree higher than 2R. The maximum of
the linear functional (w, .) over N(st) is, however, strictly less than over N(s). Therefore
the number of reductions is bounded by the "lattice breadth" of N(s) in direction w. By
Lemma 3.2.5, this number is bounded by (2dR(2dR)a + 1)a, which is in O(R(2a+l)a).
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The reduction must be carried out for each pair of polynomials in T, and we must
consider each of the vectors w separately. Hence, the total number of arith-
metic operations is of order O(ka+znza-lR(a+)a), as claimed in the statement of our
theorem.

It is not hard to see that a similar result holds also for the binary model of compu-
tation.

COROLLARY 3.2.7. In the binary modelofcomputation, GROBNER BASIS DETECTION
can be solved in time that ispolynomial in L, the size ofthe input, and in R, the total degree
oftheparticipatingpolynomials.

Proof. The only thing that remains to be shown is that the coefficients of our polyno-
mial do not grow exponentially. These coefficient are only changed in the S-polynomial
step and in the subsequent reductions. Because the number of reductions is at most
O(R(2d+l)d), the size of the constants is at most O(R(2d+l)dL). 1-]

We remark that Corollary 3.2.7 does not imply that GROBNER BASIS DETECTION
can be solved in polynomial time in the binary model of computation. For only the log-
arithm of R and not R itself is part of the input (cf. 1.3). The following simple example
shows that in the binary model, even for fixed d 1, normal form reductions require
exponential time: Let s x2 and 7" {xn+ xn}. The normal form reduction of s
with respect to T requires R steps, while the binary size of the data is in O(log(R)).

3.3. Measures for closeness to being a Griibner basis. Let 7" be a fixed generating
set of a polynomial ideal 2" c K[x] and let w be any term order. In this section, we intro-
duce a function Or(w), which provides an a priori measure for the deviation of 7" from
being a Gr6bner basis with respect to w. Extending our results from the previous sec-
tions, we show that O7-(.) also solves GROBNER BASIS DETECTION and can be computed
in polynomial time for fixed d.

For simplicity of exposition, we assume throughout this section that 2 is homoge-
neous. The reader familiar with Gr6bner bases theory will note that our techniques can
be generalized to affine ideals by introducing an extra homogenizing variable.

We begin with a brief review of some standard commutative algebra techniques for
measuring the "size" of a homogeneous ideal 2" c K[x]. Let 2 denote the set of ho-
mogeneous polynomials of degree r in 2. As a K-vector space, 2 is the direct sum of
the finite-dimensional K-vector spaces 2,. The Hilbert function of 2 is the numerical
function hz N N, v dim K(Z), which measures the dimensions of these K-
vector spaces. For instance, the Hilbert function of the full polynomial ring K[x] counts
the number of all monomials of a given degree r, and we abbreviate this number by

[dh-r-1:= ).
For many purposes, it is convenient to express the Hilbert function in the form of a

generating function Hz(z) "= -]o hz(r)z" The formal power series Hz is called the
Hilbert series of2. For instance, the Hilbert series of the full polynomial ring K[x] equals
H(z) := Hg[x](Z) (1 z) -d.

Computing the Hilbert function (or Hilbert series) of an ideal 2 is a typical appli-
cation of the Buchberger algorithm (cf. [9]). More generally, once we know a GrSbner
basis for 2, we also get an easy explicit K-linear basis for 2. For the purposes of this
section, the following observation is sufficient.

REMARK 3.3.1. Let Z be a homogeneous ideal in KIx] and w any term order. Then Z
and its initial ideal initw(Z) have the same Hilbertfunction.

This reduces the computation of general Hilbert functions to the problem of com-
puting the Hilbert function h of an ideal < AA > that is generated by a set of mono-
mials /1 {m, m2,..., mk}. Note that, because A//can be regarded as a subset of
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Na, this is a purely combinatorial problem, and, in fact, the principle of inclusion and
exclusion implies the following explicit formula.

PROPOSITION 3.3.2. The number ofmonomials ofdegree r in < ]vl > equals

k

h(r) (-1)+h(r- deg (lcm(rn,x,...
S--1 {rail

Here lcm denotes the least common multiple, and, by the usual conventions for binomial
coefficients, h(. is zerofor negative values.

The combination of Remark 3.3.1 and Proposition 3.3.2 is an easy GrSbnerian proof
for the well-known fact that, for all sufficiently large integers r >> 0, the Hilbert function
hz(r) is equal to a polynomial pz(r), called the Hilbert polynomial of 2. For compu-
tational purposes, on the other hand, Proposition 3.3.2 is not very useful. Because the
formula involves 2k summands, its evaluation requires exponential time in the crucial
parameter k, regardless of whether the dimension d is fixed.

A substantially better method for computing the Hilbert polynomial and the Hilbert
series has been given by Bayer and Stillman [5]. Here the Hilbert series in the output
is represented as the quotient of two polynomials. Their algorithm is implemented in
MACAULAY and has proved to be very efficient even for fairly large sets of monomials.

THEOREM 3.3.3 (see [5]). The Hilbert seriesH ofthe ideal generated by a set A/l of
k monomials in d variables can be computed in O(ka) arithmetic operations.

We will now apply these results to the problem DYNAMIC GRI3BNER BASIS. Let T
{t, t2,..., tk} be a fixed (homogeneous) generating set of a homogeneous ideal 2"
K[x]. Given any term order w, then we write nto(T) {inito(tl),..., inito(t)}
for the set of initial monomials. Its monomial ideal < inito(T) > is a subset of the
monomial ideal inito(:), and equality holds if and only if T is a Gr6bner basis for 2
with respect to w. This implies the following enumerative characterization of Gr6bner
bases.

THEOREM 3.3.4. A set T of homogeneous polynomials of degree < R is a Grfbner
basis of its ideal : with respect to a term order w ifand only if hz(r) h<nto (7")> (r)for
allr 1,2,...,2R- 1.

Proof. The "only if" part follows immediately from Remark 3.3.1. To prove the
"if" direction, let us assume that 7" is not a GrSbner basis. By Buchberger’s criterion
(Corollary 1.3.4), there exists an S-polynomial S(ti,t) that does not reduce to zero.
Let t be a (nonzero) normal form of S(ti, t) modulo 7" with respect to w. Our degree
hypothesis implies that both t and S(ti, t) are homogeneous polynomials of degree r <
2R 1. (Here r 2R would imply that the initial monomials of t and tj were relatively
prime.) The K-vector space < inito(T) > is a proper linear subspace of (inito(:))
because the monomial inito(t) is contained in their difference. Both K-vector spaces
being finite-dimensional, this implies strict inequality between their dimensions

h<,n,t(7")>(r) dimK(< initw(T) >r) < dimK(initw(Z))
By Remark 3.3.1, the right-hand side is equal to hz(r). This completes the proof.

This result suggests the following definitions. As before, 7" is a fixed set ofpolynomi-
als of degree at most R. The tentative Hilbertfunction O-(w) depends on the term order
w and is defined by O7-(w, r) := h<init,(7")> (r) for r N. By the above observations,
the tentative Hilbert function is bounded above by the "true" Hilbert function hz of the
ideal 2" =< 7" >. Theorem 3.3.4 states in other words that equality holds if and only if
:T is a GrSbner basis with respect to w.
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In practice we will not know the true Hilbert function hz beforehand, but using
the procedure of Bayer and Stillman (Theorem 3.3.3) we can compare tentative Hilbert
functions for different term orders.

Here a term order w is said to be preferable to wz if the first nonzero entry in the
vector (OT-(wt, r) O7-(w2, r))r=l,2 2R-1

is positive. A term order w is said to be
optimal if it is preferable to all other term orders.

Optimal term order.
Input: A set 7" c K[x] ofhomogeneouspolynomials.
Output: An optimal term order w IRa for 7".
The next corollary follows directly from Theorem 3.3.4. It shows that our earlier

problem GROBNER BASIS DETECTION is just a special case of OPTIMAL TERM ORDER,
and every algorithm for the latter automatically solves the first.

COROLLARY 3.3.5. Let 7r be a set of homogeneous polynomials in K[x]. If 7" is a
Grfbner basis with respect to a term order w, then every such term order is optimal

Combining the computational results of the previous section (Corollary 3.2.3) with
the Hilbert series algorithm of Bayer and Stillman (Theorem 3.3.3), we obtain the de-
sired polynomial complexity bound for optimizing term orders.

THEOREM 3.3.6. Let T {t,t,...,t} C K[z,...,za], where d isfixed, and
suppose that each t has at most n monomials of total degree at most 1 Then OPTIMAL
TERM ORDER can be solved in at most O(ka(a+z)na-R(a+)a) arithmetic operations.
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FINDING A LONGEST PATH
IN A COMPLETE MULTIPARTITE DIGRAPH*

G. GUTINt

Abstract. A digraph obtained by replacing each edge of a complete m-partite graph with an arc or a pair of
mutually opposite arcs with the same end vertices is called a complete m-partite digraph. An O(n3) algorithm
for finding a longest path in a complete m-partite (m > 2) digraph with n vertices is described in this paper.
The algorithm requires time O(n2"5) in case of testing only the existence of a Hamiltonian path and finding it
if one exists. It is simpler than the algorithm of Manoussakis and Tuza IS/AMJ. Discrete Math., 3 (1990), pp.
537-543], which works only form 2. The algorithm implies a simple characterization of complete m-partite
digraphs having Hamiltonian paths that was obtained for the first time in Gutin [Kibemetica (K/ev), 4 (1985),
pp. 124-125] for m 2 and in Gutin [Kibemetica (K/ev), 1 (1988), pp. 107-108] for m _> 2.

Key words, digraph, longest path, polynomial algorithm
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1. Introduction and terminology. In this note we consider only digraphs without
loops, unless otherwise specified. A digraph D on m disjoint vertex classes is called a
complete m-partite (multipartite) digraph (CMD) if for any two vertices u, v in different
classes either (, v) or (v, ) (or both) is an arc of D.

In [1] a characterization was given of complete bipartite digraphs (CBD) containing
Hamiltonian paths. This characterization was generalized to CMD in [2]. Using another
approach, Higgkvist and Manoussakis gave in [3] analogous characterization of CBD
having a Hamiltonian path. The results in [1] and [2] supply an O(n’) algorithm for
checking if a given CMD with n vertices has a Hamiltonian path.

Manoussakis and Tuza obtained in [4] an O(n’) algorithm for finding a Hamilto-
nian path in a complete oriented bipartite graph B (if B has a Hamiltonian path). In
this work, we describe an O(n3) algorithm for finding a longest path in a CMD. This al-
gorithm requires time O(n’) in the case of testing only the existence of a Hamiltonian
path and finding it, if one exists. It is simpler than the algorithm ofManoussakis and Tuza
[4] (in the case where m 2 particularly, see 3) and does not require an algorithm for
finding a Hamiltonian cycle (as in [4]). Our algorithm implies a simple characterization
of CMD, having Hamiltonian paths [2].

V(D), A(D) are the sets of vertices and arcs of a digraph D. A digraph D is called
1-diregular if d+(x) d-(x) 1 for any E V(D). A digraph D is called almost
1-diregular if there exist vertices , y (possibly y), such that d/ () d-(y) 0,
and d/(z) 1 for z V(D)\x, d-(v) 1 for v V(D)\y. It is easy to see that
a 1-diregular digraph F represents a collection of vertex disjoint cycles C1, C2,..., Ct
(t _> 1), i.e., F C1 U C2 U... t Ct. Similarly, an almost 1-diregular digraph S
Co tC UC2 u... u Cq, where Co is a path (which may have only 1 vertex); C, C2,..., Cq
are cycles; V(Ci) N V(Cj) for 0

_
i j

_
q, q

_
0.

If C (, 2,..., Zp, z) is a cycle and P (yl, y2,... ,yq) is a path, then

PT(yi,yj, P) is the path (yi, yi 4- 1,..., yj) (i _< j),

PT(xi, C) (xi, xi+, Xp, x, xi-1),
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PT(C, xi) PT(x+, C), PT(x, xj, C) PT(x,, xj, PT(x, C)).

Let D be a digraph, and let x be a vertex of D; then

F+(x) {y e Y(D): (x,y) e A(D)}, F-(x) {z e Y(D): (z,x) e A(D)}.

A digraph containing loops is called a general digraph.

2. Main results. At first, we consider a construction (due to N. Alon) that allows
us to find a l-diregular subgraph with maximum order of a given digraph D. We add to
D a loop in each vertex, associate with any loop a weight equals 2, and with any other
arc of D a weight equals 1. We obtain a weighted general digraph L. Let B B(D) be
a bipartite undirected graph, such that (X, X) is the partition of B, where X V(L),
X’ {x’ x X}, xy’ E(B), if and only if (x, y) A(L) (including the case where
x y) and the weight of an edge xy of B equals the weight of the arc (x, y). Obviously,
a minimum weight l-factor ofB corresponds to a minimum weight l-diregular spanning
general subdigraph Q of L (i.e., a union of disjoint cycles and loops covering V(L)). It is
easy to see that, removing all loops from Q, we obtain some l-diregular subgraph F of
D of maximum order. Since Q can be found by solving an assignment problem, we may
find a l-diregular subgraph of D of maximum order in time O(nZ), (cf. [5]) where, here
and below, n IV(D)I. Now we are ready to consider the main algorithm.

Algorithm ALP

Input. A complete multipartite digraph D.

Output. A longest path H of D.

Step 1. Construct the digraph D with

V(D’) {x} t_J V(D) (x

_
V(D)),

A(D’) A(D) {(x,y), (y,x): y e V(D)}.

Find a 1-diregular subgraph F’ of D’ of maximum order. Let Co, C1,..., Ct(t > 0) be
the cycles of F’, and suppose that x E V(Co). (It is easy to see that x E F’.) Find
P Co x and put

F := PUCI U".UCt.
Note that F is almost a 1-diregular subgraph of D of maximum order. We will construct
a path on all the vertices of F--this will clearly be a longest path.

Step 2. If t 0, then H := P, and we have finished. Otherwise, put C := Ct, t :=
t- 1. Let

P (Xl, x2 Xm), C (yl, y2,..., Yk, Yl).

Step 3. If F-(x1)f] Y(C) # O, then pick any x e F-(X1)’1V(C), put P := (PT(C, x), P),
and go back to Step 2. Analogously, if there exists y F+(xm) V(C), put P :=
(P, PT(y, C)) and go back to Step 2.

Step 4. For i 1, 2,..., m 1; j 1, 2,..., k, if (yj, Xi+1), (Xi, Yj+I) A(D),
then

P := (PT(xl, xi, P), PT(yj+I, C), PT(xi+l, Xm, P)),

and go to Step 2.
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If none of Steps 2-4 can be applied, we go to Step 5 below.
Step 5. For j 1, 2,..., k; i 1, 2,..., m 1, if i is minimal, such that there exists
j (i) for which

(1) (yj, Xi+l), (Yj+I,Xi) ( A(D),
then let P be a directed path containing

(2) PT (xl, xi_,P) yj+, zi, PT (y+2, Yj, C), PT (xi+x, Xm, P)
and three additional arcs and go to Step 2. (We prove below that such a directed path
indeed exists.)

LEMMA 2.1. Algodthm ALPfinds a longestpath in a CMD D in time O(n3).
Proof. We claim that during Algorithm ALP P is always a path in D. It is obvious

that this is the case after each execution of Steps 1, 2, 3, or 4 (provided that this was the
case before starting such a step). Hence, we consider only Step 5. When Algorithm ALP
executes Step 5, none of the conditions of Steps 3 and 4 hold for the current P and C.
Hence,

(3) v(c) v(c) O,
and there are no indices i E {1, 2,..., m- 1},j E {1, 2,..., k} such that both (y, xi+l)
and (xi, yj+) belong to D, i.e.,

(4) {(yj, Xi+l) (xi, Yj+I)} A(D).
We must prove that, if Algorithm ALP is at Step 5, then there exist arcs satisfying (1),
and in this case there exists the path (2).

At first, assume that there are no arcs satisfying (1). By (3) (ys, Xm) A(D) for
some s. Then x,_x and y8+1 are nonadjacent. Indeed, by (4) (x,_, y+) f/A(D),
and by the assumption (y+l, x_)

_
A(D). Since y+ is not adjacent with x,_,

it is adjacent with Xm. Therefore, (y+, Xm) A(D). Hence, x,_ and y8+2 are
nonadjacent, and x,,_l is not adjacent with any of y+ and y+2 Since y+l and y8+2
are adjacent (and hence do not belong to the same part), this is a contradiction. We
conclude that there exist arcs satisfying (1). Let i be the minimum possible index in (1),
and put j j (i).

Now we prove that D has the path (2). By (3), i > 1. By the minimality of i and by
(4), the vertices xi-, y+2 are nonadjacent. If (y+2, xi) A(D), then, again, by the
minimality of i (and by (4)) the vertices xi-1, y+3 are nonadjacent, but this is impossible.
Hence,

(5) (x, yi+) e A(D).
If i 2, we have (by (3)) that (Xi--1, Yj+I) ( A(D). If i > 2 and (Yj+I, Xi--1) e A(D),
it follows that x_z, yj+ are nonadjacent; that is impossible because x_ and yj+z are
nonadjacent. Hence,

(6) (xi_, Yy+I) e A(D),
in any case. Therefore, using the arcs from (5), (6), we may form path (2).

Note that the number of operations we need for executing Steps 3-5 is O(IV(P)I"
IV(C)I) for the current pair P, C. Hence, the total number of operations at Steps 2-5 is

t--1

O(IV(P)I. Iv(cx)l) + (IV(P)I +... + IV(Cj)l)(Iv(cj+ )l) O(n2).
j=l

At last, note that the execution of Step 1 takes time O(n3). [3
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Algorithm ALP and the proof of Lemma 1 imply immediately the following result.
THEOREM. Let D be a CMD. Then,forany almost 1-diregularsubgraph F ofD, there

is a path P ofD satisfying V(P) V(F). IfF is a maximum 1-diregular subgraphs, each
suchpath is a longestpath ofD. There exists an algothmforfinding a longestpath in D in
time O(n).

3. Modifications ofthe main results. Using any maximum matching algorithm (see
[5] and [6]), we can test whether a digraph contains a 1-diregular spanning subgraph F’
and find some F’ in time 0(n2"5). Note that F F’ z(z E V(F)) is an almost 1-
diregular spanning subgraph. Hence, after a trivial modification of Step 1 in Algorithm
ALP, we obtain an O(n2") algorithm allowing to test whether a CMD D has a Hamil-
tonian path (and to construct one of them in the case that it exists). This implies the
following corollary.

COROLLARY 1. A CMD D has a Hamiltonian path ifand only if it has an almost 1-
diregular spanning subgraph. Testing whether D has a Hamiltonian path (andfinding one
ofthem) requires, at most, time O(n2"5).

Let D be a CBD. Thenwe can remove Step 5 from the algorithm, since the algorithm
does not use Step 5 in this case. To prove this, we must show that the algorithm never
goes to Step 5 (from Step 4); i.e., it always constructs a new path P in Step 3 or Step 4.
If the algorithm reaches Step 4 after executing Step 3 for the current P and C, then (3)
holds. Therefore, there exists i E {1,2,... ,m 1} such that U-(z) fq V(C) , but
F- (xi+l) f V(C) 0; (yj, xi+) A(D). Since D is bipartite, the vertices xi, yj+l are
adjacent. Hence (xi, y+) A(D), and the algorithm can construct a new path P.
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der the supervision ofProfessor N. Alon. I would like to thank Professor Alon for fruitful
comments and suggestions.
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AN EXACT CHARACTERIZATION OF GREEDY STRUCTURES*
PAUL HELMANi, BERNARD M. E. MORETi, AND HENRY D. SHAPIROt

Abstract. The authors present exact characterizations of structures on which the greedy algorithm pro-
duces optimal solutions. Our characterization, which are called matroid embeddings, complete the partial
characterizations of Rado [,4 note on independentfunctions, Proc. London Math. Soc., 7 (1957), pp. 300-320],
Gale Optimalassignments in an ordered set, J. Combin. Theory, 4 1968), pp. 176-180], and Edmonds [Matroids
and the greedy algorithm, Math. Programming, 1 (1971), pp. 127-136], (matroids), and of Korte and Lovasz
[Greedoids and linear objectfunctions, SIAM J. Alg. Discrete Meth., 5 (1984), pp. 239-248] and [Mathematical
structures underlyinggreedy algorithms, in Fundamentals of Computational Theory, LNCS 177, Springer-Verlag,
1981, pp. 205-209] (greedoids). It is shown that the greedy algorithm optimizes all linear objective functions if
and only if the problem structure (phrased in terms of either accessible set systems or hereditary languages) is
a matroid embedding. An exact characterization of the objective functions optimized by the greedy algorithm
on matroid embeddings is also presented. Finally, the authors present an exact characterization of the struc-
tures on which the greedy algorithm optimizes all bottleneck functions, structures that are less constrained
than matroid embeddings.

Key words, algorithmic paradigm, bottleneck objective function, greedy algorithm, greedoid, linear ob-
jective function, matroid, matroid embedding, set system
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1. Introduction. Obtaining an exact characterization of the class of problems for
which the greedy algorithm returns an optimal solution has been an open problem. Rado
[9], Gale [3], and Edmonds [1] have independently shown that matroids characterize a
subclass of problems on which the greedy algorithm always optimizes linear objectives;
their results are limited by the assumption that the greedy algorithm operates on a hered-
itary set system, whereas most common greedy algorithms operate on set systems that
do not obey the heredity axiom. Faigle [2] has provided an exact characterization of the
partially ordered set systems on which the greedy algorithm optimizes linear objectives,
but the assumption of a partial order, which constrains the choices of the greedy algo-
rithm, limits the characterization. Korte and Lovasz [6], [7] have defined greedoids, a
generalization of matroids, and have provided necessary and sufficient conditions for the
greedy algorithm to be optimal with respect to linear objectives when run on greedoids.
However, greedoids are both too general (the greedy algorithm need not return an op-
timal solution on a greedoid) and too constraining: there exist set systems on which the
greedy algorithm always optimizes linear objectives, but that are not greedoids. Goecke
[4] has given necessary and sufficient conditions for the optimization of linear objectives
over set systems by a variant of the greedy algorithm, but his variant of the greedy algo-
rithm (find any solution, partial or complete, which optimizes the objective) does not fit
well in many standard applications of the greedy algorithm, in particular, applications
where the objective function is to be minimized.

We solve the open problem by presenting the following three exact characterizations,
all based on a very general model of the problem structure:

1. An exact characterization, which we call a matroid embedding, of the structure of
problems on which the greedy algorithm optimizes all linear objectives;

2. A similar characterization for bottleneck objectives; and

Received by the editors September 9, 1990; accepted for publication (in revised form) April 9, 1992. A
preliminary version of this paper appears in the Proceedings of the Second Conference on Integer Program-
ming and Combinatorial Optimization, Carnegie-Mellon University, May 25-27, 1992.
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3. An exact characterization of the objective functions optimized by the greedy al-
gorithm on matroid embeddings.

Our presentation is in four parts. First, we set the stage by recalling briefly the def-
initions and main existing results pertaining to set systems and the greedy algorithm.
Second, we introduce additional properties, relate them to the existing structures, and
prove our main result. In a third part, we extend these results to a family of objective
functions and then examine one particular class, the bottleneck functions, and give an
exact characterization of the problems on which the greedy algorithm optimizes these
objectives. The fourth part extends our results from set systems to languages. We con-
clude with some general observations and a number of open questions.

2. Preliminaries. We include this section for readers unfamiliar with the terminol-
ogy; other readers may wish to skip to the next section.

Let S be a set and C a collection of subsets of S; the pair (S, C) is called a set system.
To simplify the notation, we let ext(X) { z XU{z} E C }. A set system is an accessible
set system if it obeys the following two axioms:

(trivial axiom)

(accessibility axiom) If X C and X % 0, then 3z X such that X {z} C.

In an accessible set system (S, ), the elements of are called feasible sets; a maximal
feasible set (i.e., one that is not contained in any other) is called a basis. A set system is
a hereditary set system (also known as a simplicial complex or an independence structure)
if it obeys the trivial axiom and

(heredity axiom) If X t7 and Y c_ X, then Y E C.

Given an arbitrary, but nonempty set system (S, tT), we define its hereditary closure as the
set system (S, tT*), where tT* {Y c_ X IX }.

Let (S, tT) be a set system. An objective function is an assignment of values to the
subsets of S, f 2s - R. We define the optimization problem for f over (S, tT) as the
problem of finding a basis B such that f(B) max{ f(X) X is a basis of (S, C) }.
(Note that only bases are candidates for solution. Further note that we restrict our dis-
cussion to maximization problems mutatis mutandis, identical results hold for minimiza-
tion problem.) Given a weight assignment to the elements of S, w S lI, the induced
linear objective function is defined by f(X) -xx w(x), for X c_ S, and the induced
bottleneck objectivefunction is defined by f(X) minxx w(z), for X c_ S.

Informally, the greedy algorithm, when run on a set system, builds a solution by
beginning with the empty set and successively adding the best remaining element while
maintaining feasibility. (Korte and Lovasz [7] have considered a variant known as the
worst-out greedy algorithm; we do not pursue it further here.) The accessibility of a set
system allows any feasible set, and in particular any basis, to be built one element at a
time from the empty setma necessary condition for the greedy algorithm to succeed.
Formally, we define the best-in greedy algorithm on an accessible set system (S, 6), with
objective function f 2s R, as follows. The algorithm starts with the empty set; at
each step, i, it chooses an element zi S such that

1. {Xl, X2,..., Xi} C; and
2. f({x,...,xi}) max{f({x,...,x_, y}) {x,...,Xi_l,y} C}.

The algorithm terminates when it can no longer incorporate another element into its
partial solution, i.e., when ext{x,..., xi_ } 0.
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DEFINITION 2.1. A feasible set X is a greedy set under f if there exists a sequence, {zl}, {xl, zz},..., {x,..., xi},..., {xl,... ,xi,... ,xk} X offeasible subsets ofX
such that, for each i, f({zt,..., z,_t, zi}) max{f({zt,..., xi-x, y}) {zx,-.., zi-, }
is feasible}. A basis with this property is called a greedy basis.

The greedy algorithm, for any objective function f, can construct only greedy sets
under f; using the proper tie-breaking rule, it can construct any greedy set under f.
We say that an accessible set system (S, C) is pathological if there exist feasible sets A
and B, with A c B, such that B is a basis and ext(A) . Due to the presence of
pathologies, the greedy algorithm can terminate at a set that is not a basis. We could,
as a result, redefine the optimization problem as the problem of finding a nonextensible
set of maximal value. Our results hold under this interpretation as well.

Agreedoid is an accessible set system (S, C) that obeys the following axiom:

(augmentation axiom) If X, Y E t7 and IX[ IY[ + 1, then :Ix E X Y such that
Y U {z} C.

A matroid is a hereditary set system that obeys the augmentation axiom. (Note that the
bases of a greedoid or matroid have equal cardinality and that pathologies cannot occur.)
This axiom is often phrased more generally, as follows:

(exchange axiom) If X, Y E t7 and IYI < [X[, then x E X Y such that Y t_J {x} E tT.

In the presence of the trivial axiom, the exchange axiom is equivalent to the combination
of the accessibility and augmentation axioms.

Rado [9], Gale [3], and Edmonds [1] have independently proved that the best-in
greedy algorithm optimizes all linear objective functions over a hereditary set system
(S, C) if and only if (S, C) is a matroid. Korte and Lovasz [6], [7] have defined greedoids
and proved that the best-in greedy algorithm optimizes all linear objective functions over
a greedoid (S, C) if and only if (S, C) obeys the following axiom:

(strong exchange axiom) Let A, B EtT, with B a basis and A c B. If x S B is such
that At_J{x} C, then y B-AsuchthatAt3{y} CandBt_l{x}-{y} C.

3. An exact characterization. We propose two new axioms to establish an exact
characterization. The first is a strengthened version of accessibility for bases. An ac-
cessible set system (S, C) is extensible if it obeys the following axiom:

(extensibility axiom) If X and B are feasible sets, with B a basis and X c B, then there
exists y /3 X such that X tA {y} is feasible.

Note that every greedoid is extensible. An accessible set system (S, C) is closure congruent
if it obeys the following axiom:

(closure congruence axiom) X C, x, y ext(X),E G S X ext(X), X {x} t2
E *= XtA{y}tAE *.

Even in the setting of extensible accessible set systems, closure congruence neither im-
plies, nor is implied by, augmentation. Indeed, we observe that every hereditary set
system, but not every greedoid, is closure congruent (because, in a hereditary set system,
the empty set is the only choice for E in the definition of closure congruence). Gree-
doids that obey the strong exchange axiom are closure congruent (a corollary of Thm.
3.1), but there exist extensible, closure congruent accessible set systems that do not obey
the augmentation axiom and hence do not define greedoids.
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closure.congruent extensible
NearNighborTSP

matroidembeddings

FIG. 1. The relationships among varieties ofaccessible set systems.

DEFINITION 3.1. A matroid embedding is an accessible set system, which is extensi-
ble, closure congruent, and the hereditary closure of which is a matroid.

Note that there exist matroid embeddings that are not greedoids; indeed, the three
conditions defining a matroid embedding are independent. Figure I shows the relation-
ships among our axioms and previously defined structures.

We can now prove our main result, which solves the open problem.
THEOREM 3.1. Let (S, C) be an accessible set system; then thefollowing are equivalent:
1. For every positively weighted linear objective function, S, ) has an optimal greedy

basis,
2. (S, ) is a matroid embedding,
3. For every linear objective function, the greedy bases of (S, ) are exactly its optimal

bases.
Proof. We prove the implications (1)=(2) and (2)=(3); the implication (3)=(1) is

trivial.
(1)=(2) We begin by showing that C* must be a matroid, a result first derived by

Helman [5]. Assume two sets, X, Y E t:*, with IX IYI + 1, between which augmen-
tation fails in iT*. Since augmentation fails, no basis that contains all of Y can contain
any element of X Y. We design a pair of weight assignments, wl and wz, such that
(i) the relative ordering of elements by weight is the same under both wl and wz and
distinct elements get assigned distinct weights in each weight assignment--so that w
and wz share the same unique nonextensible greedy set; and (ii) w and w9. share no op-
timal basis, thereby contradicting (1) and proving the result. We choose the two weight
assignments as illustrated below:

Observe that, under w, an optimal basis cannot contain all of Y, while, under wz, an
optimal basis must contain all of Y.

We now prove that (S, tT) is extensible. Let A be a feasible set and B be a ba-
sis, with A c /3. Since (S,C) is accessible, there exists a sequence of feasible sets, {x}, {xl,x2},..., {xx,x2,... ,Xk} A; denote the other elements of S by Xk+,

1The set system denoted as "generalized Prim’s" resembles that for Prim’s algorithm, in that both have
subtrees of the ground graph as feasible sets; however, in Prim’s algorithm, all such subtrees include the same
designated vertex, whereas in the generalized version any subtree is feasible.
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z+z,..., z,. We force the greedy algorithm to construct each set in the sequence lead-
ing to A by assigning weights as follows:

l+e/i forl <i < k,
w(x)= 1 forxB-A,

e for x S- B.

Thus, B is the unique optimal basis; since the greedy algorithm must start by constructing
A, it can construct B only if A is extensible to B, as desired.

Finally, we show that (S, iT) is closure congruent. Let A C, x, y ext(A), and
E c_ S A ext(A), with A t3 {x} t3 E e iT*. In the style of the previous construction, we
force the greedy algorithm to construct A followed by the set A t_l {y} by using a weight
assignment that gives very high weights to elements of A and E, high weights to x and
y, and very low weights to all other elements. Since we have A t2 {x} t2 E C*, there
is a basis B containing A t2 {x} LJ E. The greedy algorithm must begin by constructing
A t3 {y} and constructs some optimal basis B’; but then we must have E c_ B’ and thus
AU{y}UEeC*.

(2)=(3) (Note that the structure of a matroid embedding ensures that all nonex-
tensible sets are bases.) Assume that, for some linear objective function f, some greedy
basis B is not optimal. Let A be a greedy subset of Ba of maximal size, with the prop-
erty that A is contained in some optimal basis B. Since A itself cannot be a basis, ext(A)
is not empty. Let x be an element that the greedy algorithm can add to A. We have
AU{x} B, or else AU{x} would be a greedy subset of Bg contained in B, contradicting
the maximality of A. By extensibility, there exists y Bfqext(A); set E B-A-ext(A).
Observe that A U {y} u E is in C*, so that, by closure congruence, so is A U {x} U E.
Because (S, iT*) is a matroid, we can apply the exchange axiom to A U {x} U E with re-
spect to B, yielding some basis B’. B and B’ differ by one element: B’ contains x at
the expense of some other element in ext(A), say z. Since the greedy algorithm chose to
augment A with x, we know that w(x) >_ w(z), so that f(B’) >_ f(B) and thus B’ is an
optimal basis. Then, however, A U {x} c B’ is a greedy subset of B, which contradicts
the maximality of A. A similar argument also shows that every optimal basis is greedy:
if some nongreedy optimal basis B exists, let A be its largest greedy subset; note that
we must have IBI _> IAI + 2, since otherwise A can be extended to B and that exten-
sion must be greedy because B is optimal. However, then B’, produced as above, has a
larger objective value than B because, since A U {z} c B is not greedy, we must have
w(x) > w(z); hence B is not optimal, yielding the desired contradiction.

This theorem subsumes the results of Rado [9], Gale [3], and Edmonds [1], as well
as Theorem 4.2 of Korte and Lovasz [7]; more importantly, unlike these results, it pro-
vides an exact structural characterization of the problems on which the best-in greedy
algorithm works for all linear objectives.

4. Other classes of objective functions.

4.1. Consistent functions. We identify the largest class of functions to which the
results of the previous section apply.

DEFINITION 4.1. An objective function f( is consistent if, given sets T c T’ c S
and elements x, y S T’,

f(T U {x}) _> f(T U (y}) == f(T’U {x}) _> f(T’U (y});

f is strictly consistent if we can further assert that

f(T U {x}) > f(T U {y}) == f(T’U {x}) > f(T’U {y});
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finally, f( is weakly consistent if we strengthen the hypothesis used in consistency to
exclude equality, i.e., if

f(T t3 {x)) > f(T t_J (y}) =: f(T’ LJ (x)) >_ f(T’ t_J (y)).

Note that linear objectives are strictly consistent, while bottleneck objectives are consis-
tent.

THEOREM 4.1. Let S be a set and f a function defined on 2s.
(1) f is strictly consistent ifand only if, for each matroid embedding on S, the greedy

bases are exactly the optimal bases.
(2) f( is consistent ifand only if, for each matroid embedding on S, all greedy bases

are optimal
(3) f( is weakly consistent if and only if, for each matroid embedding on S, some

greedy basis is optimal
Proof. 1. To show the only if part, it is enough to observe that, in the proof of Theo-

rem 3.1, the inequalities involving w(z) and w(z) can be replaced by inequalities involv-
ing f(A t3 {x}) and f(A t_J {z}). Letting T’ B fq B’, the strict consistency of f leads to
the same contradictions as in the previous proof.

To prove the if part, assume that f fails consistency (strict or not) on sets T, T’
Tt2U and elements x, y T, with Ufq(Tt3{x, y}) . Consider the matroid embedding
depicted below.

TU{}UU ITU{u)UU

TU{x}TU{y}
If f( is not consistent, then we have f(Tt.J {x}) > f(Tt3 {y}) and yet also f(Tt_J {x}
U) < f(Tt2{y}t3U). However, then TU{x}UU is a suboptimal greedy basis, the desired
contradiction. If f( is not strictly consistent, then we have f(T t3 {x}) > f(T t3 {y})
and yet also f(TU {x} t_J U) < f(Tt3 {y} t3 U). However, then Tt_J {y} t_J U is an optimal
basis and yet is not greedy, the desired contradiction.

The same proof techniques apply in 2 and 3, with the obvious changes.

4.2. An exact characterization of greedy structures for bottleneck functions. Bot-
tlenecks functions form an important subclass of consistent functions. Formally, we
define a (simple) bottleneck function to be an objective function of the form f(A)
mineA w(x); by convention, we set f(q) 1 + maxxes w(x). Our previous results
show that the greedy algorithm is optimal for all bottleneck objective functions when
run on a matroid embedding. Korte and Lovasz [6] considered a generalization of bot-
tleneck objectives in which the weight of an element is a nondecreasing function of the
size of the feasible set in which it could be included; they showed that the greedy al-
gorithm is optimal for all such generalized bottleneck objectives only if the set system
defines a greedoid. Since not every matroid embedding is a greedoid, this result does
not hold when restricted to simple bottleneck objectives.

The matroid embedding structure is not necessary to ensure optimality ofthe greedy
algorithm for accessible set systems with bottleneck objectives. In particular, it is easily
verified that optimality for all bottleneck objectives on an accessible set system does not
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imply that the hereditary closure of the set system is a matroid. We introduce a more
restricted property. An accessible set system (S, C) is strongly extensible if it obeys the
following axiom:

(strong extensibility axiom) For any X, B E C, with B a basis and IXI < IBI, there exists
x E B X such that X t3 {x} C.

The bases of any strongly extensible accessible set system are of the same cardinality; in
fact, a hereditary set system is strongly extensible if and only if it is a matroid.

LEMMA 4.2. Let (S, C) be an accessible set system. If, for everypositive weighted bottle-
neckfunction f, there exists a greedy basis that is also optimal, then (S, C) is extensible and
all ofits bases have equal cardinality.

Proof. Assume that there exists a basis B and a feasible set A c B such that either
(i) A is nonextensible; or (ii) for all x ext(A), A t_J {x} /3. We force the greedy algo-
rithm to construct A by assigning suitable weights, also giving elements of S-B very low
weights. Now, however, the greedy algorithm must terminate with a suboptimal feasible
set. If A is nonextensible, then it is the unique nonextensible greedy set, so that there
does not exist an optimal greedy basis, contrary to the hypothesis of the lemma. Other-
wise, because A cannot be extended with an element of/3, any greedy basis contains an
element of S -/3 and thus is not optimal.

Assume that at least two sizes of bases exist; let C be an arbitrary nonminimal-size
basis and let/3 be a minimal-size basis, such that among all minimal-size bases,/3 shares
with C a largest size feasible subset A. Note that A is a proper subset of/3 and cannot
itself be a basis. Since (S, C) is extensible and since A c C, there exists some y ext(A)
such that A t_J {y} c C; note that, by our assumption of maximality of A, y B. We force
the greedy algorithm to construct the set A t3 {} and then to complete it in suboptimal
manner by assigning suitable weights, including very low weights for elements of S B.
Under such an assignment, basis B is optimal. The greedy bases constructed must all
contain At_J{} and, by our assumption ofthe maximality ofA, have size greater than IBI.
Thus, at least IB AI elements must be added to A t3 {y}; since/3 is a basis, these
elements cannot all come from/3. Thus, all greedy bases are suboptimal, the desired
contradiction. ]

THEOREM 4.3. Let S, C) be an accessible set system; then thefollowing are equivalent:
(1) For everypositive weighted bottleneckfunction, (S, C) has an optimalgreedy basis,
(2) (S, C) is strongly extensible,
(3) For every bottleneckfunction, (S, C) has at least one greedy basis and all its greedy

bases are optimal
Proof. As before, only two of the three implications are nontrivial.
(1)=(2) Assume that there exist A, B 6 C, where B is a basis, with IAI < [BI and

ext(A) fq/3 q. By the previous lemma, A must be extensible. We force the greedy
algorithm to construct A and to extend it to a suboptimal basis by assigning suitable
weights, including very lowweights to elements ofS-/3-A. Since A cannot be extended
by an element of/3, every greedy basis has very low value, while/3 is an optimal basis
with higher value, the desired contradiction.

(2)=(3) (Note that any nonextensible set must be a basis, by strong extensibility.)
For some assignment of weights, assume that some greedy basis/3 is suboptimal. Let A
be a greedy subset of/3 of maximal size that (i) the greedy algorithm can extend to
the greedy basis/3; and (ii) is a subset of some optimal basis/3’. Let A t3 {x} be a
greedy set extensible to/3. Since the set system is strongly extensible, there also exists
y B’ A such that A t_J {y} is feasible; note that A t3 {y} cannot be a greedy set
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extensible to B, as thiswould contradict the maximality ofA. Since AU{y} c_ B’, we have
f(AU(y}) >_ f(B’); since the set system is strongly extensible (and thus allows AU(x} to
be extended with elements from some optimal basis), since A is maximal, and since the
objective function is determined by the minimum weight of its arguments, we also have
f(B’) > f(A t3 {x}). Combining these two inequalities yields f(A t3 {y}) > f(A t3 {x}),
which contradicts the fact that the greedy algorithm can choose z. q

5. Exact characterizations of greedy languages. While set systems have been the
traditional setting for defining and studying greedy algorithms, several researchers have
recognized the desirability of extending the results to more general settings (Helman [5],
Korte and Lovasz [6]). In this section, we demonstrate that our exact characterizations
extend directly to hereditary languages.

In the language world, feasible structures are ordered sets, or strings, generally
called simple words. Let S be a set and a collection of simple words on S; further-
more, let s(a) for each a E denote the (unordered) subset of S corresponding to a
and let s() denote the collection of unordered subsets corresponding to the words of
i.e., s() (A A s(a), a E }. We say that (S, ) is a hereditary word system
(or hereditary language) if it obeys the following two axioms:

(trivial axiom) O,
(heredity axiom) If a /2 and/3 is a prefix of a (i.e., a 7 for some string 7), then

If (S, Z:) is a hereditary language, we call the elements of Z: feasible words; any feasible
word a with the property that there does not exist z S with ax is called a basic
word. For any word a, let ext(a) denote the set {z az Z:}. Note that, if (S, ) is a
hereditary language, then (S, s(/:)) is an accessible set system. We define the hereditary
closure of the hereditary language (S,) to be the hereditary closure (S, s*()) of the
corresponding accessible set system (S, s(Z:)).

There is a very natural link between hereditary languages and the greedy algorithm,
as hereditary languages record the full history of the execution of the algorithm. For-
mally, the best-in greedy algorithm on a hereditary language (S, Z:) with objective func-
tion f / starts with the empty string A; at each step i, it chooses an element zi E S
such that

1. xx...xi E; and
2. f(xx2...xi) max{f(x...xi_ y)Ix...xi_y /:}; the algorithm ter-

minates when it has constructed a basic word. Afeasible word xx2.., xk is agreedy word
under f if, for each 1 <_ i <_ k, f(x...xi_xi) max{ f(x...x_y) x...Xi_ly

}. Given an objective function on S, an objective function f on words is, respectively,
a linear, bottleneck, or consistent function if there is a linear, bottleneck, or consistent
function g on sets such that f(a) g(s(a)) for all words a. This implies that if is a
permutation of a, then f() f(a), a property often called stability.

The necessary and sufficient conditions for hereditary languages are (essentially) the
obvious language versions ofthe accessible set system conditions. Consider the following
language version of each of our axioms. A hereditary language (S, ) is extensible if it
obeys the following axiom:

(extensibility axiom) If a,/ e ,/ is a basic word and s(a) c s(), then x e s()
s(a) such that ax L.

A hereditary language (S,/:) is closure congruent if it obeys the following axiom:
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(closure-congruence axiom) Va , Vx, y e ext(a), VE C_ S s(a) ext(a), s(a) U
{x} U E ( s*(Z:) == s(c)U {y} LJ E e s*(L:).

A hereditary language, (S, L:), is strongly extensible if it obeys the following axiom:

(strong extensibility axiom) If a,/3 E E,/3 is a basic word, and < I/ l, then 3x E
s(13) s(a) such that ax .

DEFINITION 5.1. A (language) matroid embedding is a hereditary language that is
extensible, closure congruent, and the hereditary closure ofwhich is a matroid.

The situation regarding pathologies is more complex for hereditary languages than
for accessible set systems; we say that a hereditary language ispathological if there exists a
pair ofbasicwords /31 and/32 such that s(/31) c s(/32). In the language world, pathologies
appear natural if a and/3 form a pathology, then this simply means that a cannot be a
prefix of 3.

In spite of these differences, all of our theorems hold in their obvious rephrasing.
THEOREM 5.1. Let (S, .) be a hereditary language; then thefollowing are equivalent:
(1) For every positively weighted linear objective function f, there exists an optimal

greedy basic word,
(2) (S, L:) is a matroid embedding,
(3) For every linear objective function, the greedy basic words are exactly the optimal

basic words.
The generalization to the language world is not trivial, in the sense that there exist

distinct language-based matroid embeddings corresponding to the same set-based ma-
troid embedding; i.e., there exists a language-based matroid embedding, which contains
two feasible words that are equal as sets but have different extension sets. (This result
should be contrasted with a theorem of Korte and Lovasz [6] showing that greedoids do
not give rise to such situations.)

The results presented so far for hereditary languages completely parallel those for
accessible set systems. The same is almost true for the class of bottleneck functions.
However, certain pathologies (that can occur in hereditary languages but not in set sys-
tems) allow the greedy algorithm to optimize all bottleneck functions on languages that
fail to obey even the weaker of the extensibility axioms. By proving results paralleling
Lemma 4.2 and Theorem 4.3, we can establish the following exact characterization of
greedy optimality for bottleneck functions on hereditary languages.

THEOREM 5.2. The best-in greedy algorithm run on a hereditary language optimizes all
bottleneckfunctions ifand only if the language is strongly extensible (except with respect to
pairs ofsets thatform pathologies).

6. Conclusion. We have presented exact characterizations ofproblem structures on
which the greedy algorithm optimizes linear, bottleneck, and, more generally, consistent
objective functions. These exact characterizations apply both to accessible set systems
and hereditary languages and answer questions raised, and only partially answered, by
Edmonds [1], Korte and Lovasz [6], [7], and others.

Our results provide a framework for future research: what are additional structural
properties of matroid embeddings? How can constraints about the objective function
be traded against constraints on the language structure? A consequence of our results is
that the linear objectives are the hardest of all consistent objectives to optimize by greedy
methods on matroid embeddings, in the sense that, if they are optimized, then so too is
any other consistent objective. This suggests a study of families of objective functions
along much the same lines as classical complexity theory; in this direction, Lengauer
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and Theune [8] have demonstrated reductions among cost functions for path problems.
Now that we have a proper setting for optimal greedy algorithms, we can investigate the
complexity of such algorithms. This problem is harder than it may seem, since much
of the structure used is given implicitly by a feasibility oracle or some such theoretical
construct: an efficient greedy algorithm results from both a fast feasibility check and a
fast identification of the best extension.
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Abstract. In this paper, it is proved that every triangle-free graph on n >_ 4 vertices has at most 2n/2 or
5.2(n-5)/2 independent sets maximal under inclusion, whether n is even or odd. In each case, the extremal
graph is unique. If the graph is a forest of odd order, then the upper bound can be improved to 2(n-l)/2.
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1. Introduction and results. Let G (V, E) be a simple graph (i.e., undirected,
without loops and multiple edges). The set of vertices adjacent to any particular vertex
x E V will be denoted by Fc(x). The degree of x is dc(x) [FG(x)I. The minimum and
maximum degrees are denoted by 6 and AG, respectively. For any Y c_ V, the graph
G Y is obtained from G by removing the elements of Y, and the edges incident to
them. For a positive integer n, the complete graph, the path, and the cycle on n vertices,
are denoted by K,, Pn, and C,, respectively, (in the latter, n _> 3).

A set X c_ V is independent if it consists of mutually nonadjacent vertices. The
collection of independent sets maximal under inclusion in G is denoted by I. If G is the
null graph, i.e., if V 0, then IG is defined as {}. Note that [IG-YI <_ [IG[ holds for
any graph G (V, E) and for any Y c_V.

The first important result concerning the number of maximal independent sets was
proved by Moon and Moser [6], who observed that IIal < 3’/a in every graph G on n
vertices and characterized the extremal graphs. Their bound was slightly strengthened
for connected graphs independently by Fiiredi 1] and Griggs, Grinstead, and Guichard
[3]. It appears to be more interesting, however, that, in trees, far better upper bounds
can be proved for [Ial; namely, the base 31/3 can be reduced to 21/2. This fact was first
shown by Will [9]; later, Sagan [8] and, independently, Griggs and Grinstead [2] gave
shorter proofs and characterized all trees on n vertices that have the largest possible
number of maximal independent sets.

The goal of this paper is to prove the somewhat surprising fact that the considerable
decrease from 3n/3 to 2’/2 as an upper bound on IIGI is valid under a much weaker
assumption. Instead of excluding all cycles (as in the case of trees) it suffices to exclude
just the cycles C3 of length 3.

THEOREM 1. IfG is a tdangle-free graph on n vertices, n > 4, then

<
2’/2 for n even,

[ 5.2(n-5)/2 for n odd.

Moreover, equality holds ifand only ifG is isomorphic to thefollowinggraph, denoted by Hn.
Ifn is even, then H, consists ofn/2 disjoint copies ofK2 (i.e., it is a perfect matching). Ifn
is odd, then one connected component ofH, is isomorphic to C5, and the othercomponents
are isolated edges.
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We must note that, despite the same growth of O(2’/2) in their maximum number,
the structure of the collection of maximal independent sets in a triangle-free graph can
be far more complicated than in a tree. It is known, for example, that the maximum in-
dependentsetproblem is NP-complete on triangle-free graphs [7], while it is polynomially
solvable not only on trees but also on bipartite graphs.

2. Proof of the main result. In this section, we prove Theorem 1. We apply the
following observations.

LEMMA 1. Let G (V, E) be an arbitrary graph. Then

(a) I1 Ir-l IHI, if is disconnected, and H is a connected component of G;
(b) [Iv < llv-t>l + ll-((}wr())l, ifx e v;
(c) IIl _< II-,1 / II-(r<))l, ifzy E E such that dG(y) 1;

(d) II1 _< IIe._ + llP,_l, ifG is a cycle orapath on n > 4 vertices and k 3-6.
Proof. Lemma l(a) is obvious. In (b), the first term on the right-hand side is an

upper bound on the number of sets X E I with z X, while z X I holds if and
only if (X {z}) I-((x)uro(x)). Lemma l(c) follows from (b) since X I_(x,u) if
and only if X t_J {y} E I_(x}. Finally, to prove (d), we apply (b) or (c) if G is a cycle
or a path, respectively. [3

It is convenient to abbreviate some values involved in the computations as follows:

r 21/2;

{ :
f

5:_

gn 7rn-6.

for n even,
for n odd;

Now a direct counting (based on Lemma l(a) immediately implies that IIH. f, for
n > 4. Moreover, since G cannot be a triangle, II1 -< f holds for n < 3; more precisely,
Ilol < f is also valid for n 1 and n 3. (For n 2, the equality Ilol f2 holds only
for G K H.)

We prove the theorem by induction on n, but we note first that the following in-
equalities are valid for every integer n:

g < 5r-5 _< fn <_ rn,

f. < f < f.+,

gn < gn+l,

Thus, if G is disconnected, say it has a connected component on k vertices, then Lemma
1 implies that Ilvl < f, by induction. In addition, assuming that H and H,-k are the
unique extremal graphs on k and n k vertices, respectively, the equality II1 fn
implies that G is isomorphic to H,. Hence, we may assume that G is connected.

The following observation will be useful.
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LEMMA 2. Let n > 3 be a fixed integer. Suppose that lnl < f, for every triangle-free
graph H with m < n vertices. Ira connected triangle-free graph G’ on n vertices contains a
vertex ofdegree one, then I,

Proof. Let zg be an edge in G’ with F,(g) {z}. Note that d(z) > 2, as n > 3.
Then, by Lemma l(c) and the assumption for all m < n,

<_ fn-2 W fn-3 <_ rn-2 q-rn-3

r4 + r3)rn-6 < 7rn-6 gn.

Since g, < f, we can assume that 5 >_ 2. Next, we settle the case where Av >_ 4.
Say, dG(x) _> 4 for some vertex x of G. Then Lemma l(b) yields

fn--1 -- fn--5 fn--i --r-4fn--1 fn--1 fn,

with equality only if da(x) 4, G- {x} is isomorphic to nn_l, and G- ((x} t_Jra(x)) is
isomorphic to H,-5. This implies that the subgraph induced by FG(x) in G is isomporhic
to Ha K, contradicting the assumption that G is triangle-free. Thus, II1 < f
whenever AG > 4.

Hence, it remains to show that, if G is connected and triangle-free with 2 < <
AG < 3, then II 1 <_ holds (with strict inequality for G H,). If AG 2, then G
is a cycle on n > 4 vertices, and thus G is isomorphic to H, if and only if n 5. Hence,
[IGI f, if n 5. On the other hand, we observe that IIcn < f, for every n - 5.
Indeed, if n 4, then IIc, 2 < fa, and for n > 6, Lemmas l(d) and 2 imply that

< 2gn-3 + fn-a < 14rn-9 + rn-4

(7 + 2r)r-7 < 10rn-7 5rn-5 <_ fn.

Suppose that AG 3 and let x be a vertex of degree 3. Ifn is even (and, in particular,
if dig 3), then f, rn, f,-i 5rn-6, and f,-4 r-4. In this case, Lemma l(b)
implies

-- fn--1 -Jl- fn--4 5rn--6 -1- rn--4 rn < fn.

Finally, suppose that n is odd and 2 6G < AG 3. Since G is connected, there is
an edge xy in G such that riG(y) 2 and da(x) 3. Let z be the unique neighbor of y
in G {x}. Then in G {x}, the degree of y is one, and the degree of z is da_(} (z)
da(z) >_ 6G >_ 2 since G is triangle-flee. Let G’ denote the connected component
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containing y in G {z}, and let k denote the number of vertices in G’. Now Lemmas
l(a) and 2, together with the induction hypothesis, yield

Applying Lemma l(b) and the assumption that n is odd, we obtain

[Il < g- + f,-4 7rn-7 + 5r-9

(14 + 5)rn-9 < 20rn-9 5rn-5 fn.

This completes the proof of Theorem 1. U

3. Concluding remarks.

3.1. Forests. Theorem 1 and a repeated application of Lemma l(c) (for n even and
n odd, respectively) yields the following sharp result for the largest number of maximal
independent sets in forests of given order.

COROLLARY 1 ((see [2])). IfG is a forest on n vertices, then

2’/2 ]’or n even,
II 1

2(’-1)/2 for n odd.

This inequality was first reported in the last section of [8]. However, that presenta-
tion is misleading because it suggests that the extremal forest is unique for each n. As a
matter of fact, there is more than one extremal forest for each odd n > 5, and they have
the following structural characterization: All but one of the connected components are
isolated edges, and the last component is either an isolated vertex or a tree on 2k + 1
vertices (0 < k < n/2) that consists of k paths of length 2 starting from the same vertex.
(This last component is the unique extremal tree of order 2k + 1, as shown in [2] and
[7].)

An alternative proof of Corollary 1 is to apply Lemma l(a) with the theorem of [2],
[7], and [8].

3.2. Further problems. Comparing the results of [2], [7], and [8] with our Theorem
1, we see that, for any n, the maximum value of IIl for triangle-free graphs G of order
n is at most constant times more than for trees. There are several related problems
that remain open. For example, it would be interesting to see how assumptions on g/rth,
minimum degree, k-connectivity for some k >_ 1, forbidden (induced) subgraphs, or their
combinations (possibly with some further basic properties of graphs) make max(lI
IV(G) n} decrease.

3.3. Applications. One reason why upper bounds on IIv[ are of interest is that bet-
ter estimates on the size of Iv lead to improvements on the time analysis of algorithms
determining several hard graph invariants. For example, the known exact graph-coloring
algorithms can be executed in c’ steps in the worst case, where the value of the constant c

depends on the assumptions on the graphs themselves as well as on the properties of col-
orings to be found. In particular, our results presented here lead to ( cln3(21/2 + 1)’ )-
algorithms to find the chromatic number of a triangle-free graph of order n, while the
general bound [5] without excluding K3 is as large as c2n3(3/3 + 1)’. (If a graph G has
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n vertices and K > 1 is a constant such that for every i < n, each induced subgraph ofG
on i vertices has at most K maximal independent sets, then cana(K + 1)" steps suffice
to find the chromatic number of G.) Similar improved bounds are valid for more general
coloring concepts, too, as we show in a forthcoming paper [4].

Acknowledgments. We thank the referees for some helpful observations.
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TRIANGULATING THREE-COLORED GRAPHS
IN LINEAR TIME AND LINEAR SPACE*

RAMANA M. IDURY AND ALEJANDRO A. SCHFFER
Abstract. Kannan and Warnow [Triangulating Three-Colored Graphs, Proc. 2nd SODA, 1991, pp. 337-343

and SIAMJ. Discrete Math., 5 (1992), pp. 249-258] describe an algorithm to decide whether a three-colored
graph can be triangulated so that all the edges connect vertices of different colors. This problem is motivated
by a problem in evolutionary biology. Kannan and Warnow have two implementation strategies for their algo-
rithm: one uses slightly supcrlinear time, while the other uses linear time but quadratic space. We note that
three-colored triangulatable graphs are always planar, and we use this fact to modify Kannan and Warnow’s
algorithm to obtain an algorithm that uses both linear time and linear space.

Key words, chordal graphs, perfect phylogeny problem, planar graphs, k-trees

AMS(MOS) subject classifications. 68Q20, 68R10

1. Introduction and definitions. In a series of recent papers, Bodlaender, Fellows,
and Warnow [2]; Kannan and Warnow [6]; and McMorris, Wamow, and Wimer [7] con-
sider the problem of whether a vertex-colored graph can be triangulated in a manner
consistent with the coloring. The Triangulating a Colored Graph (TCG) Problem is:
Given an undirected graph G (V, E) with a vertex coloring c V --, {1, 2,..., IV[},
determine whether it is possible to insert extra edges so that every cycle contains a chord
and all edges connect only pairs of vertices with different colors. If a legal triangulation
exists with respect to the coloring c, we refer to the augmented graph as a c-triangulation
and say that G is c-triangulatable. If the coloring is known to be a 3-coloring, we say that
G is 3-triangulatable, and the triangulation is a 3-triangulation.

The reason for studying the TCG problem is that it is polynomially equivalent to an
important problem in evolutionary biology called the Perfect Phylogeny (PP) Problem
[4]. Details about the PP problem can be found in [6]. Bodlaender, Fellows, and Warnow
showed that TCG, and hence PP, are NP-complete [2]. In contrast, McMorris, Warnow,
and Wimer [7] described an algorithm to solve TCG in O((n + m(k 1)) (+1)) time,
where n is the number of vertices, m is the number of edges, and k is the number of
colors. Although the general problem is now known to be NP-complete, this does not
rule out the possibility of small-degree polynomial-time algorithms for fixed parameter
values. An indication that TCG may be difficult even for fixed parameters is given by
the second main theorem of [2], which shows in a formal sense that the fixed-parameter
problem resists all the standard bounded tree-width techniques when the number of
colors is four or more.

Kannan and Warnow [6] focused on the three-color case, which is relevant to the
tools that biologists use in practice to solve the PP problem. For three-colored graphs,
the algorithm in [7] uses O((n + 2m)4) time to decide if the graph can be c-triangulated.
Kannan and Warnow [6] described an algorithm that runs in O(na(n)) time; this is the
same slightly nonlinear asymptotic time that is required for n union-find operations. In
the journal version of their paper, Kannan and Warnow showed how a different choice of
data structures removes the need for union-find, making the running time linear. They

Received by the editors September 23, 1991; accepted for publication (in revised form) June 12, 1992.
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used the trick of [1, Ex. 2.12] to convert a graph from adjacency list representation to ad-
jacency matrix representation, so that adjacency queries can be done in constant time [6].
However, this trick requires quadratic space to store the matrix, even though only a lin-
ear number of the entries are actually examined.

In this note, we describe some simple modifications to Kannan and Wamow’s algo-
rithm [6] that yield an algorithm that runs in O(n) time and uses O(n) space. Bodlaender
and Kloks [3] independently found a very different algorithm that is not based on Kan-
nan and Wamow’s algorithm [6] and also achieves these bounds. The constants hidden
behind the O-notation seem to be small in both our algorithm and the algorithm of Bod-
laender and Kloks [3]. The algorithm of Bodlaender and Kloks [3] may be suitable for
implementing from scratch, whereas our algorithm is very simple to implement ifwe have
access to a package that tests the planarity of a graph and provides a plane embedding
if the graph is planar.

We now present some relevant definitions and lemmas and a high-level sketch of the
Kannan-Wamow algorithm [6] to decide if a three-colored graph can be triangulated.
Our modifications to the algorithm are described in 2.

DEFINITION (see [5, p. 100]). The set of k-trees is described by the following condi-
tions:

1. A k-clique is a k-tree.
2. If G is a k-tree, C is a k-clique in G, and v is a new vertex, then the graph G’

formed by inserting v in (7 and connecting v to precisely the vertices in C is a k-tree.
3. No other graphs are k-trees.
LEMMA 1.1 (see [7]). A (k + 1)-colored graph can be triangulated ifand only if it can

be tdangulated into a k-tree.
From the definition of k-trees, Lemma 1.2 follows.
LEMMA 1.2. 2-trees have at most 2n 3 edges.
The key idea in our modifications is the following fact.
LEMMA 1.3 (see [5, Ex. 4.8]). 2-trees are planar.
(We note that in [5] it is stated incorrectly that 3-trees are planar. Actually, 2-trees

are planar, but some 3-trees are not planar.)
Since planarity is inherited by subgraphs we have the following corollary.
COROLLARY 1.4. Any 3-triangulatable graph is planar.
DEFINITION. A vertex is simplicial if it and its neighbors induce a clique.
THEOREM 1.5 (see [5, Thm. 4.1]). A graph is c-triangulated (or chordal) ifand only if

its vertices can be ordered v < vz < < vn so that vi is simplicial in the graph induced
by {vi, vi+,. v,}. Such an ordering is called a Perfect Elimination Ordering(PEO).

LEMMA 1.6 (see [6]). G can be c-triangulated if and only if all its biconnected com-
ponents can be c-triangulated. Furthermore, the c-triangulations ofthe biconnected compo-
nents can beput together in linear time and linear space.

The Kannan-Warnow algorithm repeatedly chooses cycles and attempts to triangu-
late them. The main difficulty is how to choose the cycle to work on next.

DEFINITION. A cycle isfeasible if
1. all but two of its vertices have degree 2, and
2. the two vertices of higher degree have neighbors outside the cycle.

The vertices of higher degree in a feasible cycle are calledport vertices.
Kannan and Wamow’s algorithm can be summarized as follows. It uses a subrou-

tine that decides whether cycles can be c-triangulated and c-triangulates cycles in time
proportional to the length of the cycle.
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if IEI > 2n 3 then return NO
while V do

delete all simplicial vertices (1)
if V } then return Yes
if G is a cycle then

Call the cycle subroutine on G and return Yes/No
depending on whether it succeeds

else
find a feasible cycle with port vertices a, b
if c(a) c(b) then

insert the edge (a, b) and use the cycle
subroutine to see if the rest of the cycle
can be c-triangulated
if the subroutine fails then return No
else store the new chords and delete all vertices

in the cycle, except a, b, as they are now simplicial (2)
else return No
ifno feasible cycle exists return No

endwhile

The key facts underlying the correctness of the algorithm arc summarized by the
following lemmas.

LEMMA 1.7 (see [6]). If G is a 3-triangulatable biconnected graph with no simplicial
vertices, either G is a cycle or G contains a feasible cycle.

LEMMA 1.8 (see [6]). Suppose " is a feasible cycle with port vertices a, b. Then G can
be c-triangulated ifand only if G A (a, b) can be c-triangulated.

We will prove in Theorem 2.1 that the assumption that there are no simplicial ver-
tices is unnecessary in Lemma 1.7. This assumption is the only reason for deleting sim-
plicial vertices at step 1, so we omit step 1 in our modified algorithm.

The analysis of running time can be summarized by the following lemma.
LEMMA 1.9 (see [6]). All the steps in the algorithm can be implemented to use linear

time and linear space over the entire history of the algorithm, except the steps of deleting
simplicial vertices at step 1 and offindingfeasible cycles.

In 2, we show how to use planarity to find all necessary feasible cycles in linear time
and linear space.

2. Finding feasible cycles. In this section, we describe an algorithm that finds a fea-
sible cycle in time linear in the size of the cycle and requires overall linear space. By
Corollary 1.5 and Lemma 1.8, we can assume that the input graph G is planar and bi-
connected. Hence, in any planar embedding t of G, all faces of G are simple cycles of
G. Any feasible cycle that is a face in G is called afeasible face. The following theorem
is the basis for our algorithm.

THEOREM 2.1. If G is a 3-triangulatable graph, but not a c),cle, and is any plane
representation of G, then there is a feasible cycle that is a face in G.

Proof. The proof is by induction on the number of vertices, n. For r 3, the
only cycle possible is a triangle and it must be a face. Let j > 3 be given and assume the
theorem is true for all graphs with fewer than j vertices. Let Gbe a 3-triangulatable graph
with j vertices and let G be any plane representation of G. Since G is 3-triangulatable,
let T be any 3-triangulation, and let P be a perfect elimination order for T. Let v be
the first vertex in P. Since G is a subgraph of T, which is three-colored and biconnected,
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degree(v1) must be 2. Let vr, v8 be its two neighbors in G. Since vl is of degree 2 it will
be incident to two faces; let F and F2 be the faces on either side of the edges (v, vr)
and (v, v,) in .

Case 1. (v, v() E(G). If the three edges (v, v,), (v, v), and (v, v,) form a
triangular face in G then that itself is a feasible face; in particular, if G \ (v } is a cycle,
then the three edges form a triangular feasible face. Otherwise, let F’ be the face in
( \ {v} resulting by combining F and F2. By inductive hypothesis, ( \ {vl } must have
a feasible face F. If F is different from F’, then F will still be a feasible face in (. On
the other hand, if F’ is the only feasible face in ( \ (v }, then v and v, must be its only
port vertices. In that case, both Fx and Fz are feasible faces in G.

Case 2. (v, vs) is not an edge of G. Since v comes before both its neighbors in the
perfect elimination order P, the triangulation T must contain the edge (v, v), and the
two vertices must have different colors. Therefore, we remove (v, v) and (, v,) in
and introduce the new edge (v, v) incident to the same faces. The graph G \ {v }
{(v, v)} is c-triangulatable with fewer than j vertices, and hence by hypothesis, is a
cycle or has a feasible face F. If the smaller graph is a cycle, then G is also a cycle. If F
is different from F or F2, then F is feasible in G. Otherwise, we extend the feasible face
(F1 or F2) by removing the edge (vr, v,) and introducing two edges (v, v) and (v, vs)
in its place. The resulting face is still feasible.

Since G was an arbitrary graph with j vertices, all biconnected, 3-triangulatable
graphs with j vertices either are cycles or contain a feasible cycle. The theorem follows
by induction.

LEMMA 2.2. IfG is not a cycle and F is a feasible face in someplane representation
ofG with port vertices a and b, then G is c-triangulatable ifand only ifG t3 { (a, b)} is.

Proof. The proof follows from [6] and the fact that a feasible face is also a feasible
cycle in a biconnected plane graph.

Now we are in a position to present our algorithm for finding feasible cycles effi-
ciently. We find a plane representation for G and call it G. We construct for each vertex
a clockwise circular doubly linked list of adjacent vertices. For each edge, we store as
v, v its end vertices and f, f2 its surrounding faces in with the interpretation that

fl is the face to the left of the edge if we direct the edge from v to v2. For each face
F, we indicate whether it is internal or external and store as F(e) an edge belonging to
the face. With this information we can get all the edges of a face in time linear in the
number of edges of the face.

Once a feasible cycle of G is triangulated, all its nonport vertices become simplicial
and can be deleted at step 2.

The following information must be precomputed at the beginning of the algorithm
ofl.

Find a planar embedding ( as described above.
For each face F, compute Count(F) := I(vlv E F and degree(v) > 3)1.
Build two disjoint lists of faces

L := {FlCount(F <_ 2},
L := {FlCount(F > 2}.

The faces in L are feasible; the faces in L are not feasible because they contain too
many high-degree vertices. The following code must be executed at every request to find
a feasible cycle:

ifL }
1. Remove face F from L with port vertices a and b.
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2. return F as the feasible cycle.
else report the failure to find a feasible cycle.

If the cycle F is successfully 3-triangulated, we update at step (2) as follows:

3. Remove all edges (along with vertices disconnected from t) of F, and
add edge (a, b). Modify degree(a) and deree(b).

4. For faces Fx and Fz adjacent to F, set F (e) Fz(e) (a, b).
For (a, b) set f, fz F, Fz accordingly.

5. If degree(a) < 2, then for every face H containing a,
Count(H) Count(H)- 1.
If Count(H) <_ 2, remove H from L and add it to L.

6. Do step 5 for b.

THEOREM 2.3. The modified algorithm to recognize 3-triangulatable graphs and trian-
gulate them is correct and uses O(n) time and O n space.

Proof. The correctness of the algorithm follows from [6] and the fact that our algo-
rithm differs from theirs only in the way of finding feasible cycles and in the omission of
deleting simplicial vertices at step 1. From Theorem 2.1 it follows that our method for
finding feasible cycles is correct and that it is not necessary to delete simplicial vertices
to find a feasible cycle. It is necessary to delete some simplicial vertices eventually, so
that the algorithm makes progress; in our version this is done at step 2, as described
above. Only a constant amount of work is done per edge throughout the entire algo-
rithm. This implies a linear running time for our algorithm. From the data structures
used in the algorithm, it is evident that our algorithm needs only linear space. Finally,
we note that there are several linear-time, linear-space algorithms for embedding planar
graphs [8]. D

REFERENCES

[1 A.V. AHO, J. E. HOPCROFT,AND J. D. ULLMAN, The Design andAnalysis ofComputerAlgorithms, Addison-
Wesley, Reading, MA, 1974.

[2] H. BODLAENDER, M. FELLOWS,AND T. WARNOW, Two strikes against theperfectphylogenyproblem, Technical
Report RUU-CS-92-08, Department of Computer Science, Utrecht University, the Netherlands,
1992; in Proc. ICALP 92, to appear.

[3] H. BODLAENDERAND T. KLOKS,A simple linear-time algorithm for triangulating three-colored graphs, Proc.
STACS 92, Lecture Notes in Comput. Sci. 577, 1992, Springer-Verlag, Berlin, pp. 415-423.

[4] E BUNEMAN,A characterization ofrigid circuit graphs, Discrete Math., 9 (1974), pp. 205-212.
[5] M.C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[6] S. KANNAN AND T. WARNOW, Triangulating three-colored graphs, Proc. 2nd Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, 1991, pp. 337-343; SIAM J. Discrete Math., 5 (1992), pp. 249-258.
[7] E R. McMORRIS, T. J. WARNOW, AND T. WIMER, Triangulating vertex colored graphs, in Proc. 4th Annual

ACM-SIAM Symposium on Discrete Algorithms, 1993.
[8] T. NSHIZEKI AND N. CHIBA, Planar Graphs: Theory andAlgorithms, Annals of Discrete Math. 32, North-

Holland, Amsterdam, 1988.



SIAM J. DIsc. MATH.
Vol. 6, No. 2, pp. 294-308, May 1993

() 1993 Society for Industrial and Applied Mathematics
011

BARKERARRAYS I: EVEN NUMBER OF ELEMENTS*
JONATHAN JEDWAB?

Abstract. A Barker array is a two-dimensional array with elements 4-1 such that all out-of-phase aperiodic
autocorrelation coefficients are 0, 1, or -1. No s x t Barker array with s,t > I and (s,t) (2,2) is known,
and it is conjectured that none exists. A class of arrays that includes Barker arrays is defined. Nonexistence
results for this class of arrays in the case st even, providing support for the Barker array conjecture, are proved.
Several connections, in the case st even, between this class of arrays and perfect, quasi-perfect, and doubly
quasi-perfect binary arrays are demonstrated.

Key words. Barker array, aperiodic autocorrelation, binary array, nonexistence, perfect, quasi-perfect,
doubly quasi-perfect

AMS(MOS) subject classifications, primary 05B20; secondary 05B10

1. Introduction. An s x t binary array is a two-dimensional array (ai) for which

lor-1 forallO<i<s,O<j<t,
aij

0 otherwise.

Define the aperiodic autocorrelation function of a binary array (a) by

C(u, v) EEa’ia’+",i+’

where u and v are integers. In this paper, summations will be over all integers unless
otherwise stated. Wewrite CA (u, v) to distinguish the aperiodic autocorrelation function
of A from that of any other binary array. A binary array is called Barker if [C(u, v)l < 1
for all (u, v) (0, 0). The array _11 is Barker, but no Barker array with s, t > i and

(s, t) (2, 2) is known. Alquaddoomi and Scholtz [1] conjectured that no such array
exists and proved the necessary conditions that neither s nor t is an odd prime, that st is
a square when s or t is even, and that 2st 1 is a square when st 1 (mod 4). Jedwab
[6] proved that, if s, t are even, then s t.

In this paper, we define a property of binary arrays that we call Barker structure,
which any s x t Barker array with st > 2 possesses. For an s x t binary array with
Barker structure, we prove restrictions on the possible values of (s, t), as well as the array
elements (ai), in the cases s, t even and s even, t odd. We also show that any such array
is simultaneously perfect and quasi-perfect and that its existence implies the existence
of larger arrays with restrictive autocorrelation properties. (For background material on
perfect, quasi-perfect, and doubly quasi-perfect, arrays, the reader is referred to Jedwab
et al. [9].)

In a further paper [8], we prove nonexistence results for binary arrays with Barker
structure when s, t are odd.

2. Barker structure. Define the rowwise and columnwise semiperiodic autocorrela-
tion function of an s x t binary array by

(1) Pl(u,v) C(u,v)+C(u,v-t), defined on -s<u<s,0<v<t,
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(2) pC(u,v) C(u,v) + C(u-s,v), defined onO_<u<s,-t<v<t,

respectively. Any expression involving PR(u, v) or pC(u, v) (or any other autocorrela-
tion function referred to later in this paper) will implicitly refer only to values of (u, v)
for which the function is defined. Given a binary array A (ai), we call the values

xi E aij, Y:i E aij

the row sums and column sums of A, respectively. From Lemma 2 of [6], we have the
following lemma.

LEMMA 2.1. Let A be an s t binary array and let (xi) and (yj) be, respectively, the
row sums and column sums of A. Then

t-1

EPr(u,v) Ex,x,+, forallu,
v=0

s-1

EPC(u’v) yjyj+v for allv.
u=O j

We now define the Barker structure property.
DEFINITION 1. Let A be an s x t binary array. A is said to have Barker structure if,

for all (u, v) (0, 0),
(i) For s, t even,

P’(u, v) O, pC(u, v) O.

(ii) For s even and t odd,

for u even,
for u odd,

where k(u) 1 or -1 for all -s < u < s, and k(u) + k(u s) 0 for all
0<u<s,

pC(u, v) O.

(iii) For s, t odd,

Pn(u’v)={ kO for ueven,foru odd, pC(u’v)={ kO forfr veven,vodd,

where k I or -1 and k st (mod 4).
THEOREM 2.2 (see 1]). Let A be an s x t Barkerarray with st > 2. Then A has Barker

structure.
Theorem 2.2 is implied by equations (21)-(23) of [1]. However, we deliberately

state the result in weaker form. In fact, we derive all our results for arrays possessing
only Barker structure.
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We note some preliminary restrictions on the values of (s, t) for an s x t binary array
with Barker structure.

THEOREM 2.3 (see [1]). Let A be an s x t binary array with Barker structure. Then
there exists a (v, k, )O-difference set in Z Zt with parameters asfollows:

(i) For s or t even, st 4N for some integer N and (v, k, A) (4Nz, 2Nz N,
N2 N),

(ii) For st 1 (mod 4), 2st 1 (2N + 1)2 for some integer N and (v, k, A)
(2N2 + 2N + 1, N2, N(N- 1)/2),

(iii) For st 3 (mod 4), st 4N 1 for some integer N and (v, k, A) (4N
1,2N- 1, N- 1).

Although Theorem 2. was obtained in [1] only for Barker arrays, the method clearly
applies to arrays with Barker structure. The parameters in Theorem 2.3 (i) and (iii) are
those of Menon and Hadamard difference sets, respectively. (For a general treatment
of difference sets, see [3] or [5].)

We obtain further restrictions on the dimensions of an s x t binary array with Barker
structure by applying Lemma 2.1. This leads to equations in the row and column sums
that are necessarily satisfied by such an array. In the following sections, we examine the
following cases:

(i) s, t eventhe equations are straightforward to solve,

(ii) s even and t oddthe equations reduce to a familiar unsolved problem.
We investigate the case s, t odd in a further paper [8] in which we do not solve the equa-
tions but obtain conditions on s and t that are necessary for the equations to have a
solution.

3. The ease where s, t even.

3.1. Row and column sum equations. We first examine some consequences of the
equations in the row and column sums that are necessarily satisfied by an s t binary
array with Barker structure, where s, t are even. Call an s x t binary array positive if
-]i:a > 0. Without loss of generality, we may take a binary array (a) with Barker
structure to be positive, since (-a) also has Barker structure.

From Lemma 2.1 and Definition l(i), the row sums (z) satisfy

f 0 for all u # 0,
(3) xx+, I st foru=0.

Using these equations and the corresponding equations in the column sums, Jedwab [6]
used Lemma :3.1 to prove Theorem 3.2.

LnMMA .1. Let (x) be the row sums ofan s t binary array such that (3) is satisfied.
Then s < t and, for some 0 < I < s,

0 for all i # I,
xi 4-v for I.

THEOREM 3.2. Let A be an s x t binary array with Barker structure where s, t are even.
Let (x) and (yj) be the row and column sums of.A_ Then s tand, forsome 0 < I < s,
O<J<t,
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0 for all i # I, 0 for all j # d,
Xi

kt ]’or i I, kt for j-J,

where k 1 ifA is positive and k 1 otherwise.
We now obtain further conditions on t and (aij) with the help of the following

lemma, whose proof is straightforward. This describes the transformation of the aperi-
odic and semiperiodic autocorrelation functions under change of sign of alternate rows
or columns of a binary array.

LEMMA 3.3. Let A (ao) B (b), C (co) be s x t binary arrays related by
bi (-1)aij, ci;f (-1)iai for all (i, j). Then,for all (u, v),

(i) It holds that

c.(.. v).

PBR(U, V) (-1)’P(u, v) for t even,
(--1)V(CA(u,v) --CA(u,v-- t)) fortodd,

PC(u,v) (--1)"PAC(u,v);

(ii) It holds that

Cc(u, v) (--1)uCA(u, v),

v).

P(u, v) ’ (-1)P(u’ v) for s even,

(--1)u(CA(u, v) CA(U s, v)) for s odd.

We can now establish further conditions on t and (ai).
DEFINITION 2. Let A (ai) be an s x t binary array. Let (I, I’, J, J’) be a param-

eter set such that A has the following properties:

(i) 0 < I < s, 0 < I’ < s, 0 < J < t, 0 < J’ < t,

(ii) I+I’=J+J’ (mod2),
(iii) ay 1 for all 0 _< j < t,

(iv) ai,j (-1)j+J for all 0 _< j < t,

(v) aj 1 for all 0 <_ i < s,

(vi) aj, (-1)+I for all 0 _< i < s,

(vii) ] a,2 ] ai,2+1 0 for all i I, I’,
(viii) ]i ag.i, ] a2i+, 0 for all j J, J’.

A is called balanced with parameters (I, F, J, J).
THEOREM 3.4. Let A be a positive s x t binary array with Barker structure where s, t

are even. Then s t and A is balancedfor some parameters (I, I’, J, J’). If t > 2, then
t_=0 (mod 4).
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Proof. From Theorem 3.2, we have s t, and, for some 0 < I < s, 0 < J < t,

for all i # I,

(5) ya0 0 forallj # J.

Since A is a positive array, Theorem 3.2 also gives

azj 1 for all0<j<t,

(6) aia 1 for allO<i<s.

These are balance properties (iii) and (v).
Now define B (bo) by bO (-1)aO. From Lemma 3.3(i) and Definition l(i), B

is also an s x t binary array with Barker structure where s, t are even. Hence, by Theorem
3.2, for some 0 < I’ < s, 0 < X < t,

(7) b0 0 for alli#I’,

Zbo 0 for allj#X,

(8) bi,j k for all0<j<t,

(9) bix k for all0<i<s,

where k +1. We next determine X and k. Rewrite (8) and (9) in terms of (aO),

(10) az, (-1)k for all0<j<t,

(11) aix (-1)Xk for allO<i<s.

By comparing (11) with (5) and (6), we deduce that X J and (-1)Xk 1, so that
k (-1) J. Substitution into (10) gives

(12) ai,j (-1)j+J for all 0 < j < t,

which is balance property (iv).
Similarly, applying Lemma 3.3(ii) to C (co), where cO (-1)iaij, establishes

that, for some 0 < J’ < t,

(1)i+ for allO<i<s,(13) aij,

which is balance property (vi). The ranges for I, I’, J, J’ given by Theorem 3.2 are those
of balance property (i). Substitution of j J’ into (12) and i I’ into (13) gives two
alternative expressions for az, j,,

ai, j, (--1)’+ (--1)I’+I,
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so that, for consistency,

I’+I=J’+J (mod2),

which is balance property (ii).
Finally, suppose that t > 2, so that there exists some 0 < < t for which i I, I’.

For any such i, from (4) and (7),

Therefore

(14) E ai,2j E ai,2j+ 0 for all i I, I’,

which is balance property (vii). However, ai,2 is the sum of exactly t/2 nonzero
terms, each of which is 1 or -1, so (14) implies that t/2 0 (mod 2), or, equivalently,

t=_0 (mod4).

Balance property (viii) is proved in a similar manner to property (vii).
3.2. Perfect, quasi-perfect, and doubly quasi-perfect binary arrays. We next show

that the existence of an s x binary array with Barker structure where s, are even
implies the existence of infinite families of binary arrays with restrictive autocorrelation
properties.

We define the periodic, periodic rowwise quasi-, peodic columnwise quasi-, andpe-
odic doubly quasi-autocorrelation function of an s t binary array on 0 < u < s,
0 < v < t, respectively,

R(,v)

Qn(,,)

D(u,v)

C(u, ,) + c(,, t) + c(, , v) + C(u , , t),

c(,, ) + c(,, , t) c(, , v) C(u , , t),

C(u, v) c(,, v t) + C(u , v) c(, , v t),

c(,, ,) c(,, , t) c(, , ) + c(, , t).

An s t binary array for which the autocorrelation function is 0 for all (u, v) # (0, 0)
is called, respectively, perfect, rowwise quasi-perfect, columnwise quasi-perfect, and
doubly quasi-perfect, written, respectively, PBA(s, t), RQPBA(s, t), CQPBA(s, t) and
DQPBA(s, t). For further details, see Jedwab et al. [9] (Wild [17] showed the above
definitions to be equivalent to those in [9]).

LEMMA 3.5. Let A be an s x t binary array. Then

P(u, v) 0 for all (u, v) (0, 0),

(respectively, pC(u, v) 0 for all (u, v) #- (0, 0))

ifand only if
(i) A is a PBA(s, t), and
(ii) A is a RQPBA(s, t) (respectively, CQPBA(s, t)).
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Proof. Using (1), we may write, for all (u, v),

P(u, v)+ P(u- s, v)

Pn(u,v)

for u = O,

foru 0,

Ql(u, v)
Pn(u, v) Pn(u s, v)

P(u,v)

Then, for (u, v) # (0, 0),

Pn(u, v) 0

foru O,

foru 0.

for all -s<u<s, O_<v<t

if and only if

Q’(u, o forall0<u<s, 0<v<t.

The second equivalence follows similarly from (2). [3

We note that arrays for which pC(u, v) 0 for all (u, v) (0, 0) (i.e., which are
simultaneously perfect and columnwise quasi-perfect) were previously studied under the
name aperiodic perfect arrays by Lfike, B6mer, and Antweiler [11] and, allowing array
elements 0 as well as +1, by Antweiler, B6mer, and Lfike [2].

THEOREM 3.6. Let A be an s x t binary array where s, t are even. Then A has Barker
structure ifand only if s t and A is simultaneously a PBA(s, t), a RQPBA(s, t) and a
CQPBA(s, t).

Proof. The proof is immediate from Theorem 3.2, Lemma 3.5, and Defini-
tion l(i).

The simultaneous autocorrelation properties of A given in Theorem 3.6 allow the
construction of infinite families of perfect, quasi-perfect, and doubly quasi-perfect bi-
nary arrays. We note from Corollary 4 of [9] that the existence of a DQPBA(s, t) is
equivalent to the existence of a RQPBA(s, t) if t/gcd(s, t) is odd and to the existence of
a CQPBA(s, t) if s/gcd(s, t) is odd.

THEOREM 3.7. Let A be an s t binary array with Barker structure where s, t are even.
Then there exists each ofthe following types ofarray, for each y > O:

PBA(2ut, 2ut),

RQPBA(2Ut, 2u+2t),
PBA(2+2t, 2t),

DQPBA(2+t, 2t),

DQPBA(2Ut, 2ut),

RQPBA(2+t, 2+2t),
RQPBA(2U+t, 2+4t).

Proof. From Theorem 3.6, A is simultaneously a PBA(t, t), a RQPBA(t, t), and a
CQPBA(t, t). The existence of the first four families follows from Corollary 5 of [9]. The
existence of the remaining families follows from Theorem 7 of [9], provided that there
exists a RQPBA(2t, t). To complete the proof, we now show that, if A is simultaneously
a PBA(s, t) and a RQPBA(s, t), then B is a RQPBA(2s t)A

From Lemma 3.5,

P(u, v) 0 for all (u, v) # (0, 0).
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For all 0 _< u < 2s, 0 _< v < t,

2s--1

P(u,v)- bijbi+u,(j+v)modt
i=0 j

s--1 s--1

(15) bijbi+u,(j+v)mdt -- ZZbi+s,jbi+s+u,(j+v)mdt"
i=o j i=o j

If u >_ s, then the second term of (15) is 0, and so

v)
s-1

aijai+u-s,(j+v)modt
i--O j

P(u 8, v),

whereas, if u < s, then from (15)

v)
s--u--1 s--1

2 Z aijai+u,(j+v)mod d- Z aijai+u_s,(j+v)modt
i=0 j i=s-u j

2P(u,v)+PnA(U-S,V) ifu%0,

2P(u, v) if u 0.

Therefore, for (u, v) # (0, 0) or (s, 0), Psi(U, v) 0 and hence Qs(U, v) 0. Also,
PBn(S, O) st, and so QnB(S O) PUB(S O) Pff(O, O) O.

Hence B is rowwise quasi-perfect. 1

Since the 2 2 array has Barker structure, we deduce that for t 2 there
--1

exists each of the types of arrays listed in Theorem 3.7 for each y > 0, as previously
constructed in [9] and [10].

3.3. Nonexistence results for small t. We now pursue the combinatorial constraints
given by the balance properties for an s t binary array with Barker structure where
s, t are even. We show how these constraints can be combined with the simultaneous
autocorrelation properties to establish the nonexistence of such arrays for t 4 and
t 8 and, subject to additional constraints on the structure of A, for t 12 and t 16.

Suppose that A (a) is a positive s t binary array with Barker structure where
s, t are even and t > 2. Then, by Theorem 3.4, s t 4r for some r, and A is balanced
for some parameters (I, 1’, J, J’). From Theorem 3.6, A is simultaneously a PBA(t, t),
a RQPBA(t, t), and a CQPBA(t, t). Define B (bij) by bij ai,(j+J)modt for all (i, j).
Then it is straightforward to show from Definition 2 that B is balanced with parame-
ters (I, 1’, 0, J"), where J" (J’ J) mod t, and simple arguments show that B is
simultaneously a PBA(t, t) and a RQPBA(t, t). Without loss of generality, we may take
0 < J" < t/2 since J J’, and, by Lemma 3.3(i), we may if necessary first transform
A via ai (-1)i+Iai for all (i,j) (so that the values of J, J’ are interchanged) while
preserving the Barker structure. Next, define C (ci) by cij b(i+I)modt,j for all (i, j).
Then C is balanced with parameters (0, I", 0, J"), where I" (I’ I) mod t, and C is
a PBA(t, t). We may similarly take 0 < I" < t/2. From balance property (ii), I" J"
(mod 2).
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We therefore use the following algorithm to search for a positive s x t binary array
(ai) with Barker structure (s t 4r).

Algorithm 1.
(A) For each pair (I",J") satisfying 0 < I" < t/2, 0 < J" < t/2, I" J"

(mod 2), generate all possible t x t binary arrays (cij) that are balanced with
parameters (0, I", O, J").

(B) Retain only those arrays (ci) that are perfect.
(C) For each 0 < ! < t and each array (c) remaining from Step (B), let bi

c(i-Z)modt,j for all (i, j) and retain only those arrays (b) that are rowwise quasi-
perfect.

(D) For each 0 < J < t and each array (bi) remaining from Step (C), let a
bi,g-J)modt for all (i, j) and retain only those arrays (ai) that are columnwise
quasi-perfect.

For each pair (I", J"), Step (A) is implemented as the following branching algo-
rithm, which fixes successive elements of the array so that at each stage no balance prop-
erty is violated.

Algorithm 2.
(A) Set

aoj 1, ai,,. (-1)J

aio 1, aij,, (-1)

for all 0 <_ j < t,

for all 0 < i < t.

(B) If there exists an (i, j) for which a is not yet set then branch, setting a 1
for one branch and ai -1 for the other branch. Otherwise, output (ai) and
terminate this branch.

(C) If either of the balance properties (vii) and (viii) determines consistently the
value of one or more unset array elements, set these elements accordingly and
go to Step (C). If, however, balance properties (vii) and (viii) lead to an in-
consistent assignment of unset array elements, discard (a) and terminate this
branch. If no unset array elements are determined, go to Step (B).

For the case where t 4, Algorithm 1 was implemented by hand, whereas, for the
case where t 8, computer search was used. In both cases, all arrays remaining after
Step (B) had 1" J" t/2, and no array remained after Step (C). Therefore, for
t 4, 8, there is no perfect and rowwise quasi-perfect balanced t x t binary array. This
implies the following proposition.

PROPOSITION 3.8. There is no 4 x 4 or 8 x 8 binary array with Barker structure.
(Although for t 4, 8 there does not exist a perfect and rowwise quasi-perfect bal-

anced t x t binary array, we note that, for t 2 and for each r > 1, there exists a perfect
t x t binary array that is balanced with parameters (0, t/2, 0, t/2). Such a family of arrays
can be obtained using the recursive construction of Theorem 8 of [9].)

The cases where t 12, 16 contain too many possibilities to allow exhaustive search
using Algorithm 1, but we can prove nonexistence subject to additional constraints on
the elements (aij).

Given s x t binary arrays A (ai),/3 (bi), define the columnwise interleaving of
A with/3 to be the 2s x t binary array C (c) ic(A,/3) given by

ei,2j aij, ci,2j+l bij for all (i,j).

We observe that in the cases where t 4, 8 each array remaining after Step (B) of

Algorithm 1 is of interleavedform, namely, ic([ x ], " ]) for some component arrays
X --Y
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X, Y. If we assume A to have interleaved form, we can derive necessary conditions on
the component arrays X, Y from the balance and autocorrelation properties of A.

DEFINITION 3. Let A (ai) be an s x t binary array. Let (1, J, J’) be a parameter
set such that A has the following properties:

(i) O<I<s,O<J<t,O<J’ <t,

(ii) alj 1 for all 0 < j < t,

(iii) aij 1 for all 0 < i < s,

(iv) aij, (-1)i+I for all 0 < i < s,

(v) ai 0 for all i # I,
(vi) -i a2i, -i a2i+l,i 0 for all j # J, J’.
A is calledpartially balanced with parameters (1, J, J’).
Note that an s t binary array that is balanced for some parameters (I, I’, J, J’) is

partially balanced with parameters (I, J, J’).
THEOREM 3.9. Let A be a positive s t binary array with Barker structure where s, t

are even and t > 4. Let A be ofinterleavedform with component arrays X and Y (yij ).
Then s t 8r for some r, X is partially balancedfor someparameters (L, K, K’), and
X is simultaneously a PBA(4r, 4r) and a CQPBA(4r, 4r). Also,

YLj k for all O <_ j < 4r,

where k i or- 1,

Z Yij 0 for all i L,

and Y is simultaneously a RQPBA(4r, 4r) and a DQPBA(4r, 4r).
Proof (outline). ByTheorem 3.4, s t 4r’ for some r’ and A is balanced for some

parameters (I, 1’, J, J’). The partial balance properties of X and the constraints on Y
are derived directly from the balance properties of A. The constraint r’ 0 (mod 2)
follows from partial balance property (vi) of X, using an argument similar to that at the
end of the proof of Theorem 3.4. By Theorem 3.6, A is simultaneously a PBA(t, t) and a
CQPBA(t, t). The autocorrelation properties ofX and Y are then given by the following
partial converse to Theorems 2 and 4 of [9], which is straightforward to verify. Assuming
that A has interleaved form with component arrays X and Y, if A is perfect, then X is
perfect and Y is rowwise quasi-perfect, and, if A is columnwise quasi-perfect, then X is
columnwise quasi-perfect and Y is doubly quasi-perfect. U

Assume that A has interleaved form. By Proposition 3.8 and Theorem 3.9, the small-
est case is t 16, for which the component array X has size 8 x 8. We see from Theorem
3.9 that the partial balance and autocorrelation properties required ofX are weaker than
those previously required of A. Nevertheless, a search procedure similar to that ofAlgo-
rithms 1 and 2 shows that there is no perfect and columnwise quasi-perfect 8 8 partially
balanced binary array. (In fact, the set of 8 8 perfect binary arrays that are partially
balanced with parameters (0, 0, K"), for each 0 < K" < 4, is no larger than that re-
maining after Step (B) of Algorithm 1, despite the relaxation in balance conditions.) We
therefore have the following result.

PROPOSITION 3.10. There is no 16 16 binary array of interleavedform with Barker
structure.

Finally, we drop the assumption that A has interleaved form. Consideration of the
balance and autocorrelation properties that are required with respect to both the rows
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and the columns ofA suggests that restriction of the search to symmetric arrays might be
helpful. Indeed, in the cases where t 4, 8 the set of arrays remaining after Step (B) of
Algorithm 1 contains a large subset of symmetric arrays. It is straightforward to modify
Algorithms 1 and 2 to search for a symmetric positive 4r x 4r binary array with Barker
structure. Computer search for the case where t 12 shows that there is no symmetric
perfect balanced 12 x 12 binary array. This implies the following result.

PROPOSITION 3.11. There is no symmetric 12 x 12 binary array with Barker structure.
We conclude this section by summarizing the main results for the case where s, t are

even.
THEOREM 3.12. Let A be an s x t binary array with Barker structure where s, t are

even. Then s t, A is simultaneously a PBA(t, t), a RQPBA(t, t), and a CQPBA(t, t),
and there exists each ofthefollowing types ofarray, for each > O

PBA(2Ut, 2ut), PBA(2U+zt, 2ut), DQPBA(2t, 2ut),

RQPBA(2Ut, 2u+t), DQPBA(2U+t, 2ut), RQPBA(2U+t, 2u+zt),

RQPBA(2U+t, 2u+at).

ff t > 2, then t =_ 0 (mod 4) and t >_ 12. If A is a positive array, then A is balancedfor
some parameters (I, F, J, J’). If A is symmetric, then t >_ 16. If A is of interleavedform,
then t =_ 0 (rood 8) and t >_ 24.

The nonexistence of a PBA(t, t) with t _= 0 (mod 4) in the range t _< 100 has been
shown by McFarland for t 28, 44, 76, 92 [12] and for t 84 [13]. Therefore there does
not exist a t t binary array with Barker structure for these values of t.

4. The case where s even, t odd. In this section, we use methods similar to those of
3 to deduce restrictions on an s t binary array with Barker structure, where s is even
and t is odd.

From Lemma 2.1 and Definition l(ii), the row sums (xi) and column sums (yj) sat-
isfy

0 for all u even and u - 0,

(16) xixi+u k(u) t for all u odd,

st for u O,

where k(u) 1 or -1 for all -s < u < s, and k(u) + k(u s) 0 for all 0 < u < s,

(17) yYYJ+-
0 for all v O,

st forv=0.

The solution of (17) is given by Lemma 3.1. We now show that, if (16) has a solution, then
there exists a Barker sequence of length s. The reader is referred to [7] for a summary
of results on Barker sequences. We note, in particular, that the only known even lengths
for a Barker sequence are 2 and 4 and that any length s > 13 must satisfy s 4S2 for
some odd S, where S is not a prime power and S _> 689 [4], [7], [15], [16]. We also note
that Ryser’s conjecture [14] on cyclic difference sets, if true, would imply that there is no
even length Barker sequence of length s > 4.

LEMMA 4.1. Let s > 2 and (x 0 < i < s) be integers and let p be a prime. Let

(18) P lXiXi+u for all 0 < u < s.
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Then p]( zi for at most one 0 < i < s.

Proof. We use induction on s. The case where s 2 is equivalent to

PlX0z ==> Plx0orplx,

which is true because p is prime. Assume now that the result is true for the case s 1.
Taking u s i in (18), we have p lxox_. Since p is prime, without loss of generality,

(19) plxs_l.

Then, from (18),

for all 0 < u < s- 1.

By the inductive hypothesis, p’ x for at most one 0 < i < s 1. Together with (19),
this establishes the result for the case s, and the induction is complete.

THEOREM 4.2. Let (xi) be the row sums ofan s t binary array where s is even and t is
odd. Suppose that (x)satisfy (16), where k(u) 1 or-lforall-s < u < s. Then t T2

for some odd T, and there exists a Barker sequence (z) oflength s satisfying x Tz for
all i.

Proof. Let p be a prime dividing t. From (16), we see that

(20) P[ Z xixi+ for all 0 < u < s.

Therefore, by Lemma 4.1, p’ x for at most one 0 < i < s. Taking u 0 in (20) then
shows that p lx for all 0 < < s. Write x px for all i and t pt, so that (16)
becomes

XiXi+u

0

k(u)t’
st

for all u even and u :/: O,

for all u odd,

foru- O.

The equations for (x) have the same form as (16), so we may apply the above argu-
ment repeatedly to each prime factor of t. This leads to

(21) t T9 for some odd T, xi Tzi for all i,

where (zi) satisfies

(22) Z zizi+

0

k(u)
8

for all u even and u - O,

for all u odd,

for u O,

and where k(u) I or-1 for all-s < u < s. Taking u 0 in (22),

8--1

(23) y z, s.
i=0
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Write the array as (ai). Now t is odd, and so, from (21),

t-1

j=O

for all 0 < i < s.

Therefore (23) implies that zi 1 or -1 for all 0 < i < s. Hence, (zi) is a binary se-
quence oflength s satisfying (22), which are the defining equations for a Barker sequence
of even length.

COROLLARY 4.3. Let A be an s t binary array with Barker structure where s is even
and t is odd. Let (xi) and (y) be the row and column sums ofA_ Then s 4S9 and t T
for some odd S, T where S is not a prime power, 2S > T, and, if S > 1, then S > 689.
Furthermore, there exists a Barker sequence zi oflength s satisfying

xi Tzi for all i.

For some 0 < J < t,

0 for all j J,
YJ

2kST for j J,

where k i ifA is positive and k -1 otherwise.
Proof. (xi) and (yj) satisfy (16) and (17), respectively. Applying Lemma 3.1 to (17),

s > t, and, for some 0 < J < t,

0 forallj # J,
(24) YJ +V for j J.

Since s is even and t is odd, s > t becomes

(25) s > t.

Applying Theorem 4.2 to (16),

(26) t T2

for some odd T, and there exists a Barker sequence (zi) of length s satisfying

for all i.

Using the quoted results on Barker sequences, either s 2 (but then t 1 from
(25) and, trivially, no array A with the required properties exists), or else

(27) s 4S2

for some odd S, where S is not a prime power, and, if S > 1, then S _> 689. Substitution
of (26) and (27) into (24) and (25) gives the result.

Taking the value S i in Corollary 4.3 gives the parameter values for a Barker
sequence of length 4. The existence of an array of the desired type with S > 1 implies
the existence of an unknown Barker sequence.
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Using a similar method to the proof of Theorem 3.2, we can obtain the following
additional restrictions on (ai).

LEMMA 4.4. Let A (aij be an s x t binary array with Barkerstructure where s 4S2

is even and t T is odd. Then, for some 0 < J < t,

a2,: Z a2i+x,j 0 for all j # J,

(28) aij Tzi for all i,

where k i iA is positive and k 1 otherwise, and z is a Barker sequence oflength

Let B (b) be the s x t binary array related to A by bij (-1)ai or all (i,j). If
B has Barker structure, then constraints (28) strengthen to

(The reason that (29) depends on B having Barker structure is that the value of
P(u, v) does not change in a simple way under the transformation bi (-1)ai when
t is odd. IfA is an s x t Barker array with st > 2, then the condition on B certainly holds.)

We finally show that the existence of an s x t binary array with Barker structure
where s is even and t is odd implies the existence of certain perfect and quasi-perfect
binary arrays.

THEOREM 4.5. Let A be an 8 x t binary array with Barker structure where s is even
and t is odd. Then A is simultaneously a PBA(s, t) and a CQPBA(s, t), and there exist a
PBA(2s, 2t), a PBA(s, 4t), and a CQPBA(s, 2t).

Proof. By Lemma 3.5 and Definition l(ii), A is simultaneously a PBA(s, t) and a
CQPBA(s, t). Then, from Theorem 2 of [9], there exist a PBA(2s, 2t) and a PBA(s, 4t).
Following the proof of Theorem 3.7, A A is a CQPBA(s, 2t).

We note from Corollary 4.3 that s 4S for some odd S, so we cannot deduce the
existence of a doubly quasi-perfect binary array from the existence of a CQPBA(s, t) or
a CQPBA(s, 2t) using Corollary 4 of [9].

We conclude this section by summarizing the main results for the case where s is
even and t is odd.

THEOREM 4.6. Let A be an s t binary array with Barker structure, where s is even
and t is odd. Then s 4S and t T for some odd S, T, where S is not a prime power,
2S > T, and, ifS > 1,then S >_ 689. A is simultaneously a PBA(s,t) and a CQPBA(s, t),
and there exist a PBA(2s, 2t), a PBA(s, 4t), and a CQPBA(s, 2t). There exists a Barker
sequence oflength s.

We remark that in the case where s is even and t is odd, Alquaddoomi and Scholtz’s
conjecture on the nonexistence of Barker arrays with s, t > 1 and (s, t) (2, 2) would
be implied by Ryser’s conjecture applied to Barker sequences if the latter were true.
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5. Comments. IfA is an s x t Barker array with st > 2, then A has Barker structure.
The results ofTheorems 3.12 and 4.6 seem to provide good reason to doubt the existence
of an s t binary array with Barker structure where st > 4 is even. In the case where s, t
are even, the simultaneous autocorrelation properties required appear highly restrictive.
In the case where s is even, and t is odd, the existence of such an array would disprove
Ryser’s long-standing conjecture on cyclic difference sets.

The smallest even value of st > 4 for which t > 1 and the nonexistence of an
s x t binary array with Barker structure has not been determined occurs for s, t even at
(s, t) (12, 12) and for s even, t odd at (s, t) (4.689, 9).

We consider the case where s, t are odd in a further paper [8].

Acknowledgments. I am very grateful to Fred Piper, Chris Mitchell, and Peter Wild,
of RHBNC, and to Sheelagh Lloyd and Miranda Mowbray, of HP Labs Bristol for their
invaluable assistance and encouragement throughout my research and for contributing
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Abstract. A Barker array is a two-dimensional array with elements +1 such that all out-of-phase aperiodic
autocorrelation coefficients are 0, 1, or -1. No s x t Barker array with s, > I and (s, t) (2, 2) is known,
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1. Introduction. In a previous paper [2], we defined binary arrays with Barker struc-
ture, a class that contains all s x t Barker arrays with st > 2, and proved restrictions on s, t
for the case where st is even. In this paper, we present nonexistence results for the case
where st is odd, providing further support for Alquaddoomi and Scholtz’s conjecture [1].
We use the notation of [2].

2. Rowand column sum equations. We first obtain equations in the row and column
sums of an s x t binary array with Barker structure, where s, t are odd. Using Lemma
2.1 and Definition 1 (iii) of [2], we obtain the following lemma.

LEMMA 2.1. Let A be an s x t binary array with Barker structure where s, t are odd.
Let (zi) and (yj) be the row and column sums ofA Then each zi and yj is an odd integer,
and

kt

(1) Vxixi+.
ks

(2) Eyy+v=
3

where k 1 or- 1 and k st

0

st + k(t- 1)

0

st + k(s- 1)

(mod 4).

for all u even and u O,

for all u odd,

foru=O,

for all v even and v O,

for all v odd,

forv =0,

We derive all our results from an analysis of equations (1) and (2), although we do
not find a general solution. Throughout, we consider solutions only to (1), combining
conditions on s and t obtained from both equations at the end.

We can deduce from Lemma 2.1 an expression for the imbalance ,i
of the array A.

LEMMA 2.2. Let s, t, (zi 0 < < s) be integers satisfying (1), where k 1 or -1 and
k st (mod 4). Then

(i ) { 2st-1 forst=_X(mod4),
1 for st 3 (mod 4).
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Proof. We have

xi x + 2 XiXj

2

u>0

putting j i + u. Therefore

xi x + 2 XiXi+u
u=l

st + k(t- 1) + 2kt(s- 1)/2,

on substitution from (1). Hence

(k + 1)st- k

2st- 1

1

for st 1 (mod 4),
for st 3 (mod 4),

using the given value for k. [:]

A consequence of Lemma 2.2 is that 2st i is a square when st 1 (mod 4), as
noted in Theorem 2.3 (ii) of [2].

In the case where t 1, the possible values of s are determined by known results on
Barker sequences.

THEOREM 2.3. Let s > i be an odd integer and let t 1. Then there exists an s t
binary array with Barker structure ifand only if s 3, 5, 7, 11, or 13.

Proof. Let A be an s x t binary array with Barker structure. Let (xi) be the row sums
of A. Since t 1, (xi) is a binary sequence, and, from (1),

k for all u even and u O,

(3) yxx+, 0 for all u odd,

s for u 0,

where k 1 or -1. Therefore (x) is a Barker sequence of odd length s > 1, and so (see
[3]) s 3, 5, 7, 11, or 13.

The converse is implied by the existence of a Barker sequence with each of these
lengths. ]

We henceforth consider s, t > 1. Our results are all based on the observation that
any prime dividing t divides exactly s 1 of the (x).

LEMMA 2.4. Let s, t, (x 0 < i < s) be integers satisfying (1), where s > 2 and k 1
or -1. Let p be a prime dividing t. Then there exists a unique integer 0 < I < s such that

(i) P lx ifand only if i I,
(ii) x -k (mod p).
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Proof. Let s, t, (xi 0 < i < s) be integers satisfying (1). Since

(4) pit,

(1) shows that

for all 0 < u < s.

By Lemma 4.1 of [2], for some 0 < I < s,

p lxi for alliI.

Put u 0 in (1),

2Zxi st + k(t-1)

k (mod p),

from (4). Then, from (5),

x_=-k (modp).

This shows that p J’ xz, because k i or -1. Combining with (5),

p lxi if and only ifi I.,

Given p and the (x), it is clear that I is unique. D
COROLLARY 2.5. Let A be an s x t binary array with Barker structure where s, t are

odd, s > 1, and st 1 (mod 4). Then s t 1 (mod 4), and each prime p dividing
t satisfies p 1 (rood 4).

Proof. Let (xi) be the row sums of A. From Lemma 2.1, the (xi) satisfy (1), where
k 1. Let p be a prime dividing t. Then, from Lemma 2.4 (ii), x -1 (mod p) for
some 0 < I < s. Now p is odd, since pit, and so

(6) p=l (mod4).

Since (6) holds for any prime p dividing t, we have t _= 1 (mod 4). Then, from st =_ 1
(mod 4), we also have s 1 (mod 4). [3

For a given prime p dividing t, the value of I is uniquely determined by the (xi). In
some cases, the values of only p, s, and t are sufficient to determine or restrict the value
of I. This leads to restrictions on s and t and is the objective of our analysis.

We first show that I 0, s I for any prime p.
LEMMA 2.6. Let s, t, (xi 0 < i < s) be integers satisfying (1), where s > 1 is odd,

xi Ofor at least one odd i, and k i or 1. Let p be aprime dividing t and let 0 < 1 < s
be the unique integer such that p xi ifand only if i L Then I O, s 1.

Proof. The existence of I is given by Lemma 2.4 (i). Suppose, if possible, that I 0
or s 1. By symmetry, we may relabel the (xi), if necessary, so that I s 1 and

(7) p lx, if and only if i s 1.

Since xi 0 for at least one odd i, we may define r to be the largest integer for which

(8) p"lx2j-1 for all 1 _< j _< (s 1)/2.
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From (7), r _> 1. Now, for any I _< j _< (s 1)/2, put u s 2j in (1) to obtain

2j--2

(9) Z xixi+s-2j + x2j-lxs-1 O.
i--0

Since s is odd, exactly one of i, i / s 2j is even and the other is odd, for all i. Further-
more, from (7),

p lxi for all eveni#s-1,

while, from (8),

pr ix for all odd i.

-2j--2Therefore pr+l z_,i=0 xixi+_2j, and then, from (9),

pr+l X2j_lXs_I"

Now p is prime and, by (7), p’ x_, so we conclude that

p’+Xlx2j- for all 1 _< j _< (s 1)/2.

This contradicts the maximality of r.
We next fix the parity of I.
LEMMA 2.7. Let s, t, (x

is oddfor all i, and k 1 or 1. Let p be apime dividing t and let 0 <_ I < s be the unique
integer such that p xi ifand only if i 76 I. Then I =_ (s 1)/2 (mod 2).

Proof. Summing (1) over all odd values of u,

XiXi+2v+ O.
v>0

Straightforward manipulation leads to

X2i X2j+l O.

Therefore either Yi x2i 0 or j x2+ 0.
Suppose first that Yi x2i 0. Then I is odd, since p lx2 for all 2i I. Also,

is the sum of exactly (s + 1)/2 nonzero terms, each ofwhich by hypothesis is odd, and so
(s + 1)/2 0 (mod 2). Therefore

(10) I is odd and (s + 1)/2 _= 0 (mod 2).

If instead we suppose that -j x2j+l 0, then, by similar reasoning,

(11) I is even and (s 1)/2 0 (mod 2).

We combine (10) and (11) as

I--(s-1)/2 (mod2).
We now prove two lemmas constraining the (xi), given the value of I.
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LEMMA 2.8. Let s, (z 0 < i < s) be integers and let p be a prime such that
p21 ,i zizi+, for all 0 < u < s. Let 0 < I < s/2 be an integer such that P z ifand only
if i I. Then p21 zj for all 2I < j < s.

Proof. Let j satisfy

(12) 21 < j < s.

Put u j I so that

(13) p21 y xix+-I.

Now

(14) p lxi for alli # I,

and so p2 divides each product xxi+j_z in (13) unless i I or i + j I 1. From (12),
however, i + j I > I, and so p2 divides each product xix+i_z in (13) except xixi.
Therefore

p2 XlXj.

However,p x1 by (14), and so p21x.
DEFINITION. Let p be a prime and x, y be integers where x > 0. Let PIY and

pX+l , y. Then pX is said to strictly divide y, written p II y.
LEMMA 2.9. Let s, (xi 0 < i < s) be integers and let p be a prime such that

p21xx+, for all 0 < u < s. Let 0 < I < s be an integer such that p lx if and
only if i I.

(i) Suppose that p ll z for some 0 < j < s. Then 0 < 2I j < s and p ll
(ii) Let j satisfy 0 < j < s and 0 < 2I j < s. Then pZ zj ifand only ifp
Proof. (i) Let P l] z for some 0 < j < s. By a similar argument to that used in the

proof of Lemma 2.8, to avoid the false conclusion p [z, we require that + j I I
has a solution for some 0 < i < s. Consequently, 0 < 21 j < s and

p21xy +
Then P I[ xy if and only if P II x2I-.

(ii) Let j satisfy 0 < j < s and 0 < 21 j < s. Then similar reasoning shows that

p21xj + x2I-j,

from which p2 ix if and only if p2 x2i_j"
The equation xoxs-1 +t, obtained by putting u s 1 in (1), is of particular

importance. Given a prime p dividing t, we are often able to obtain information about
the (x) from the distribution of powers of p between xo and

LEMMA 2.10. Let s, t, (xi 0 < i < s) be integers satisfying (1), where s > I is odd,
xi 0for at least one odd i, and k i or -1. Let p be a prime such thatp II t for some
integer a > 1. Then c > 2 and p’ II x0, pa-’ II x,_ for some o <

Proof. Put u s 1 in (1),

(15) xoxs_ +t.

Since pll t, we then have pll x0, p- II x _x for some 0 < 7 < a. By Lemma 2.6,
p lxo, x8_1. Therefore 0 < 7 < a, and, from (15), p It. D
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COROLLARY 2.11. Let A be an s x t binary array with Barker structure where s, t are
odd and s > 1. Then eachprime p dividing t satisfies pZ t.

Proof. Let (zi) be the row sums of A. From Lemma 2.1, the (z 0 < i < s) are
odd integers satisfying (1), where k 1 or -1. Let p be a prime dividing t. Then pZ It
by Lemma 2.10. tq

3. The ease where 7 1. In this section, we consider solutions to (1) for which
P ll x0 and p’-1 II xs-1, where p is a prime. The value of I is then determined by s and

which, in turn, gives restrictions on s in terms of a.
LEMMA 3.1. Let a >_ 2 and s, (zi 0 <_ i < s) be integers and let p be a pdme such

that

(16) P"I xx+ for all 0 < u < s,

(17) pllx0,

(18)
Let 0 < I < s be an integer such that

(19) p lx ifand only if i I.

Ifa 2, then I (s 1)/2./fa > 2, then, for all 1 < < a- 2,

(20) (/3 + 1)I < s- 1,

(21) p-lx,__ for all 0 < j < ill,

(22) p--x I__z.
Proof. Since a > 2, apply Lemma 2.9 (i) with j 0 to give

(23) 2I < s,

(24)
We show, by induction on j, that

(25) p-i [xs_l_j for all 0 < j < 1.

The case where j 0 is given by (18). Assume that for some
(26) 1 < j < I,

(27) pa-1 Xs_l_k for all 0 <_ k < j.

Put u s 1 j in (16),

(28) pal XoXs-I-j + XiXi+s-l-j
i=1

Now, by (26), j < I and so by (19), p lxi for all 1 < i < j. Furthermore, by (27),
p-i ixi+_l_j for all 1 < i < j. Thereforep JYi=I xixi+,-l_, and so, by (28),

pO xoxs-1-j
Using (17), we conclude that p-i Xs-l-j, completing the induction on j and proving
(25).
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Put u s 1 I in (16),

(29) P’ xox-l-I + xixi+--I + XlX-
i--1

From (19) and (25), pa 1-1= xixi+__. Therefore, from (29),

(30) Pa (XOXs--I--I -- XlXs--1).

From (19),p xI, and so, by (18), pa-1 XlXs-1. fO,from (30),

(31) P"- II xox__.
In the case where a 2, we conclude from (17) and (31) that PX Xs-l-I and then from
(19), s 1 I I or, equivalently, I (s 1)/2, as required. For the rest of the proof,
take a > 2. Then (17) and (31) imply that

(32) p-2 II
and, since c > 2 and p]( xi, we deduce s 1 I # I. Combine this with (23) to give

(33) 21 < s- 1.

We now prove (20)-(22) for all 1 < < c 2 by induction on . The case where
I is given by (33), (25), and (32), respectively. Assume that, for some

(34) 2 _< _< c- 2,

(20)-(22) hold for fl 1, so that

(35) I < s- 1,

(36) p’-+llx_x_y for all 0 < j < (fl 1)I,

(37) P’- xs-1-(1-1)I.

Then, to complete the induction on /, we must prove the following:

(38) (e + 1)1 < s- 1,

(39) p’-lx--j for all 0 < j <

(40) pC-C- lxs_l_i.

(41)

We first prove (38). From (36) and (37),

pC-ClXs_l_j for all 0 < j < (/- 1)1.

By (34), c /> 2, and so, from (41),

p2 Xs_l_j for all 0 < j <_ ( 1)I.
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Comparison with (24) shows that

2I < s- 1- (/- 1)I,

which is equivalent to (38).
We next prove (39). From (36), it is sufficient to establish that

(42) for all (;3 1)I < j < 1,

which we prove by induction on j. The case where j (- 1)1 is given by (37). Assume
that for some

(43) (/- 1)I+ 1 <_j < I,

(44) p-lXs_l_k for all (fl- 1)I < k < j.

Put u s 1 j in (16),

(45) pal

By (34), fl > 2, and so

(46) a- + 1 _< a- 1.

Therefore, from (45),

(47) Pa-O+I XiXi+s-l-j.

Now, by (43), j _> (/- 1)I + 1, and, by (34), fl _> 2, so

(48) j >_ I + 1.

We can therefore write (47) in the form

(49) P-+ (xoxs__j +
By (41) and (44),

pa--[3 XiWs_l_j

Together with (19), this implies that

1Si<I,I<i<_j

XiXi+s_l_j -at- XlXI+s_l_j)
for all 1 _< i _< j.

P-/+ XiXi+s-l-j,
l<_i<I,I<i<_j

and so, from (49),

(50) P(-+I (xoXs-X-j " XlXI+s-I-j).

By (48), j _> I + 1, and, by (43), j < I, and so, by (36), p-+l xi+8-1-j. Therefore,
from (50),
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From (17), we conclude that

pa-f+l XOXs_I_j.

pa-f xs-l-j,

completing the induction on j and proving (42) and hence (39).
We lastly prove (40). Put u s 1 I in (16) and use (46) to show that

(51) p_a+X (xox_x_i + l<i<I,I<i<IE
By (39), p-# x+__az for all 1 <_ i _< I. Together with (19), this implies that

l<_i<I,I<i<_I

and so, from (51),
(52) p-+l (xox--z + xix_x_(f_)i).

From (19), p]( xi, and so, by (37), p-# I1 xix__(_)t. Therefore, from (52),

P- II xox--.
We conclude from (17) that

which is (40)..
This completes the induction on/3, proving (20)-(22) for all 1 <
We now use Lemma 3.1 to prove the intended result of this section.
THEOREM 3.2. Let s, t, (xi 0 < i < s) be integers satisfying (1), where s > 1 is odd

and k 1 or 1. Let p be aprime such that p’ II tforsome integer a > 2, and p ]] xo. Then
(i) s_----1 (moda),
(ii) If xi is oddfor all i, then (s 1)(a 2) 0 (mod 4a),
(iii) I (s 1)/a is the unique integersuch that P xi ifand only if i I,
(iv) For all 2 <_ r < a,

(53) pr xj for all j > rI,
(54) pr-1 II

Proof. By Lemma 2.4 (i), let I be the unique integer such that p iz if and only if
i I. Take u s 1 in (1) to give XoXs- +t. Thenp II t and p II x0 imply that

(55) p’-XliXs_l,

and we may apply Lemma 3.1.
We first prove that

(56) I=(s-1)/a.

If a 2, then (56) is given directly by Lemma 3.1. Suppose that a > 2. Apply
Lemma 3.1, taking fl i in (20) to give

(57) 21 < s- 1
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and taking fl a 2 in (21) and (22) to give

(58) p2lx_x_ for all 0 <_ j < (a 2)I,

(59) pllx_x_(_2)i.

From (57) and Lemma 2.8,

(60) p x for all 2I < j < s.

Put j 0 in Lemma 2.9 (i) to show that

(61) pllx2I.

Comparing (58) and (59) with (60) and (61), we conclude that

2I s- 1- (a- 2)I,

which is equivalent to I (s 1)/a. We have therefore proved (56) for a > 2.
Now I is an integer and so from (56), s 1 (mod a). If xi is odd for all i, then

substitution of (56) into Lemma 2.7 gives

(s- 1)/a (s- 1)/2 (mod 2),

or, equivalently, (s 1)(a 2) 0 (mod 4a).
Finally, apply Lemma 3.1 to show that (21) and (22) hold for a > 2 and for all

1 < < a 2. Equations (21) and (22) also hold for fl 0, since then (21) is vacuous
and (22) is given by (55). Combining ranges, (21) and (22) hold for

a_>2 and for all0<_<a-2.

The substitution r c 3, together with (56), then shows that (53) and (54) hold for
a > 2 and for all2 < r < a.

4. Nonexistence results for small a. In this section, we use the results of 2 and
3 to obtain nonexistence results for small values of a, where t 1-Ip. for distinct
primes pj. We express the nonexistence results in the form of restrictions on s and t.

In each case, we state a theorem in terms of integers (x) and then a corollary in
terms of an s x t binary array with Barker structure. Each corollary follows directly from
the preceding theorem by letting (x) be the row sums of the array and using Lemma 2.1,
as in the proof of Corollary 2.11.

We already know from Corollary 2.11 that aj > 2 for each j. The next case of
interest is a 2 for all j. We first explore the case where a 2 for some prime p.

LEMMA 4.1. Let s, t, (xi 0 < i < s) be integers satisfying (1), where s > i is odd,
x 0for at least one odd i, and k i or 1. Let p be a prime such that

(62) p2 II t.

Then p x0, xs_1 and

plx ifand only if i # (s 1)/2,

p2l(Xj -[- Xs_l_j) for all 0 < j < (s 1)/2.



BARKER ARRAYS II 319

Proof. By Lemma 2.10, PII zo, z,_x. Then, by Theorem 3.2 (iii),

(63) p[x if and only ifi (s 1)/2.

We now show that

(64) p2l(x + Xs-l-j) for all 0 _< j < (s 1)/2.

For any 0 <_ j < (s 1)/2, put u (s 1)/2 j in (1) and use (62) to show that

(65) p2 XiXi+(s_l)/2_j.

From (63), p2 [xxi+(8-1)/2-j, unless either i (s- 1)/2 or i+(s- 1)/2-j (s- 1)/2,
so from (65), p2lx(,_l)/2(x + x__). By (63), p’ x(,_)/2, and so p2l(x + x,__),
proving (64).

Subject to the condition s > 3, we now show that c > 2 for some j and use Theo-
rem 3.2 to restrict s when czj 3 for some j. If s 3, (1) has a solution in odd integers
(xi) with k -1, namely, t r2 for some odd r and (xo, xl, x2) (r, 4-1, -r).

THEOREM 4.2. Let s, t, (x 0 < i < s) be integers satisfying (1), where s > 3 and
t > I are odd, xi 7 0for all i, and k 1 or -1. Then

(i) There exists a pime p such that p3 It,
(ii) If q3 Il tforsomeprime q and xi is oddforall i, then s 1 (mod 12).
Proof. Since t > 1, we may write t I-[ P where the (p) are distinct primes and

c > I for all j. By Lemma 2.10, czj > 2 for all j. We seek a contradiction by supposing
that cz 2 for all j, so that

2(66) t IIP.
Applying Lemma 4.1,
(67) pllZo,Z-x forallj,

(68) pjlxi if and only if i # (s 1)/2, for all j,

(69) pl(xi + xs--i) for all 0 <_ i < (s 1)/2, for all j.

Using (66), we deduce from (68) and (69) that

(70) /[x for all/# (s 1)/2,

(71) tl(z + x,__) for all 0 <_ i < (s 1)/2.

Put u s I in (1) to obtain

(72) xox- +t.

Take i 0, s I in (70) and compare with (72) to show that

(73) x0 +Xs-1.
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For any j, take i 0 in (69),

(74) p (x0 + xs-1).

Suppose, if possible, that x0 xs_l. Then, from (74), p]2xo, and so, since pj is odd,
plxo. This contradicts (67), and so x0 x_. From (73),

(75) X0 --Xs--1.

Put u s 2 in (1) and substitute from (75), xo(x_2 x) 0. By hypothesis, x0 0,
and so

(76) Xl Xs--2.

Take i i in (71) and substitute from (76) to give t l2xx. Then, since t is odd, t lxx, and
so from (76),
(77) t lxx, x,_z.

2 from below. By hypothesis, 1 <We now force a contradiction by bounding ’:i xi
s 2, and so x, x_z are not the same variable. Therefore we may write

2 21 .." 2 2
Xi Xs--2 -t- Xs--1)/2 2t Xi"

iy1,s--2,(s--1)/2

Since xi 0 for all i, from (70) and (77), we then have

2 > t2 t2x, + +l+(s-3)t.

Comparing this bound with the value for the left side obtained by putting u 0 in (1)

st +t- 1 > 2t2 + 1+ (s- 3)t,

which is equivalent to (t 1)z < 0. This contradicts t > I and so proves (i).
Suppose now that qa II t for some prime q and xi is odd for all i. From Lemma 2.10,

either q ll x0 or q ll x_x. We may therefore apply Theorem 3.2 (ii), reversing the order
of the (x) if necessary, to show that s 1 0 (mod 12), proving (ii).

COROLLARY 4.3. Let A be an s x t binary array with Barker structure where s > 3 and
t > 1 are odd. Then there exists a prime p such that p3 It. If qa t for some prime q, then
s--=l (mod12).

Given that cj _> 2 for all j and ck > 2 for some k, we next consider the case where
Ck 3 for exactly one k and cj 2 for all j 7 k.

THEOREM 4.4. Let s,t, (x 0 <_ i < s)be integers satisfying (1), where s > 3 and
J whereq,(p)aret > 1 are odd, xi is odd for all i, and k i or -1. Let t q3 I-[j Pj

distinctprimes and aj > l for all j. Then aj > 2for some j.
Proof. By Lemma 2.10, a > 2 for all j. Suppose, for a contradiction, that a 2

for all j, so that

(78) t= q3 YI pff.

By Lemma 4.1,
(79) p xi for all i # (s 1)/2, for all j.
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By Lemma 2.10, either q II x0 or q I! xs-x. We may assume, by reversing the order of the
zi if necessary, that q ll z0, Then, by Theorem 3.2 (iii) and (iv),

q2]x for all 2(s- 1)/3 < i < s- 1,

qlx for all 0 < i < 2(s- 1)/3, i (s- 1)/3.

Together with (79), this implies that

q2 IIp l , for all 2(s- 1)/3 < i _< s- 1,

for all 0 _< i _< 2(s- 1)/3, i # (s- 1)/3, (s- 1)/2,

2 from below,Since xi 0 for all i, we can therefore bound y]i xi

EXi2 > (a-- 1)q4
3 HPJ -I-

1) +

Comparing this bound with the value for the left-hand side obtained by putting u 0 in
(1) and making the substitution 1-Ij P t/qa from (78),

2s 8 1
s+l>

(s-1)q
3 3q q3"

Rearrangement gives

s< q4 + 3q3 + 8q2 3
q2(q_ 1)(q- 2)

which can be written as

(80) s _< 1 + 3f(q),

where

2q3 + 2q2 1
f(q) q2(q_ 1)(q- 2)"

It is easy to check that

f(q) f(q + l)
2q4 + 12q3 + 18q2 + 4q-- 1

(q + 1)2q2(q- 1)(q- 2)

(81) > 0 for allq>3.

Now q is an odd prime, and so q > 3. Therefore, from (80) and (81),

(82) s < 1 + 3f(3) 77/6 < 13.
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By Theorem 4.2 (ii), however, s 1 (mod 12), and, by hypothesis, s > 3. This contra-
dicts (82), completing the proof.

COROLLARY 4.5. Let A be an s x t binary array with Barker structure, where s > 3
and t > i are odd. Let t qa YIj pj where q, (pj are distinctprimes and ( > 1 for all
j. Then > 2for some j.

The final case we consider is cU 2 or 4 for all j. We first explore the case where
c 4 for some prime p. By Lemma 2.10, p’ x0, where 7 1, 2, or 3. The values 7 1
or 3 are covered by Theorem 3.2, leaving only the value 7 2 to deal with.

LEMMA 4.6. Let s, (zi 0 < i < s) be integers and let p be an oddprime such that

(83) P41E xixi+, for all 0 < u < s,

(84) p2110,

(85)

Let 0 < I < s be an integer such that

(86) plxi

Then

(87)

ifand only if i I.

(88) p2lxj,xs_l_j forall 0 < j < [(s 3)/4J.

Ifalso

(89) x0 -x8_1,

then

(90) pZlx for allj (s- 1)/2.

Proof. We may assume, by reversing the order of the (xi) if necessary, that

(91)

We show, by induction on j, that

(92) p2 xj, x__j

I < (s- 1)/2.

for all 0 _< j _< [(I 1)/2/.

The case where j 0 is given by (84) and (85). Assume that for some

(93) 1 < j < [(I- 1)/2J,

(94) PzlX,X--k for all 0 < k < j.

Put u s 1 2j in (83), showing that

(95) p31 xixi+s-t-2j + xjxs-t-j Z xixi+--2
i=j+l
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By (94),p2]xforal10 _< i <_ j-1. By (91) and (93),s-l-2j > Iandsoby- Similarly,(86), p lxi+,__2 for all 0 < i < j 1. Therefore pa =0 xx+,__2.
2jp31 =+x xxi+-x_2. Then, from (95),

p3 XjXs_l_j

and so
(96) eitherp2lxj or pZlx_l_.
Now take u s 1 j in (83),

(97) p4 xox,__ + xx+__; + xx,_
i=1

j--1By (94), plzi, z+__ for all 1 _< i <_ j 1, and so Pel Y= ziz+_l_. Therefore,
from (97),

p4 (XoXs-l-j + XjXs-1).

Then, from (84) and (85),
p2 ixj if and only if p2

Therefore, using (96),
p2 Xj Xs_l_j

completing the induction on j and proving (92).
Put u s 1 ! in (83) to show that

We next prove (87), considering separately the cases I even and I odd.
Suppose first that I is odd, so that (92) and (98) become

(99) p2[x, xs__j for all 0 < j <_ (I 1)/2,

(100) p31 xiXi+s_l_I -[- XiXi+s_l_I -+-XlXs_I

i=(I+l)/2

From (99), pZlx+--z for all (I + 1)/2 < i < 1 1, and so, by (86), pa
xixi+-l-Z. Therefore, from (100),

(101) p3 xixi+--I + xix_

From (86), p xi, and so, by (85), p2 II xix _x. Therefore, from (101),

(x-i)/2

(102) p2 II x,x,+,-x-I.
i-----0
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Now, from (99), p2 ix for all 0 < i < (I 1)/2. Suppose, if possible, that s 1 I > I.
X"(I-1)/2Then, by (86), p xi+8_1_i for all 0 < i < (I 1)/2, and so pa

contradicting (102). Therefore s 1 I <_ I, which combines with (91) to give I

Suppose instead that I is even, so that (92) and (98) become

(103) p2[xj,x_l_j for all 0 <_ j <_ 1/2 1,

I1 I--I

(104) pa x,x,+,-_z + xz/x,-_z/ +
\ i=I/2+1

Suppose, if possible, that

(105) s- 1- I > I.

From (103), p2 xi for all 0 < i < 1/2 1 and p2 xi+s_l_I for all 1/2 + 1 <_ i < I 1.
[X-I/2--1 I--iHence, by (86) and (105), p3 z_,i=0 izi+-1-i + -]i=i/2+i zizi+,-l-i), and so,

from (104),

p3 (xz/2x,__z/2 + XIXs-1).

As before, p2 I1XlXs-1, and therefore

p2 II XI/2Xs-I-I/2"
It follows from (86) and (91) that

(106) Pllxz/z,

(107) PllZ-l-Z/2.
ApplyLemma 2.9 (ii) for all 0 < j < 1/2 so that, from (103), p2 zj for all 31/2 < j < 2I.
Apply Lemma 2.8 to show that p2 [zj for all 2I < j < s. Combine to give

(108) p2lzj for all 3I/2 < j < s.

Apply Lemma 2.9 (i) with j 1/2 so that, from (106),

(109) p ll
Comparing (103) and (107) with (108) and (109), we conclude that

s 1 1/2 31/2,

contradicting (105). Therefore s 1 I < I, which combines with (91) to give (87).
We therefore have I (s 1)/2, regardless of whether I is even or odd, and the

form (88) is obtained by substituting for I into (92).
Suppose finally that (89) holds. By (87), the form (90) is equivalent to

(110) p2 [xj,Xs-l-j for all 0 < j < I,
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which we prove by induction on j. The case where j 0 is given by (88). Assume that,
for some

(111) 0 < j < I,

(112) p2lxk,Xs_l_k for all 0 < k < j.

Put u s 1 j in (83),

j-1By (112), pa ]= zz+,__j, and then substitution from (89) into (113) gives

pa lx,_ (x Xs-l-j).

Then, from (85),

(114) p21(xj Xs-l-j).

By (111), I j > 0 so we may take u I j in (83) and use (87) to show that

From (86), PZl ]i,z xix+z-, and so

p2 lxi(xj + Xs-l-j).

However, p’ x1 by (86), and therefore

(115) p21(x -- Zs_l_j).Summing (114) and (115), p212x and, since p is odd, pZ zj. Therefore, from (115),

p2 Xj,Xs_l_j

completing the induction on j and proving (110) and therefore (90).
We can now treat the case where c 2 or 4 for all j.
THEOREM 4.7. Let s, t, (xi 0 < i < s) be integers satisfying (1), where s > 3 and

t > 1 are odd, xi 0for all i, and k 1 or -1. Let

(116)

where the (p qk are distinctprimes. Then s =_ 1
Proof. Suppose, for a contradiction, that

(mod 4).

(117) s ------ 3 (mod 4).
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Applying Lemma 4.1,

(118) p llxo, forallj,

(119) pjlxi if and only if (s 1)/2, for all j.

By Lemma 2.10,

(120) q- _4-- for all k

where each 7k 1, 2, or 3. By Theorem 3.2 (i), if 7k 1 or 3 for any k, then s 1
(mod 4), contradicting (117), and so, from (120),

(121) q II z0, Xs-1 for all k.

Then, by Lemmas 2.4 and 4.6,

(122) qlx if and only if i # (s 1)/2, for all k.

Using (116), we deduce from (118) and (121) that

(123) x/ x0, x8-1.

Put u s 1 in (1), giving xoxs_ +t. Then (123) implies that

(124) x0

Now from (116) and Theorem 4.2 (i), there exists some k such that q It. For any
such k, take u (s 1)/2 in (1) and use (117) to write

(s--3)/4 (8--3)/2

(125) q (xox(-x)/2 + xx+(-x)/2 + ZiXiT(s--1)/2 "4-X(s--1)/2Xs--1).
i--1

Applying Lemma 4.6,

i--(s+1)/4

qlxi, xs_x_ for all 0 < i < (s 3)/4,

which, together with (122), implies that ql(,=-3)/a
xixi+(8_i)/2+

--3)/2

i=(8+)/4 xxi+(8-1)/2). Therefore, from (125),

qa (_x)/2(o -4- w_x),

and since, by (122), q x(_i)/2,

(126) q (xo + Xs-1).

Suppose, if possible, that xo x_x. en, from (126), q 12xo, and so, since qk is odd,
qlxo. is contradicts (121), and so xo # x_l. From (124),

(127) xo -x_.

Now we can apply mma 4.6 to obtain

(128) qlx for all i # (s 1)/2, for all k.
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Together with (116) and (119), this gives

(129) vlx for all i # (s 1)/2.

Take u s 2 in (1) and substitute from (127),

xo(z_ x) o.

Since x0 # 0,

(130)

Next, take u (s 3)/2 in (1),

t (XlXCs--1)/2 "Jr-(131)

Xl Xs--2.

iy1,(s--1)/2
XiXi+(s_3)/2 "- X(s--1)/2Xs--2)

2Now, from (116), pa2. It for all j, and so (119) and (131) imply thatp (x / x-2) for all
9. for all j. Similarly, qlt for all k, and so (128), (130),j. Then (130) gives pilxx, x_z

and (131) imply that qlx, x-2. Combining and using (116),

(132) tlx,x_2.

We now proceed as in the proof of Theorem 4.2 (i), using (129) and (132) to show that
(t 1) < 0, contradicting t > 1. Therefore we conclude that (117) is false, and hence
s------1 (mod4).

COROLLARY 4.8. Let A be an s x t binary array with Barker structure where s > 3 and
t > 1 are odd. Let t rIj p where the (pj) are distinctprimes and cj 2 or 4for all j.
Then st 1 (mod 4).

Proof. By Theorem 4.7, s _= 1 (mod 4). Since t is the product of even powers of
primes, t--- 1 (mod 4). Therefore st =_ 1 (mod 4).

This completes our analysis for small values of cy.
The nonexistence results in this paper, for s t binary arrays with Barker structure

where s, t are odd, are all based on (1). Using (2) as well as (1), we may interchange s
and t in each of our results. In particular, we can exclude the case where s 3 and t > 1
by Corollary 2.11. We conclude this section by summarizing the nonexistence results
arising from both (1) and (2), although for clarity we mostly do not repeat results with s
and t interchanged.

THEOREM 4.9. Let A (a be an s x t binary array with Barker structure where
s, t are odd and s > 1. If st _= 1 (mod 4), then 2st 1 (- -] aij )2, s t _= 1
(mod 4)andp 1 (mod 4)foreachpmepdividingsort. Ift 1, thens=3, 5, 7, 11,
or 13. Otherwise, if t > 1, write t YIj pj where the (pj) are distinctprimes and aj >_ 1

for all j. Then
(i) aj >_ 2for all j,
(ii) ak > 2for some k,
(iii) Ifak 3for some k, then s _= 1 (mod 12),
(iv) If ak 3for some k, then aj > 2for some j k,
(v) /f aj 2 or 4for all j, then st _= 1 (mod 4).
5. Comments. The smallest odd value of st > 13 for which the nonexistence of

an s x t binary array with Barker structure is not determined by Theorem 4.9 occurs at
{s, t} {35 36 }. The existence ofsuch an array implies the existence ofa (177147, 88573,
44286)-difference set in Ze4a x ZTz [2].
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In our opinion, the apparent scarcity of solutions to the necessary equations, both in
the row and column sums, provides good reason to doubt the existence of an s x t binary
array with Barker structure where st > 13 is odd.
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ON THE ENUMERATION OF STEINER-TREE TOPOLOGIES FORTHE POINTS
ON A CIRCLE*

KENNETH R. VOLLMARt AND YANJUN ZHANGt

Abstract. The problem of counting the number F(n, s) of Steiner-tree topologies with s Steiner points
for n points on a circle is considered. The paper shows that F(n, s) is closely related to the number F* (n, s)
of Steiner-tree topologies with s Steiner points for n arbitrary points, which was studied by E. N. Gilbert and
H. O. Pollack in their seminal paper on Steiner minimal trees [S/AM Y. Appl. Math., 16 (1968), pp. 1-29].
Specifically, it is shown that F(n, s) F*(n, s)/R(n), where R(n) (n 1)!/2n-2, independent of s.

Key words. Steiner-tree topology, enumeration, convex polygon

1. Introduction. In their seminal paper [GP68], Gilbert and Pollack studied the
problem of finding a shortest network, called the Steiner minimal tree (SMT), that con-
nects a set of given points on the Euclidean plane. An SMT for a set P of given points
may contain vertices not in P. These vertices are called Steinerpoints. The points in P
are called regularpoints. We can show that an SMT must satisfy the conditions that (i)
any two edges meet at an angle of at least 120, and (ii) every Steiner point has degree
exactly 3. These conditions imply that all leaves of an SMT are regular points and that
every Steiner point is incident to exactly three edges, any two of which must meet at an
angle of 120. It is possible, though only by rarest accident, that a regular point of an
SMT is incident to three edges. Computing an SMT for a set of points at general posi-
tions was shown a decade later to be NP-hard computationally [GGJ77]. An expository
account on SMT can be found in a recent article [BG89].

In an attempt to explore enumerative methods for computing SMT, Gilbert and
Pollack examined, in the same paper, the problem of counting the number of possible
topologies corresponding to the underlying graph of an SMT. They considered the con-
nected graphs, each ofwhich we call a Steiner-tree topology, on n labeled regular vertices
and s unlabeled Steiner vertices in which the degree of each regular vertex is at most
2 and the degree of each Steiner vertex is exactly 3. They ruled out regular vertices of
degree 3 by citing the rare occurrence of such regular points in an SMT. Two Steiner-
tree topologies of n regular vertices and s Steiner vertices are different if their graph
adjacency matrices are not identical under any permutation of the Steiner vertices, as
the Steiner vertices are unlabeled. We can easily show by induction that n > s + 2.
Let F* (n, s) be the number of different Steiner-tree topologies with n labeled regular
vertices and s unlabeled Steiner vertices. Gilbert and Pollack showed that, for n > s + 2,

(1) F*(n,s)= (ns+2)(n+s-2)!2s!
In this paper, we report an interesting numerical relation between F* (n, s) and the

number of Steiner-tree topologies of a restricted type. We consider the problem of
counting the number of different Steiner-tree topologies corresponding to the restricted
SMT problem, where the regular points are the vertices of a convex polygon, or points
on a circle as the topologies are concerned. Note that the degree of a regular point of a
SMT in this case must be 1 or 2, not 3. To reflect the restraints on the resulting Steiner-
tree topologies, we require that the corresponding Steiner-tree topology be a connected
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planar graph inside the circle of its regular points when its labeled regular vertices are
arranged in a circle in increasing order. Let F(n, s) be the number of such Steiner-tree
topologies on n labeled regular vertices and s unlabeled Steiner vertices. The main result
of this paper is the following theorem, which we prove in the next section.

THEOREM 1. For n >_ s + 2,

(2) F(n,s) R(.)
where

(3) R(n) (n- 1)!

independent of s.
COROLLARY 1. For n > s / 2,

F(n,s) (ns+2) 2’-s-2(n + s-

There is a geometric view of F* (n, s) and F(n, s). Arrange the labeled regular ver-
tices of an arbitrary Steiner-tree topology on a circle in the increasing order and draw
the topology inside the circle of the regular vertices. This may result in "edge crossing"
in the layout of the topology. The Steiner-tree topologies we considered are precisely
those that result in no edge crossing. Theorem 1 states that the restriction of no edge
crossing in the layout of the topology when the regular vertices are arranged along a
circle reduces the number of Steiner-tree topologies of n regular vertices and s Steiner
vertices exactly by a factor of R(n) 2-(’-2) (n 1)!, independent of s. Our proof of
Theorem 1, however, provides no intuitive explanations for this geometric view.

It is an open question whether the problem of computing an SMT for the vertex set
of a convex polygon can be solved exactly in polynomial time. The best known result is a
fully-polynomial approximation scheme given by Provan [Pro88]. We may attempt to use
an enumerative method ofsome sort to find the exact solution. Then the quantity F(n, s)
gives the possible number of Steiner-tree topologies, exponential in n, that may have to
be considered. In fact, the relation between F(n, s) and F* (n, s) was first observedwhen
the first author used a computer to generate all possible Steiner-tree topologies of the
SMT for the vertices of a convex polygon with a small number of vertices.

Table 1 shows all F(n, s)’s for n < 10, computed by Corollary 1, in which F(n, s)
exhibits a rapid growth as n increases.

2. The proof. In this section, we prove Theorem 1. We prove a sequence oflemmas,
of which the first two are central to the proof of the theorem. For brevity, we call a
Steiner-tree topology simply a topology.

Let L(n, s) be the set of topologies with n labeled regular vertices and s Steiner ver-
tices that are connected planar graphs when the n labeled regular vertices are arranged
on a circle in the increasing order. Thus, F(n, s) [L(n, s)l. Let v be a fixed regu-
lar vertex and let Lv(n, s) be the set of topologies in L(n, s) in which v is a leaf. Let
-v(n, s) L(n, s) \ L(n, s), the set of topologies in L(n, s) in which v is not a leaf.
Let F(n, s) IL(n, s)l and F(n, s) IL(n, s)l F(n, s) Fv(n, s). By symmetry,
F, (n, s) F(n, s) for two regular vertices v and u.

LEMMA 1. For n >_ s + 2,

s+2
(4) F,,(n,s) F(n,s).

n
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TABLE 1
F(n, s) for n <_ 10.

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=lO

s 0 1 3 8 20 48 112 256 576 1,280

s 1 1 8 40 160 560 1,792 5,376 15,360

s 2 2 25 180 980 4,480 18,144 67, 200

s 3 5 84 784 5,376 30, 240 147, 840

s 4 14 294 3, 360 27, 720 184,800

s 5 42 1,056 14, 256 137, 280

s 6 132 3,861 60,060

s 7 429 14,300

s 8 1,430

Total 1 4 18 90 486 2,772 16,452 100,602 629,550

Proof. A topology with s Steiner vertices has s + 2 leaves. Hence, ,vev Fv(n, s)
(s + 2)F(n,s) as each topology appears s + 2 times in the summation. However,
vF(n, s) nF(n, s) by symmetry. The lemma follows, tq

LEMMA 2. For n > s + 2 and s > 0,

(5) Fv (n, s) 2Fv (n i, s) + Fv (n, s I).

Proof. LetTbe a topology in L,(n, s) inwhich v is a leaf. Let u be the vertex adjacent
to v in T. Consider two cases.

Case 1. u is a regular vertex. In this case, by the planarity ofthe topology in the circle,
u must be one oftwo neighboring vertices ofv on the circle. The reduced topology T\{v}
corresponds to a topology in L(n 1, s), and this correspondence is unique. Hence,
there are 2F,(n 1, s) topologies in this case.

Case 2. u is a Steiner vertex. In this case, u has degree 3 and is adjacent to v and two
other vertices w and x. Let T’ be the topology resulting from contracting u to v. Now v
is of degree 2 in T’, adjacent to w and x, and T’ has s 1 Steiner vertices and n regular
vertices. Furthermore, T’ is planar. Thus, T’ corresponds a topology in L,(n, s 1),
and this correspondence is unique. Hence, there are Fv (n, s 1) topologies in this case.
The lemma follows. [:]

LEMMA 3. For n > 2,

0) 0)

Proof. A topology in L(n, 0) is simply a nonintersecting path connecting all the n
vertices on the circle. We traverse the path from one endpoint a of the path. Let v
be the latest traversed point of the path. Let u(w) be the closest vertex to v on the
circle clockwise (counterclockwise) that has not been traversed. At each step, the path
can only be extended from v to either u or w, giving two different paths. Hence, the
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number of such paths with endpoint a is 2’-. The number of choices for a is n, and
each path has two endpoints, and thus is counted twice. Hence, F(n, 0) n2’-. To
verify the second equality, note that, by (1), F* (n, 0) (g)(n 2)! 1/2nl. Then, by (3),
F*(n, O)/R(n) 1/2n! 2n-2/(n- 1)! n2n-3. l-1

LEMMA 4. For s >_ O,

F(s + 2, s) (2:) 1 F*(s + 2, s)
s + 1 R(s + 2)

Proof. When n s + 2, the Steiner-tree topology is a full topology. The fact that
F(s+ 2, s) (fl)(1/(s+ 1))is well known [Coc69], [Niv65, Chap. 11], where the integer
(fl) (1/(s + 1)) is, in fact, the sth Catalan number. To verify the second equality, note
that, by (1) and (3),

F*(s+2, s) (2s)! 2s (2:) 1
R(s+2) 2s[ (s+l)! s+l

We now return to prove our main result.
Proofof Theorem 1. By Lemma 3, we must only verify the theorem for s > 0. We

use induction on d n s.
Basis. d 2. By Lemma 4, Theorem 1 holds for d 2.
Inductive step. Assume that the theorem holds for n and s such that n s < d
Consider the n and s > 1 such that d n s > 2. Substituting (4) into (5) and

noting that F(n, s) F(n, s) F(n, s), we obtain

9+______:_ s) 2(s + 2)F(n 1, s) + F(n, s 1)
8 + 1

n-1n n
-F(n,s-1)

o

n-s-1
(6) f(n, s)

2n
F(n 1, s) + f(n, s 1).

n-1 s+2

Applying the induction hypothesis to F(n 1, s) and F(n, s 1) in (6),

(7) F(n,s)
2n

x F*(n- l,s) +n-s-1 x F*(n,s-1)
n- 1 R(n- 1) s + 2 R(n)

Substituting (1) into (7) and noting that R(n) (n 1)!/2’-2 ((n 1)/2)R(n 1),

F(n,s)

which is (2). The induction is complete.
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COUNTING EMBEDDINGS OF PLANAR GRAPHS USING DFS TREES*

JIAZHEN CAUf

Abstract. Previously counting embeddings ofplanar graphs used P-Q trees and was restricted to biconnected
graphs. Although the P-Q tree approach is conceptually simple, its implementation is complicated. In this paper,
the author solves this problem using DFS trees, which are easy to implement. The author also gives formulas
that count the number of embeddings of general planar graphs (not necessarily connected or biconnected) in
O(n) arithmetic steps, where n is the number of vertices of the input graph. Finally, the algorithm can be
extended to generate all embeddings of a planar graph in linear time with respect to the output.

Key words, graph, depth-first search, embedding, planar graph, articulation point, connected component
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1. Introduction. In 14 Wu stated the following four basic planar graph problems:
1. Decide whether a connected graph G is planar;
2. Find a minimal set of edges the removal ofwhich will render the remaining part

of G planar;
3. Give a method of embedding G in the plane in the case where G is planar;
4. Enumerate and count all possible planar embeddings of G in the plane in the

case where G is planar.
Wu solved all these problems using systems of algebraic equations. His solutions

are elegant, but his implementations are not so efficient. Other solutions to these problems
basically follow two different approaches. One uses DFS trees [4], [8 ]; the other uses
P-Q trees [3], [5], [9]-[11].

The P-Q tree approach is considered to be conceptually simpler, but its implemen-
tation is much more complicated. Efficient P-Q tree solutions have been discovered for
all the four problems. Lempel, Even, and Cederbaun 10] solved problem 1. Chiba et
al. solved problems 3 and 4 5 ]. These solutions are all linear-time. Recently, Di Battista
and Tamassia [6] have claimed an O(log n)-time-per-operation solution to the problem
of maintaining a planar graph under edge additions, which implies an O(m log n)-time
solution to problem 2. Here m is the number of edges, and n is the number of vertices
ofthe input graph. On the other hand, the DFS tree approach was used only for problems
and 2: a linear-time DFS tree algorithm (the HT algorithm) for problem was given

by Hopcroft and Tarjan [8] in 1974, and an O(m log n)-time algorithm for problem 2
was given by Cai, Han, and Tarjan [4] recently. The HT algorithm can also be extended
to solve problem 3, but the modification is complicated.

The previous solutions for the four planar graph problems all consider biconnected
graphs only. The extension from biconnected graphs to general graphs is straightforward
for problems 1-3, but not for problem 4. For connected graphs, Stallmann 12 solved
the enumeration version of problem 4 in time linear to the size of the output, but his
solution for the counting problem is complicated and cannot be accomplished in poly-
nomial time. For unconnected graphs, we know no published solution for problem 4.

In this paper, we give an O(n)-time DFS tree solution for the counting version of
problem 4. While the P-Q tree solution in 5 only counts the embeddings ofbiconnected

Received by the editors January 2, 1991; accepted for publication (in revised form) August 20, 1992.
Part of this work was completed while the author was visiting the University of Wisconsin-Madison. The
research of this author was partially supported by National Science Foundation grant CCR-9002428.
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graphs, we also solve the interesting combinatorial problem of counting embeddings of
general graphs. Our algorithms extend easily to generate one embedding or all embeddings
of a planar graph in time linear to the input and output, and hence solve problems 3
and 4. Thus, we complete the DFS tree solutions for the four planar graph problems.

The rest of the paper is organized as follows. Section 2 is preliminaries. We solve
the counting problem for biconnected graphs in 3 and then show how to count embed-
dings for more general planar graphs in 4 and 5.

2. Preliminaries. Consider an undirected graph G (V, E) with vertex set V and
edge set E. Denote ]V[ by n and ]E] by m. We assume that G has no self loops and
has no multiple edges. We can draw a picture H on a surface, which can be either a plane
or a sphere, as follows: For each vertex v 6 V, we draw a distinct node v’; for each edge
(v, w) 6 E, we draw a simple arc connecting the two nodes v’ and w’. We call this arc
an embedding of the edge (v, w). If arcs ofH do not cross each other, we say that H is
an embedding of G. An embedding on the plane is called a planar embedding, and an
embedding on the sphere is called a sphere embedding. It is easy to see that G has a
planar embedding if and only if it has a sphere embedding. If G has an embedding, then
we say that G is planar. Since we are interested only in graphs with no isolated vertices,
we will frequently identify graphs with their edge sets.

One easy transformation between planar embeddings and sphere embeddings is the
sphere projection shown in Fig. 1. Under the sphere projection, each point on the sphere,
except the projection center o, has a distinct image on the plane, and each point on the
plane is the image of some point on the sphere. Let H be a sphere embedding of a graph
G with f faces. According to Euler’s formula [2 ], if G has m edges, n vertices, and c
connected components, then f m n + c + 1. Using the sphere projection, we can
get ftopologically different planar embeddings of G from a given sphere embedding of
G by selecting the center of projection in different faces. Thus, if G has N sphere embed-
dings, then it has Nfplanar embeddings.

We will represent embeddings by their planar maps and adjacency relations. A
planar mapMfor a given embedding H of G is a mapping from Vto lists ofE such that,
for each v 6 V, M(v) gives the clockwise circular ordering of the edges around v in H.
In this case, we say that H and M match each other. For connected graphs, sphere
embeddings with the same planar map are topologically equivalent. Therefore we need

FIG. 1. Sphere projection.
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C

FIG. 2

only count planar maps in this case. However, for graphs with more than one connected
component, planar maps do not specify the relative positions ofthe embeddings ofdifferent
connected components.

Let H be a sphere embedding of G. We define an adjacency relation R on the set
of faces of the embeddings of different components in H as follows. Let C1, Ck be
the connected components of G, and let H1,..., Hk be the embeddings of C1,..., C
in H, respectively. We say that two embeddings Hi and Hj are neighbors of each other
in H if there is a face in H whose boundary contains edges from both Ci and Cj. If Ci
and Cj. are neighbors in H, then there is a face Fi of Hi that contains/-/, and a face F
of H9 that contains Hi. In this case, we say the two faces Fi and F are adjacent to each
other, and the unordered pair (Fi, F) is in R. Thus, in general, a sphere embedding can
be specified by a planar map plus an adjacency relation.

The following facts are important to our discussion.
Observation 1. Let C be a simple closed curve on the plane as in Fig. 2; let a be

a point inside C and b be a point outside C. Then any curve that joins a and b will
cross C.

Observation 2. Let G1 be the undirected graph represented by Fig. 3, where P is a
path joining the two vertices a and b on cycle C. Then in any embedding of G1, all the
edges of path P are on the same side of the cycle C.

Observation 3. Let G2 be the undirected graph represented by Fig. 4, where a l, a2,

bl, and b2 are four distinct vertices that appear in order on C. Then, in any embedding
of G2, the two paths P1 and P2 are on opposite sides of the cycle C.

Observation 4. Let G3 be the undirected graph represented by Fig. 5, where a, Cl,

c2, and b are vertices that appear in order on C, and c and c2 may be the same. Then,
in any embedding of G3, the two subgraphs P1 (containing paths from Ol to a, b,
and c and P2 (containing paths from o2 to a, b, and c2) are on opposite sides of the
cycle C.

All four of the above observations are intuitively obvious and can be proved by the
Jordan Curve Theorem 7 ], 13 ].

C

a

FIG. 3
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al

C

2
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b

FIG. 4

C

FIG. 5

3. Number of embeddings for biconnected graphs. We first discuss how to count
planar maps of biconnected graphs. We will reduce this problem into a sequence of
successively simpler problems before we eventually solve it.

In this section, we assume that G (V, E) is given in its DFS representations [1 ],
where V 1,..., n } is the set ofDFS numbers ofthe vertices in G, and E is partitioned
into a set of tree edges T and a set of back edges B. If[v, w] is a tree edge, the v < w. If
[v, w] is a back edge, then w < v, and there is a tree path in T from w to v. In either
case, we say that [v, w] leaves v and enters w and is connected to v and w.

We define successors for both vertices and edges. If[v, w] is a tree edge, then w is
a successor of v. If v, w] is a tree edge and w, x] is any edge, then w, x] is a successor
of[v, w]. Back edges have no successors. We also define descendants and ancestors for
both vertices and edges. A descendant ofvertex (respectively, edge) x is defined recursively
as either x itself or a successor of a descendant of x. If y is a descendant of x, then x is
an ancestor of y. If y is a successor of x, then x is a predecessor of y.

In this section, we also assume that G is a biconnected graph with at least two edges.
Then each tree edge has at least one successor, and T forms a tree with only one edge
leaving the root.

Let e v, w] e E. Let Y be the set of vertices y such that there exists a back edge
[x, y] that is a descendant of e. Then Yis not empty. We define low1 (e) to be the smallest
integer in Y and low2(e) to be the second smallest integer in Y LJ n + . The two
mappings low1 and low: can be computed in O(m) time during the depth-first search on
G 8 ]. Since G is biconnected, it has no articulation points. Thus, if v is not the root of
T, then lowl (e) < v [1].

As in [8], we define the function 4) on E as follows:

2 low (e)
ok(e)

2 low(e) +

if low:(e) >= v, where e [v, w],

otherwise.
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For each vertex v 6 V, we arrange all the edges leaving v into a list q,(v) in increasing
order by their values. The ordering can be computed in O(m) time using a bucket
sort. The first edge in if(v) is called the reference edge of v, denoted by 6’v,ref. We use E0

to represent the set of all nonreference edges in E.
For e v, w] 6 E, we define S(e), the segment of e, to be the subgraph of G that

consists of all the descendants of e. We use ATT(e) to denote the set of back edges
[x, y] in S(e) such that y is an ancestor of v. Each back edge in ATT(e) is called
an attachment of e. Thus, if [x, y] is an attachment of e, then low(e) <-_ y <-_ v. If
lOWl(e) < y < v, then we say that [x, y] is normal. Otherwise, we say that [x, y] is
special.

For each edge e v, w] E, we define cycle(e) as follows: If e is a back edge, then
cycle(e) e } tO e’: e’ belongs to the tree path from w to v if e is a tree edge, then
cycle(e) cycle(ew, rey). Since we assume that G is a biconnected graph with more than
one edge, then, for any edge e [v, w] E, cycle(e) is defined. The only edge on
cycle(e) that enters v is denoted by ev,in. If v is not the root, then ev,in is the only tree edge
entering v. Each embedding Ce of cycle(e) is a simple closed curve, which divides the
plane (or sphere) into two regions. When we travel on Ce along the direction of its edges,
we see one region on the left-hand side and the other region on the fight-hand side. We
use sub(e) to denote the subgraph S(e) tO cycle(e). It is easy to see that the vertex
low (e) is always on cycle(e), and sub(e) S(e) { e’: e’ belongs to the tree path from
low (e) to v ). If e is the only tree edge leaving the root, then sub(e) is the whole graph.

Figure 6 illustrates some of these definitions, where e [4, 5 ]; low (e) 1;
low2(e) 2; cycle(e) {[4, 5], [5, 6], [6, 7], [7, 8], [8, 1], [1, 2], [2, 3], [3, 4] } S(e)
contains all the edges in the graph except 1, 2 ], 2, 3 ], 3, 4 ]; sub(e) is the whole graph;
ATT(e) {[8, 1], [9, 3], [12, 1], [14, 2], [13, 4]).

3.1. Partial maps. Let H be an embedding of G. Let M be the planar map of H.
For each v 6 V, we assume that the list M(v) starts from the edge 6’v,in. For any vertex v
in V and any two edges ei and ej. connected to v, if ei appears before ej in M(v), then
we say that ei is embedded on the left ofej and e is embedded on the right ofei in H.

A mapping M’ from V to lists of edges in E is called a partial map of G if there is
a planar map M of G such that, for each v V, M’(v) can be obtained from M(v) by

tree edge

back edge

FIG. 6
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deleting all the edges entering v. In this case, we say that M is an extension of M’. If H
is an embedding that matches M, we also say that H and M’ match each other. The
following lemma establishes the one-to-one correspondence between planar maps and
partial maps.

LEMMA 1. IfM’ is a partial map ofG, then there is a unique planar map M ofG
that is an extension ofM’.

Proof. Let H be an embedding of G that matches M’. Let M be the planar map of
H. We show that M is uniquely determined by M’.

Let label be a numbering of back edges from to B[ such that, for any v V, for
any two edges ei and ej leaving v, and for any two back edges ti S(ei and tj 6 S(e), if
M’(v) [..., ei ej-,...], then label(ti < label(t). It is clear that label is uniquely
determined by M’.

Let v V. Let e be an edge leaving v. Let in(e) be the set of back edges in S(e)
entering v, not including ev,in. Let back(e) be the unique back edge on cycle(e). Consider
an edge in(e). By the definition of label, we know that is embedded on the left of e
in H if and only if label(t) < label(back(e)). Thus, the position of in M(v) relative to
e is uniquely determined by M’.

Then consider two edges t and t2 in in(e) such that either label(t) < label(t2) <
label(back(e)) or label(back(e)) < label(t) < label(t2). Again, by the definition of
label, we know that t is embedded on the right of t2. Thus, for any two edges in
in(e) tO {e}, their relative positions in M(v) are uniquely determined by the map-
ping label.

Now consider any two edges e; and ej- in M’(v) such that e appears before e in
M’(v). Since G is biconnected, then all edges in in (ei) tO { ei are embedded on the left
of all the edges in in ej) tO {e} in H. Thus, M( v is uniquely determined by label.

Therefore, to count planar maps, we need only to count partial maps.
The above proof also suggests a simple linear-time algorithm that builds a planar

map M from a partial map M’. First, we compute the mappings label, back, and in in
a depth-first search on G, which takes O(n) time (recall that, for a planar graph, rn
O(n).) Then, for each edge e [v, w] E, we split in(e) into two lists Le [l, li
and Re [r, r] such that label(r) > > label(rj) > label(back(e)) >
label(l > > label(li). This can be done again in O(n) time using a bucket sort.
For each v in V, let M’(v) [e ek]. Then M(v) [ev,in] + Le, + [e] + Re, +

+ Lek + [ek] + Rek, where + is the list concatenation.

3.2. Singular edges. We call an edge e v, w] in Eo singular if lowz(e) >= v. A set
of all singular edges leaving the same vertex and having the same low value is called a
singular set. We have the following lemma.

LEMMA 2. Let M’ be a partial map ofG. Let ei v, wi] and ej v, w] be two
edges on the same side ofe,rey in M’ v Ifoh( ei oh(e), then both ei and e are singular.

Proof. We prove this lemma by contradiction. Suppose that one of ei and ej., say
ei, is not singular. Then low2(e) < v. Since oh(el) 4(ej.), then low(e) < v also. By
Observation 4, S(e and S(ej) cannot be embedded on the same side of cycle(
Therefore, ei and e cannot be embedded on the same side of e,ref, a contradiction. []

LEMMA 3. Let e v, w] and e v, w] be two edges in a singular set. Let M’
be any partial map of G. Let M’ be a mapping obtained from M’ by switching the
positions ofthe two edges ei and e in M’( v ). Then M’ is also a partial map ofG.

Proof. Let H be an embedding of G that matches M’. Since ei and ej are in the
same singular set, then low (ei) low (e). Also, v and low (ei) are the only two vertices
that are shared by S(ei ), S(ej), and the rest of G. Therefore, either one of S(ei and
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S(ej) can be reembedded into any face in H whose boundary contains the two vertices
v and low (ei). In particular, we can obtain another embedding H’ of G from H by
switching the positions of the embeddings of S(ei and S(ej). Then M’ is the partial
map that matches H’. Vq

3.3. Feasible maps and valid partitions. If U is a set and X, Y are two disjoint sets
such that X U Y U, then we call [X, Y an ordered partition of U. Let Q LL, RR
be an ordered partition of E0. We say that Q is a valid partition of Eo if there exists an
embedding H of G such that in H, each edge [v, w] LL is embedded on the left of
ev,ref, and each edge v, w] RR is embedded on the fight of ev,ref. In this case, we say
that Q is derived from H. IfM is a planar map or partial map of G that matches H, we
also say that Q is derived from M.

Let M’ be a mapping from V to lists of edges in E such that, for each v V, M’(v)
is a permutation of the edges leaving v. We call M’ a feasible map of G if there exists a
valid partition Q [LL, RR] of E0 so that, for all v V, if M’(v) [/1 Is, ev, ref,

rl, rt], then (1) l, l LL, and r, rt RR, and (2) qS(ll) >-- >-- qS(l)
and 4(r _-< =< qS(r).

LEMMA 4. A mapping M’from V to lists ofedges in E is a partial map ofG ifand
only ifM’ is a feasible map ofG.

Proof. Suppose that M’ is a partial map. Let H be an embedding of G that
matches M’, and let Q [LL, RR] be the unique valid partition derived from H. Let
v V. Let M’(v) [11, Is, ev, rey, rl, rt]. Then condition in the definition
of feasible map is trivially true. To see that condition (2) is also true, consider two edges
ei and ej- in M’(v) with ck(ei) > 4(e). We need to show that (i) if both ei and e belong
to LL, then ei appears before e in M’(v), and (ii) if both of them belong to RR, then
ei appears after ej in M’(v). Assume that both e and e are in LL. Then ei, therefore
the whole S(ei ), is embedded on the left of cycle(ev, ref). The condition 4(ei > dp(ej)
implies that there is a back edge [x, y] in S(ei) such that lowl(e) < y < v. Since the
tree path from low(e) to v is shared by cycle(ev, ref) and cycle(ej), then [x, y]; therefore,
S(ei) is embedded on the left of cycle(e). Thus, ei appears before ej- in the list M’(v).
The discussion for the situation (ii) is similar.

Suppose that M’ is a feasible map. Then there exists a valid partition Q [LL,
RR] such that, for all v 6 V, if M’(v) [ll, Is, Cv, ref, rl,..., rt], then conditions

and (2) are satisfied. Let M be the partial map of G from which Q is derived. By the
only ifpart of Lemma 4, M is also a feasible map of G with respect to Q. The conditions

and (2) in the definition of feasible map implies that, for each v 6 V, M’(v) can be
obtained from M(v) by permuting edges with the same 4 values within { 11, ls } and
rl, r }. By Lemmas 2 and 3, M’ is also a partial map.

By Lemma 4, we need only to count feasible maps, which can be constructed easily
from valid partitions.

3.4. SAME and DIFF. Let H be an embedding of G. For convenience, we say that
an edge e v, w] E0 is red in H if e is embedded on the left of Cv, ref, and blue otherwise.
We partition Eo into equivalence classes called groups. Two edges in E0 are in the same
group if and only if they have the same color in each embedding of G. We call the set
of such groups SAME. We further organize these groups into pairs. Two groups W and
Z in SAME are put into one (unordered) pair (IV, Z) if and only if the color of the
edges in IV is always different than the color of the edges in Z. We call the set of such
pairs DIFF. We will show in 3.6 that the two sets SAME and DIFF can be computed
in O(n) time during planarity testing.
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Let Q [LL, RR] be an ordered partition of E0. We say that Q is consistent with
SAME if each group in SAME is totally contained in either LL or RR. We say that Q is
consistent with DIFF if, for each pair (IV, Z) e DIFF, one of the two groups W and Z
is contained in LL and the other is contained in RR.

By the definition of DIFF and SAME, any valid partition of Eo is consistent with
SAME and DIFF. We will further prove that any ordered partition ofEo consistent with
SAME and DIFF is valid. For this, we need some more definitions and lemmas.

Let e [v, w] be a tree edge. Let O(w) [el,..., ek]. Let Q ILL, RR] be an
ordered partition of Eo. For k, let G; sub(e U tO sub(ei). Let Hi be
an embedding of Gi. We say that Hi is conformable to Q (with respect to e) if, around
each vertex u >= w in Hi, all the edges embedded on the left of eu, rey belong to LL and
all the edges embedded on the fight of eu, refbelong to RR. By convention, any embedding
of sub(e) is conformable to Q (with respect to e) if e is a back edge.

Let Ix, y] be an attachment of e not on cycle(e). Let [a, b] be the nearest ancestor
of[x, y] such that a is on cycle(e). We call [a, b] the root of[x, y] (with respect to e),
denoted by root([x, y]). We prove the following lemma.

LEMMA 5. If Ix, y] is an attachment of e in Gi-1 not on cycle(e), and
lOWl ei) < Y, then there is a pair (W, Z) in DIFF such that
Z, where < <= k.

Proof. Let [a, b] root([x, y]). Let Wbe the group in SAME containing ei, and
let Z be the group in SAME containing [a, b]. Let P be the simple directed path in
sub(e) whose first edge is [a, b] and whose last edge is [x, y]. Let P2 be a simple directed
path in sub(e) whose first edge is ei and whose last vertex is low1 (ei). Consider two cases.

Case 1. a > w. By Observation 3, P and P2 cannot be embedded on the same side
of cycle(e) in any embedding of G (see Fig. 7). Therefore, (W, Z) e DIFF.

Case 2. a w. In this case, [a, b] ej for some < j < i, and lOWl(ej) <-

low(ei) < y. Then there must be an undirected simple path P3 in sub(e) between
lOWl (eg) and y that contains x. If lOWl (e) < lowl (ei) < Y, then P3 and P2 cannot be
embedded on the same side of cycle(e) by Observation 3. If lowl (eg) low (ei), then
lowz(ej) <- y < w. Therefore, lowz(ei) < w (recall that ch(ei) ->- 4(e-)). Thus, S(ei) and
S(e) cannot be embedded on the same side of cycle(e) by Observation 4. In either
case, ei and ej cannot be embedded on the same side of cycle(e), and therefore
(W, Z) DIFF.

w w w
ei ei ei

a v

P2 P2

cycle
cycle low tow

a>w a =w and
low (ei) > low (ej)

a =w and
low (ei) low (ej)

FG. 7
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LEMMA 6. Let Q LL, RR be an ordered partition ofEo consistent with SAME.
Let He be an embedding ofsub(e) conformable to Q. IreLL (RR ), then all the normal
attachments ore are embedded on the left- (right-)hand side ofcycle(e) in He.

Proof. Assume without loss of generality that e e LL. Let [x, y] be a normal at-
tachment of e. Let [a, b] root([x, y]). Let P1 be the simple directed path whose first
edge is [a, b] and whose last edge is [x, y]. Let e’ be the predecessor of e. Note that the
tree path from lOWl (e) to v is shared by cycle(e) and cycle(e’). By Observation 2, P1 and
e are always on the same side of cycle(e’) in any embedding of G. Thus, if e is embedded
on the left (fight) of cycle(e’), then [a, b] must be embedded on the left (fight) of
cycle(e). This means that e and [a, b] are in the same group of SAME. Since Q is
consistent with SAME, and e e LL, then [a, b] LL. Since He is conformable to Q,
then [a, b], and therefore [x, y], are embedded on the left-hand side of cycle(e).

Now we prove the main lemma of this section.
LEMMA 7. An ordered partition Q ILL, RR ofEo is valid if it is consistent with

SAME and DIFF.
Proof. Assume that Q is consistent with SAME and DIFF. To see that Q is valid,

we show that there exists a planar embedding of G from which Q can be derived. For
this purpose, we show by induction that, for all e [v, w] E, we can construct an
embedding He of sub(e) that is conformable to Q.

Ifeis a back edge, then any embedding ofsub(e) is conformable to Q by convention.
Next, we assume that e [v, w] is a tree edge with if(w) [e,..., e], and, for

each 1,..., k, there is a planar embedding H of sub(ei) that is conformable to Q
(with respect to ei ).

To construct He, we first let H He,. Then, for 2 k, we add He into
H_ to get Hi. As a result, we will have He H.

Consider adding He to Hi- , where < =< k. Assume inductively that Hi- is
conformable to Q (with respect to e). Also assume without loss of generality that ei
LL. By Lemma 6, all the normal attachments of ei are embedded on the left of
cycle(e in He. Thus, with the sphere projection, we can transform He into a planar
embedding of sub(e in which the tree path from low (ei) to w borders the outer face.

If there is no attachment of e embedded on the left of cycle(e) in Hi- , we can
embed He to the left of cycle(e) in the face whose boundary contains the tree path from
low (e) to w. Otherwise, let Ix, y] be one of the highest attachments of e embedded on
the left ofcycle(e) in Hi- . (We say an attachment [x, y] is higherthan another attachment
[x’, y’] ify > y’.) Let [a, b] root([x, y]). By induction hypothesis, Hi- is conformable
to Q. Therefore [a, b] LL. Since e; LL also, there can be no pair (W, Z) in DIFF
such that ei W and [a, b] e Z. By Lemma 5, lOWl (ei) >-- y. Then we can embed Hei
into Hi- on the left side of cycle(e) in the face whose boundary contains the tree path
from y to w. In this way, ei is embedded on the left of el ei l, and Hi is conformable
to Q. [--1

According to Lemmas 1, 4, and 7, all planar maps of G can be easily generated
from the function and the two sets SAME and DIFF as follows:

1. Generate valid partitions using Lemma 7;
2. For each valid partition generated in 1, generate partial maps using Lemma 4;
3. For each partial map generated in 2, construct a planar map using the method

described at the end of 3.1.

3.5. Counting planar maps. To count the number ofplanar maps, we further simplify
the problem as follows. We arbitrarily select a representative from each singular set. If
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M’ is a feasible map and M" is obtained from M’ by deleting all nonrepresentative singular
edges, then we say M" is a reduced map from M’ and that M’ is generated from M".
Similarly, if Q is a valid partition and Q’ is obtained from Q by deleting all nonrepre-
sentative singular edges, then Q’ is called a reduced partition. If M" is a reduced map
from M’, Q’ is a reduced partition from Q, and Q is derived from M’, then we also say
that Q’ is derived from M" and that M" is constructed from Q’. It is not difficult to see
that, from each reduced map, we can derive a unique reduced partition, and, from each
reduced partition, we can construct a unique reduced map. Thus, to count feasible maps,
we can first count reduced partitions, then count the feasible maps that can be generated
from each reduced map.

To count reduced partitions, let SAME’ and DIFF’ be obtained from SAME and
DIFF, respectively, by deleting all the nonrepresentative singular edges. A pair W, Z
in DIFF’ is trivial if either W or Z is empty. By Lemma 7, it is easy to see that, if
[L, R is an ordered partition of SAME’ such that neither L nor R contains groups from
the same nontrivial pair in DIFF’, then [CJwL W, CJw W] is a reduced partition. Let
d be the number of nontrivial pairs in DIFF ’, and let s be the number of nonempty sets
in SAME’ that are not contained in any of the nontrivial pairs in DIFF ’. Then there are
2 d+ reduced partitions and therefore 2 a+ reduced maps.

Next, we consider the number of feasible maps that can be generated from each
reduced map. Let singular(e) be the singular set containing e, and let same(e) be the
group in SAME containing e. Immediately from Lemma 3 and its proof we have the
following lemma.

LEMMA 8. (i) Let e be a singular edge. If same(e)l > 1, then singular(e)
_

same(e);
(ii) Let e and e2 be two edges in the same singular set. Then the unordered pair

(same(e ), same(e2)) is not in DIFF.
We say that a singular edge e is bound if singular(e)

_
same(e), andfree otherwise.

We can construct a feasible map M’ from a reduced map M"by inserting nonrepresentative
singular edges as follows. Let e [v, w] be a representative singular edge, and let
g(e) [singular(e)l. If e is bound, then all the edges in singular(e) must be inserted
consecutively in the same side of e,f in M’(v). Therefore, we replace e in M"(v)
by any of the g(e)! permutations of singular(e). If e is free, then the edges
in singular(e) can appear in different sides of e,ref in M’(v) by Lemma 8. Therefore,
we divide singular(e) into two parts S and $2, assuming that S contains e. Then we
replace e by a permutation of S and insert a permutation of $2 into the other side of
e,ref in M"(v) in the position determined by the condition (2) in the definition offeasible
maps. In this case, we have (g(e) + )!/2 different choices.

Now, let RS be the set of representative singular edges. For all x RS, define
h(x) g(x)! ifxis bound, and (g(x) + )!/2 otherwise. Then, from each reduced map,
we can generate Y[xs h(x) different partial maps. By Lemma 1, we have the following
result.

THEOREM 1. The total number ofplanar maps ofG is

2d+s l-’[ h(x).
xRS

The remaining question is how to compute the two sets SAME and DIFF efficiently.

3.6. Compute the sets SAME and DIFF. Now, we show how to compute the two
sets SAME and DIFF in linear time during planarity testing. The planarity testing al-
gorithm we will use in this section is a variant of the HT algorithm reported in 4 and
is summarized in the next section for convenience.



COUNTING EMBEDDINGS OF PLANAR GRAPHS USING DFS TREES 345

3.6.1. Planarity testing. As before, we assume that G is a biconnected graph with
more than one edge. Then the tree edges in T form a single tree with only one tree edge
leaving the root. Denote this tree edge by e0. Since sub(eo) is the whole graph, then we
can determine the planarity of G with a procedure that can determine the planarity of
sub(e) for all e E.

We say that an edge e is planar if sub(e) is planar. To determine the planarity of
an edge e, we consider two cases. If e is a back edge, then sub(e) cycle(e), which is
always planar. Otherwise, e is a tree edge having at least one successor. In this case, we
first determine the planarity of each of its successors. If all these successors are planar,
then we determine the planarity of e based on the structure of its attachments. Following
are the details.

Structure ofattachments. The planarity of an edge e [v, w] directly depends on
the structure of its attachments. If e is planar, we partition the edges of ATT(e) into
blocks as follows. We put two back edges ofATT(e) in the same block if they are on the
same side of cycle(e) in every embedding of sub(e). Two blocks interlace each other if
they are on opposite sides of cycle(e) in every embedding of sub(e). By this definition,
each block ofA TT(e) can interlace at most one other block.

The back edge on cycle(e) is the only attachment of e that will not be embedded
on either side of cycle(e). By convention, this back edge forms a block by itself, called
the neutral block of e, which does not interlace other blocks ofATT(e).

In Fig. 6, ATT(e)can be divided into the following four blocks: BI { [8, 1] },
B2 12, ], 14, 2 }, B3 { 9, 3 }, and B4 { 13, 4 }. BI is neutral. B2 and B3 are
interlacing.

A block of attachments of e is normal if it contains some normal attachment of e.
Otherwise, we say that it is special. We say that sub(e) is strongly planar with respect to
e if e is planar and if all the normal blocks of ATT(e) can be embedded on the same
side of cycle(e). If sub(e) is strongly planar (with respect to e), then we say that e is
strongly planar. We have the following lemma.

LEMMA 9. Let e v, w] T, and let ei be a successor of e such that ei :/= ew, ref.
Then ei is strongly planar ifand only ifthe subgraph S( ei to cycle(e) is planar.

Note that, in an embedding of S(ei tO cycle(e), the special blocks of ei do not have
to be on the same side of cycle(ei ); see Fig. 8.

We represent a block of back edges K {[v, w], [v2, w2], [vt, wt]} by a
list L [w, w2, wt], where w =< w2 =< =< w. Frequently, we will identify

cycle(
cle(e)

lOW (ei
FIG. 8. The two special attachments d’ and d" ofe can be on different sides ofcycle( ei ), although they are

on the same side ofcycle(e).
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blocks with their list representations. Define first(K) first(L) w and last(K)
last(L) wt. If L is empty, we define first(K) first(L) n + and last(K)
last(L) 0. We can further organize the blocks of A TT(e) as follows: If two blocks X
and Y interlace, we put them into a pair [X, Y], assuming that last(X) >= last(Y); if a
nonempty block X does not interlace any other block, we form a pair [X, ]].

Let [X, Y] and [Xz, Y2] be two pairs of interlacing blocks. We say that
[Xl, 1] <- [X2, Y2] if and only if last(X1) <= min(first(X2), first(Y2)). We say that a
list of interlacing pairs [q,..., qs] is well ordered if q <- <= qs. Empty lists or lists
of one pair are well ordered by convention. In 4 we proved that all the interlacing pairs
ofATT(e) can be organized into a well-ordered list [p,..., pt]. We call this list att(e).

In Fig. 6, att(e) [p, p2, P3], where p [[ ], ]], P2 [[ 3 ], 1, 2 ], and P3
[[4], ]].

Compute att(e). Now we are ready to compute att(e). The planarity of e will be
decided at the same time.

Consider an edge e v, w] E. If e is a back edge, then its only attachment is e
itself. Therefore, att(e) [[[w], ]]]. Otherwise, let (w) [el ek]. We first
recursively compute att(ei for each ei in if(w), then we compute att(e) in four steps,
shown in the following algorithm.

Algorithm A
Step 1. For 1, k, delete all occurrences of w appearing in blocks within

att(ei). Because these occurrences appear together at the end of the blocks that are
contained in the last pairs of att(ei only, a simple list traversal suffices to delete all these
occurrences in time O( / number ofdeletions). After this, initialize att(e) to be att(el ).

Step 2. For 2,..., k, merge all the blocks of att(ei) into one intermediate
block Bi. See Fig. 9.

According to Lemma 9, this step can be done only if the normal blocks of att(ei
do not interlace. (If they interlace, the graph is not planar, and the computation fails.)
To merge a series of blocks, simply concatenate their ordered list representations (such
concatenation is order-preserving).

Step 3. Merge blocks in att(e). See Fig. 10.
By Observation 3, all blocks D in att(e) with last(D) > low (e2) must be merged

into one block B1. (If any two of these blocks interlace, the graph is not planar, and the
computation fails.) This is achieved by merging from the high end of att(e). This step
turns att(e) into a list of pairs pl =< =< Ph with only ph possibly having a block D with
last(D) > lowl e2 ).

Step 4. For 2, k, add blocks Bi into att(e).
To process Bi, consider the last pair P: [X, Y] of att(e). Consider three cases: (i)

if B/. cannot be embedded on either side of cycle(e), then G is not planar, and the com-
putation of att(e) fails; (ii) if Bi interlaces X only, then merge B into Y. Next, switch
X and Y if last(X) < last(Y); (iii) if Bi interlaces neither X nor , then add
IBm,[ ]] to the high end ofatt(e); P := [B;, ]].

By the following lemma, testing whether B; interlaces X or Y takes O( time. Also
by that lemma, it is not possible that B; interlaces Y only, since last(X) >= last(Y) (see
Fig. 11 ).

LEMMA 10. Bi and D can be embedded on the same side ofcycle(e) ifand only if
low ei >= last(D), where D X or D Y.

In [4] we proved the following theorem.
THEOrtEM 2. Algorithm A computes att(e) successfully ifand only ife is planar;
(2) Ife is planar, then Algorithm A computes att(e) correctly.
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FIG. 9

3.6.2. Compute the sets SAME and DIFF. Next, we augment Algorithm A so as
to compute the two sets SAME and DIFF during the planarity testing.

Let e E be an edge of G. Let ea an attachment of e not on cycle(e). Then
root(e) and ea are embedded on the same side of cycle(e) in any embedding of G.
Thus, for each nonneutral block X of e, there is a unique group in SAME that con-
tains the roots of the attachments in X. We call this group buddy(X). It is easy to see
that, if [X, Y] is a pair of nonempty interlacing blocks of ATT(e), then (buddy(X),
buddy(Y)) is a pair in DIFF. Furthermore, in the proof of Lemma 6, we note that,

low (e)cle(e)

FIG. I0

cycle (e

e(e) c e(e) cycle(e)

B cannot be embedded in
either side of cycle (e) Bi interlaces X only Bi interlaces

neither X nor Y

FIG. 11
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if ea is normal and if e e E0, then root(ea) and e belong to the same group in SAME.
Thus, if X is a normal block of e and e Eo, then buddy(X) also contains e. For
convenience, we further extend the definition of buddy as follows. If [X, Y] is a pair in
ATT(e) such that Y and (buddy(X), U) DIFF, then define buddy(Y) U.
According to these observations, we can compute the two sets SAME and DIFF with the
following enhancement to Algorithm A.

Enhancement B
1. Initialization. For all e B, let buddy([e]) . Let SAME { {e }" e Eo }

and DIFF {({e}, )" ee E0};
2. In step 2 of Algorithm A, for 2,..., k, before we merge att(ei), we initialize

buddy(Bi) to be { ei }. For each pair [X, Y] or [Y, X] in att(ei) such that Xis normal
with respect to ei, let U be the set such that (buddy(Bi), U) DIFF; in SAME, merge
buddy(X) into buddy(Bi) and merge buddy(Y) into U; in DIFF, merge the two pairs
(buddy(Bi), U) and (buddy(X), buddy(Y)) into one pair (buddy(Bi) to buddy(X),
U to buddy(Y)).

3. In step 3, let [X, Y] be the last pair in the list att(el) before merging. For
each pair [X1, Y1] in att(el) merged into [X, Y], do the following" In SAME, merge
buddy(X) into buddy(X) and merge buddy(Y) into buddy(Y); in DIFF, merge
the two pairs (buddy(X), buddy(Y)) and (buddy(X1), buddy(Y)) into one pair
buddy(X to buddy(X ), buddy(Y to buddy(Y ).

4. In step 4, for 2 k, let U be the set such that (buddy(Bi), U) DIFF. If
[Bi, Z] becomes the top pair of att(e), where Z ], then let buddy(Z) U. If Bi
is merged into Y, then in SAME, merge buddy(B) into buddy(Y) and merge U into
buddy(X); in DIFF, merge the two pairs (buddy(Bi), U) and (buddy(X),
buddy(Y)) into one pair U tO buddy(X), buddy(Bi to buddy(Y)).

One way to prove the correctness ofEnhancement B is to prove that (i) ifan ordered
partition P [LL, RR] of E0 is valid, then it is consistent with the two sets SAME and
DIFF computed by Enhancement B; and (ii) if an ordered partition P [LL, RR of
E0 is consistent with the two sets SAME and DIFF computed by Enhancement B, then
it is valid.

We see that (i) is true because, in the enhancement code, two edges are put in the
same group of SAME only if they have the same color in each embedding of G, and two
groups form a pair in DIFF only if they always have different colors. Assertion (ii) is
basically the same as Lemma 7, except that the two sets SAME and DIFF here are
computed by Enhancement B, not given by their definitions. Since the proof of Lemma
7 is based on Lemmas 5 and 6, we then need only to prove these two lemmas under the
new condition.

LEMMA 1. Lemma 5 remains true ifthe two sets SAME and DIFF are computed
by Enhancement B.

Proof. Consider the attachment [x, y] given in Lemma 5. Let [a, b]
root([x, y]). Let [X, Y] be the top pair of blocks in att(e) in step 4 of the planarity test-
ing. Since att(e) is well ordered, then [x, y] is contained in either X or Y. If [x, y] e Y,
then low(ei) < last(Y), and G is not planar. Thus [x, y] X, and low(ei) < last(X).
Therefore B; is merged into Y in step 4. Then root([x, y]) e buddy(X), ei -buddy(Y ), and buddy(X ), buddy(Y DIFF. Vq

LEMMA 12. Lemma 6 remains true ifthe two sets SAME and DIFF are computed
by Enhancement B.

Proof. Consider the edge e, the embedding He, and the partition Q given in Lemma
6. Assume without loss of generality that e LL. Let [x, y] be a normal attachment of
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e. We need to show that [x, y] is embedded on the left-hand side of cycle(e) in He. Let
[a, b] root([x, y]). Let e’ be the predecessor of e. Let X be the block of attachment
in ATT(e’) that contains [x, y]. Then Enhancement B will put both e and [a, b] into
buddy(X). This means that e and [a, b] are in the same group of SAME. Since we
assume that e LL, then [a, b] LL. Since He is conformable to Q, then [a, b], and
therefore [x, y], are embedded on the left-hand side of cycle (e) in He. [[]

AS a result of Lemmas 11 and 12, Lemma 7 remains true for the two sets SAME
and DIFF computed by our Enhancement B. Therefore, we have the following result.

THEOREM 3. IfG is planar, then Algorithm A with Enhancement B compute the
sets SAME and DIFF correctly.

4. Number of embeddings for connected components. Next, consider a connected
graph G with several biconnected components. Suppose that we know the number of
embeddings of each biconnected component. We discuss how to find the total number
of embeddings of G. This problem was previously considered by Stallmann [12 ], but
his solution is complicated and not efficient. In this section, we give a simple closed
formula for this problem that is computable in O(n) arithmetic steps.

We start with the simple situation that G has two biconnected components G and
G2 sharing an articulation point a. Suppose that there are m edges connected to a in G
and m2 such edges in G2. Let H be an embedding of G on a sphere S, and let H2 be
an embedding of G2 on another sphere $2. Imagine that S and $2 are balloons. To
combine H and H2 into a sphere embedding of G, we choose a face F ofH and a face
F2 of H2 such that their boundaries contain a. Make a hole on F so that a is the only
point shared by the boundaries of the hole and F. Do the same thing with F2. Glue
these two holes on their boundaries, making sure that the two embeddings of a are put
together. Blowing the combined balloon into a sphere gives an embedding of G. There
are m faces in H whose boundaries contain a, and there are m2 such faces in H2. Thus,
we can obtain mm2 different sphere embeddings of G by combining H and H2.

The above method of combining sphere embeddings can be generalized to get sphere
embeddings ofgraphs with more biconnected components and more articulation points.
However, counting the number ofembeddings becomes more complicated in the general
case. For graphs with one articulation point, we have the following result.

LEMMA 13. Let G be a planar graph consisting ofj biconnected components G,
Gj sharing an articulation point a. For each 1, j, let mi be the number of

edges connected to a in Gi, and let ki be the number of different sphere embeddings of
Gi. Then, forj > 2, the total number ofdifferent sphere embeddings ofG is

kk2""kjmm2" .mg(A 1)(A 2)...(A -j + 2),

where A m + + mg.
Proof. We need only to prove the following assertion: For a fixed group of em-

beddings H H9 of G Gg, we can obtain mm2"" mj(A 1)(A 2)...
(A j + 2) different embeddings of G by gluing balloons. We call this set of embed-
dings of G an Eml mj set.

We prove the assertion by induction on A. The basis is trivial, when m
m 1. Now we assume that the assertion is true for any A < k, where k > j. Consider
the case when A k. Then there exists some j such that mi > 1. We assume
without loss of generality that m > 1. For each 1, j, let ei,, ei,mj be the
clockwise sequence of edges around a in Hi. We divide an Em, mj set into j groups,
as follows:

Group contains all the embeddings such that e, is followed by el,z;
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Group 2 contains all the embeddings such that el,1 is followed by 72,l, where 1,

Group j contains all the embeddings such that el,1 is followed by ej,z, where 1,

In Group 1, if we glue the two edges el, and e,2 together in each embedding, we
get an Em,- l,m2 mj set. By the induction hypothesis, the size of Group is

(ml 1)mz."m(A 2)...(A -j + 1).

For each 2 j, we divide Group into m; subgroups, so that in every embedding
of the/th subgroup, el, is followed by ei,l. By gluing the two edges el, and ei,l together
in each of the embedding in the/th subgroup, we get an Em+ m-,m2 mi-,,mi mj

set, which has the size

(m + mi 1)m’"mi-lmi+" .m(A 2)...(A -j + 2).

Therefore, the size of Group is

mi[(m + mi 1)mz’"mi_mi+l’"m(A 2)’"(A -j + 2)]

(m + mi 1)mz...m(A 2)...(A -j / 2).

Adding the sizes of Group 1, Group j, we see that the size of Em,,m2 m is

mm. .mj(A 1)...(A -j + 2).

Now consider a connected graph G with more than one articulation point. To count
the number ofembeddings, we first choose one articulation point a. Let G be the subgraph
of G that consists of all the biconnected components sharing a. Using Lemma 13, we
can count the number of embeddings of the subgraph G. Then we treat G as one
biconnected component and solve the remaining problem recursively. The result is sum-
marized in the following theorem.

THEOREM 4. Let G be a planar graph. Let I’ be the set ofbiconnected components
ofG, and let ) be the set ofarticulation points ofG. For each biconnected component C
in I’, let kc be the number ofsphere embeddings ofC. For each a 6), let I’ be the set

ofbiconnected components ofG sharing a, and let A be the number ofedges connected
to a. For each a ) and each component C I’, let mc, be the number ofedges in C
connected to a. Then the total number ofsphere embeddings ofG is

HkH H mc,a H (Aa-i)
ae6) CeI’a i=

The analysis in this section also suggests a recursive procedure that generates all
planar maps ofG without repetition from the planar maps ofthe biconnected components
of G.

5. Counting embeflflings for unconnected graphs. Finally, we consider how to count
the embeddings of graphs having several connected components, given the number of
embedding of each of the connected components.

THEOREM 5. Let G be a planar graph consisting of c connected components C,
C, where c > 1. If, for 1, c, Ci has tli sphere embeddings each havingf

faces, then the number ofsphere embeddings ofG is

+ (- n.
i=1 i=1
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Proof. For each 1, c, we choose a fixed embedding H of C;. We denote
the set of these embeddings by A. We call the embeddings in A subembeddings to dis-
tinguish them from the embeddings of G. Very similarly to the description in 4, we
can combine the subembeddings in A into an embedding of G by gluing balloons. The
main difference is that, in this case, the holes made should not touch the boundary of
any face. Let be the set of all embeddings of G that can be obtained from A this way.
We need to prove that

(*) I1 + (f- 1) f.
i=1 i=1

We prove the claim by induction on c, the total number of connected components
of G. For c 2, the claim is obviously true. Then we assume that the claim is true for
all c < k, where k > 2. We want to show that the claim is also true for c k. We paition

into c groups

_
, such that, for 1, c- 1, group i contains

the embeddings H of G in which H is the neighbor of exactly other subembeddings in
(recall that two subembeddings H and H are neighbors of each other in H if there is

a face in H whose boundary contains edges from both H and Hr.) We fuher divide i
c--1into subgroups such that in all embeddings of each subgroup, H has the same set

of neighbors. Consider one such subgroup ,e in which H has the set of neighbors P
{ Ht,..., H ). Let Q H2,..., H P. An embedding in i,e can be obtained in
two stages. First, we combine H and all the subembeddings in P into one embedding
X. Since, for each j t,..., ti, each of the faces ofH can be adjacent to each of the

faces of H, then we have the number c of different choices in the first stage is
(f)’"(fi). Next, we combine X and the subembeddings in Q into an embedding
Y in i,e. Since subembeddings in Q are not neighbors ofH, then we can treat X as a
component with me( faces. Applying * inductively, we find that the number
c2 of different choices in the second stage is

+ (Z,- 1)- + (- 1) Z (- 1) L
tts P tts Q Hs P tts Q

j ttseP Hse Q

Thus, the size of subgroup ffi,P is

)c-i-2ClC2 E (--1) E (f--l)]--I f ]’-[ (flf)
j=2 HseP HsQ HseP

)c-i-2 _[Z f -l .
HsP j=2 j=l

Therefore the size of ’tit is

pc_ H Hc}
Z (fs--1) (fj-- 1) f-l j

P- H2 Hc} P j j

E E (f-I) (j-1) f-I fj
P--- {H2 Hc} HseP j j=

IPl=i
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c-2
(J)-1) (fj-1) f-’ fj

j= j=

(- 1)
j

Finally, the size of C is

I/I (- 1)
i= i=

c-2
(jj- 1) f] fj

j j=l

)c-2 I+(-1) .
j=l j=l

From the above discussion, it is not difficult to give a recursive procedure that
generates all the adjacency relations on the set of faces of the subembeddings in A.

Acknowledgments. I thank R. E. Tarjan for introducing me to the counting problems
solved in this paper. I also thank Matthias Stallmann for pointing out that my previous
formula for counting embeddings of connected graphs with two biconnected compo-
nents does not easily extend to the general case. That comment inspired my discovery of
Lemma 13.
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INDUCED CYCLE STRUCTURES OF THE
HYPEROCTAHEDRAL GROUP*

WILLIAM Y. C. CHEN?

Abstract. In this paper, the n-dimensional hypercube Qn is treated as a graph whose vertex set consists of
sequences of O’s and l’s of length n, and the hyperoctahedral group Bn is the automorphism group of Qn. It is
well known that B, can be represented by the group of signed permutations, namely, any signed permutation
induces a permutation on the vertices of Q,, which preserves adjacency. Moreover, the set of signed permutations
on n elements also induces a permutation group on the edges of Q,, denoted H,. The author studies the cycle
structures ofboth Bn and Hn. The method proposed here is to determine the induced cycle structure by computing
the number of fixed vertices or fixed edges of a signed permutation in the cyclic group generated by a signed
permutation of given type. Here we define the type of a signed permutation by a double partition based on its
signed cycle decomposition. In this way, one can compute the cycle indices ofboth B and H by counting fixed
vertices and fixed edges of a signed permutation. The formula for the cycle index ofB is much more natural
and considerably simpler than that of Harrison and High J. Combin. Theory, 4 (1968), pp. 277-299 ]. Mean-
while, the cycle structure ofH seems not to have been studied before, although it is well motivated by noniso-
morphic edge colorings of Q,, as well as by the recent interest in edge symmetries of computer networks.

Key words, hypercube, hyperoctahedral group, induced cycle structure, P61ya theory

AMS subject classifications. 05A 15, 05C25

1. Introduction. The hyperoctahedral group considered in this paper will be un-
derstood as the automorphism group of the n-dimensional hypercube, or simply the n-
cube. As in [1 ], we choose to treat the n-cube as a graph, usually denoted Qn. To be
more specific, the vertex set of Qn consists of all the sequences of O’s and l’s of length n,
and two such sequences are adjacent whenever they differ at exactly one position. Nev-
ertheless, this standpoint is by no means substantially different from that of treating the
hypercube as a regular solid in n-dimensional Euclidean space. The recent surge ofinterest
in symmetry properties ofcomputer networks has led to the investigation ofautomorphism
groups, as well as the induced edge automorphism groups of currently studied network
models, including the hypercube. Throughout, we use B, to denote the automorphism
group of Q, and H to denote the induced permutation group ofB on the edges of Qn.
Sometimes the term line-group of a graph G is used for the permutation group on the
edges of G induced by the automorphism group of G. In this sense, Hn is the line-group
of Qn.

In view of P61ya theory on enumeration under group action, an important feature
of an automorphism group is its cycle structure 11 ], 13 ], 14 ]. In fact, the study ofthe
cycle structure ofB has an interesting history. From the signed permutation representation
of B, namely, the fact that B, can be represented by the wreath product of S, and $2,
P61ya 12 noted that the number of types of Boolean functions in n variables equals the
number of nonisomorphic vertex colorings of the n-cube by using two colors 3 ]-[ 7 ].
This led to the question of computing the cycle structure ofB. More information about
the origin ofthis problem can be found in a recent paper 18 ]. Although B, is isomorphic
to the wreath product S $2 ], which is a permutation group on 2n elements whose cycle
index can be obtained by those of S, and $2 in terms of the operation called plethysm
or P61ya’s composition, Bn itself is a more sophisticated permutation group on 2 elements,
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and it does not seem to possess relatively simple cycle structure. In fact, P61ya 12]
computed the cycle index of Bn up to n 4. The problem of counting types of Boolean
functions received more attention with the advent of switching circuit theory. The first
complete solution was obtained by Slepian [16 based on Young’s results on irreducible
representations of Bn. Later, Harrison and High [8 succeeded in obtaining the cycle
index of B, which also leads to a solution to the problem of counting types of Boolean
functions. However, the formula of Harrison and High is rather involved. Our method
proves to be more natural and considerably simpler than that of Harrison and High;
moreover, our approach is more effective regarding its applicability to more general
situations such as the cycle structure of the line-group H, of Q, a permutation group
on n2 n-1 edges. It appears that the cycle structure of H has been untouched before,
although it is well motivated by the enumeration of nonisomorphic edge colorings of
Qn, as well as by the recent interest in edge symmetries of computer networks.

Our first objective is to obtain the cycle polynomials ofboth Bn and H,. As we know
in many circumstances, such as counting types of Boolean functions, we do not really
need all the information contained in the cycle index of B. Instead, for a permutation
group G, sometimes it suffices to use the following polynomial:

x) Z
k

where wk is the number of permutations in G with k cycles. Clearly, K(G; x) can be
obtained from the cycle index Z(G; xl, x2, of G by substituting each xi with x. We
call K(G; x) the cycle polynomial of G. As expected, cycle polynomials are easier to
compute than cycle indices. Keeping in mind that the signed permutation representation
ofB is considerably easier than B itself, we naturally expect that the cycle structure of
Bn should follow somehow from the cycle structure of signed permutations. First, we
observe a simple connection between the cycle structure ofa permutation and the Burnside
Lemma so that counting cycles reduces to counting fixed points. Second, by using a
result of Chen and Stanley [1 concerning the number of fixed vertices of a symmetry of
Qn and our Cycle Splitting Lemma, we can compute the cycle structure ofany permutation
in B. The notion of balanced signed cycles defined in [1 proved to be crucial in our
approach. We note that our method is not only effective for B and H,, but also for other
permutation groups induced by the wreath product of two permutation groups. It is
interesting that the notion of double partitions used in the representation theory of B
arises naturally in the present context, and that we can explicitly give the induced cycle
structure ofany signed permutation in terms ofits type (in the form ofa double partition ).
Furthermore, we can compute the cycle indices of both B and Hn by counting fixed
vertices and fixed edges of a signed permutation of given type--the second objective of
this paper.

2. The Cycle Counting Lemma. Let G be a group and S be a finite set. Let II be a
permutation group on S. Given a homomorphism o from G to II,

p:g-rg, gG, rgH,

we usually say that G is a group acting on S in the sense that an element of G acts on S
through its image under the homomorphism O. With the homomorphism o being un-
derstood, we simply call II an induced group of G. As far as we are concerned in this
paper, G will be the wreath product Sn[ $2 ], or the group of signed permutations on n
elements, and o will be the isomorphism from G to the automorphism group B, or the
edge automorphism group H of Qn. Specifically, the hyperoctahedral group B is an
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induced group of Sn $2 acting on the vertices of Qn. Given a signed permutation 7r, the
acting rule (i.e., the isomorphism o as above) of r on Qn is explained as permuting the
sequence of O’s and l’s, and then taking complements at certain positions, the detailed
definition will be given in the next section. Another induced group ofS $2 is the edge
automorphism group H of Qn. By definition, an automorphism of a graph induces a
permutation on the edges. Thus, Hn is an induced group of Sn[S2 acting on the edges
of Qn. The objective of this paper is to study the cycle structures of B and Hn as per-
mutation groups on the vertices and edges of Q.

Given an element g in a group G, suppose that it induces a permutation 7i-g on S.
By the induced cycle structure of g, we mean the cycle structure of the induced per-
mutation on S. We will use the Burnside Lemma to compute the number of cycles of
an induced permutation of g. To this end, let us recall some basic terminology related
to the Burnside Lemma. Given two elements sl and s2 in S, we say sl is equivalent to
s2, denoted s $2, if there exists an element g 6 G such that

7rgS1 $2"

Then it is easy to verify that is an equivalence relation on S. For any g G, we denote
by b(g) the number ofelements s 6 S such that 7rgS s, namely, the number ofelements
fixed by g. Then the Burnside Lemma states that the number of equivalence classes of
S under equals

2 if(g).
al ga

Using the Burnside Lemma, we may compute the number of cycles of an induced
permutation in terms of the number of its fixed points.

LEMMA 2.1 (Cycle Counting Lemma). Let G be a group acting on S, and g G.
Then the number ofcycles ofthe induced permutation rg equals

E (),
o(g) r(g)

where o(g) is the order ofg in G and p(r) is the number ofelements in Sfixed by
Proof. We simply write - for Zrg. To use the Burnside Lemma, we observe that two

elements s, s2 S are in the same cycle in the cycle decomposition of 7r if and only if
there exists a permutation a 7r for some such that a(s sz. Therefore, the number
of cycles of r is the same as the number of equivalence classes of S under the action of
the permutation group (Tr) { e, -, 71-2, }, which is clearly finite.

3. The cycle polynomial of B,. We first recall some definitions from ]. For any
positive integer n, we use [n] to denote the set { 1, 2 n ). We may represent an
element w e Bn by a signed permutation on n ], i.e., a permutation on n with a + or

sign attached to each element 2, n For simplicity, we may omit the + signs.+ + + "__"

Thus (2 4 5 )( 3)( 6) or (2 4 5 )( 3)( 6) represents an element of B6 with underlying
permutation (2 4 5 )( 3 )( 6) (written in cycle notation). We call such a representation
of a signed permutation the signed cycle decomposition. Let w be a signed permutation
with underlying permutation r. Then w acts on a vertex UlU2" u. ofQ by the following
rule:

W(UlU2"" "Un)--
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where

(3.1)
ifj has the sign +,

ifj has the sign -.

Thus the action of 7r on u Ulb/2. "b/n can be understood as the action of permuting u
into b/r(1)Ur(2)" "b/Tr(n), and then taking complements at positions where 7r has minus
signs. If we define the sign vector (Sl, s2,..., sn) of a signed permutation w as

ifj has the sign +,
sj=

1, if j has the sign -,

then (3.1) can be rewritten as

3.2 vj u(j-) + s (mod 2 ).

In this way, a symmetry or an automorphism of Qn can be represented by a pair (Tr, s),
where r is a permutation on [n and s is a sign vector. For two symmetries r and of
Q,, we define their product by

()(uu_" "u.)= ((uu" "u.)),

where b/lb/2.’’/A is any vertex of Q. Note that the above convention is consistent with
the usual definition of product of two ordinary permutations; i.e., for two permutations
r and r on In], ra is defined by (rr)(i) a(r(i)) for any i. If no confusion arises, we
identify a signed permutation 7r with its underlying permutation when applied to an
element in n] rather than a vertex of Q,. It is straightforward to prove the following
proposition.

PROPOSITION 3.1. Suppose that c (r, s) and (r, t) are two symmetries of
Q, where 7r and r are permutations on n ], and s s s2 sn t_ t
are sign vectors. Then the symmetry c{3 has underlying permutation rTr and sign vector

a(s) + (sa(1) -t- tl, Sa(2) nt- 12,..., S(n)+t,).

AS noted by the referee, we can directly define B on the set of signed permutations
by the following multiplication rule:

(, s)(, t) (, (s) + t).

From this point of view, the proof of Proposition 3.1 becomes a verification of the fact
that such a definition of the signed permutation group is a representation of the auto-
morphism group of Q,. The following corollary of Proposition 3.1 will be used later.

COrOLLARY 3.2. Let c (r, s) be a signed permutation on [n], with sign vector
s (Sl, s_, s). Then k has underlying permutation r and sign vector

(3.3) (S1 -- STr(1) t_ -- Srk_l(1),... Sn .nt- Sr(n) -- .qt_ Srk_l(n) (mod 2).

A double partition (X, Is) of an integer n, denoted (X, Is) b n, is an ordered pair
(X, Is) of partitions such that X + Isl n, where X denotes the sum of all parts of
X [2], [10], [15], [17]. A double partition (X, Is) can also be denoted by (X, Is) - (p, q),
if IX] p and lisl q. The number of parts of X will be denoted by l(X). Given two
partitions X and Is, we define X U Is to be the partition obtained by joining the parts of
X and Is together. For example, 2 2 U 3 2 3 2 2 2 1. The notion of a double
partition is closely related to that of balanced cycles introduced in [1]. A signed cycle is
said to be balanced if it contains an even number of minus signs; otherwise, it is called
unbalanced. Moreover, a signed permutation is said to be balanced if every cycle in its
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signed cycle decomposition is balanced, and it is said to be totally unbalanced if every
cycle in its signed cycle decomposition is unbalanced. Given a signed permutation r,
the cycle type of r is defined by a double partition (3‘, ) such that 3‘ is the cycle type of
balanced cycles of 7r, and / is the cycle type of unbalanced cycles of 7r. For
example, the type of the signed permutation (3 7 4)( 5 6 2)(8 10)(9) is (2 4, 3).
It is not difficult to see that two signed permutations belong to the same conjugacy class
of B, if and only if they have the same type.

For a partition 3‘ x’2 x2... nX, of n, i.e., the number of occurs 3‘i times in 3‘ for
any i, we use to denote the number ofpermutations on n oftype 3‘. It is well known
that

3‘ 1Xl 3‘1!2 x2 3‘2!"

Given a double partition (3‘, #) k (p, q) of n, it is not difficult to show that the number
of signed permutations of type (3‘,/) equals

(3.4) (n)p p][q]3,z 2"-’)-’)"

Suppose that S t_J T is a disjoint union of n such that S] p and T[ q. Consider
all balanced permutations 7r of type 3‘ on the set S. Given an underlying cycle of length
m, there are 2 ways to form a balanced cycle by attaching a sign to each element in
the underlying cycle. Thus, given an underlying permutation of type 3‘ on S, we can
form 2p-/(x) balanced permutations. A similar argument shows that given any underlying
permutation of type z on T, we may form 2 q-/(u) totally unbalanced permutations.
Combining these two arguments, we obtain (3.4).

The following lemma gives the parity of the number of minus signs in each cycle
of the signed permutation rk, where the underlying permutation of 7r is a cycle. We
follow the usual notation i, j) for the greatest common divisor of and j.

LEMMA 3.3 (Cycle Splitting Lemma). Suppose that r is a signedpermutation whose
underlying permutation is a cycle of length n, and suppose that 7r has A minus signs.
Then 7r

k can be decomposed into k, n) signed cycles with each oflength n / k, n ). More-
over, the number of minus signs in each signed cycle of 7r is congruent to k/(k, n)A
modulo 2.

Proof. Without loss ofgenerality, we may assume that 7r has underlying permutation
C 2...n). Let 6 (61,62, 6n) be the sign vector of Tr; it is known that C can
be decomposed into (k, n) cycles with each of length n/(k, n). Thus, the underlying
cycle decomposition of 7r

k also has (k, n) cycles with each of length n/(k, n). Let d
(k, n). In general, a cycle of C containing the element has the following form:

i--i+k,

i+k--i+2k,

+ (n/d- 1)k i,

where all the numbers in the above diagram are taken modulo n. Let (01, 02,...,
be the sign vector of 7rk. Since C(j) j + (mod n), we have ck(j) j + k (mod n).
Applying Corollary 3.2, it follows that

Oi 6i + 6i+1 -- -It- 6i+k-1 (mod 2).
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The number of minus signs contained in the above cycle is congruent to 0 + Ok+i --+ 0(n/a- 1)k + modulo 2. Then we have

n/d-1 k-1 n/d-1

Ojk+i Z 6jk+l
j=0 l=o j=o

(6i + 6i+1 q’- "q- 6i+k-1)-- (i+k + 6i+k+l -- -" 6i+2k-1) "-
-Jr- 6i + (n/d- )k " 6i + (n/d- )k + .qt_

__
6i + (n/d)k (mod 2 ).

Note that n/d)k 0 (mod n). Thus, + (n/d)k and can be regarded as consecutive
numbers (mod n) so that all the above summands can be arranged on a circle of length
(n/d)k. Since all the indices of 6 in the above summation are taken modulo n, the above
sum can be further simplified to

61 + 62 .qt_ + 6(n/d)k

61 .qt_ 62 + + 6(k/d)n

(k/d)(61 +

(k/d)A.

Hence the number of minus signs in each cycle of 7r is congruent to (k/d)A mod-
ulo 2.

By the above lemma, it can be seen that, if 7r is a balanced cycle, then rk is balanced
for any k and that, if r is an unbalanced cycle of length n, then rk is balanced or totally
unbalanced according to whether k/(k, n) is even or odd. Furthermore, the Cycle Splitting
Lemma can be used to determine the cycle structure of 7r based on the cycle structure
of Tr.

LEMMA 3.4. Let 7r be an unbalanced cycle oflength n, and let k be a positive integer.

Ifwe write n and k as n 2is and k 2q, where both s and are odd, then r is balanced
ifand only ifj > i.

Proof Since s and are odd, we have

k 2t 2J

(k, n) (Us, Ut) 2min(i’j) (S,

Then it is easy to see that k/(k, n) is even if and only if j > i. By the Cycle Splitting
Lemma, it follows that - is balanced if and only if k/(k, n) is even. This completes the
proof.

We now recall a result from concerning the number offixed vertices ofa symmetry
of Q. This result, together with Lemmas 3.3 and 3.4, will be sufficient to yield the cycle
polynomial of B.

PROPOSITION 3.5. Let r be a symmetry ofQ represented by a signedpermutation.
Ifr is balanced, then it has 2 fixed vertices, where k is the number ofbalanced cycles
ofTr; otherwise, 7r has nofixed vertex.

To describe the main result of this section, we need the following notation. Let
be a partition of n, and let r be a permutation on [n] of type X. We use Cx(x) to denote
the cycle polynomial of the cyclic group (r), and we call it the cyclic polynomial of
For a permutation r of type X, it is easy to see that the order of the 7r equals [],
where [X] stands for the least common multiple of the components of . Let
x2 x2... n x". Since for any cycle C of length i, Ck decomposes into (i, k) cycles with
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each of length i (i, k), the cycle structure of rk, denoted ,k, is given by

(3.5) )kk-- I-I [i/(i, k)] (i’k)x.

It follows from (3.5) that the number of cycles in 7r
k equals

(3.6) l()k) (i, k))i.

Thus the cyclic polynomial of ) is given by

[ XY/..I (i,k)i(3.7) Cx(x) - k=0

We are now are ready to state the main result of this section.
THEOREM 3.6. Let , z) be a double partition of n, and let be the maximum

number such that 2 is a factor ofsome part of t. Set r 2 i+ if# 4: 0; otherwise set
r 1. Suppose that 7r is a signed permutation on [n] oftype (), ). Then the number of
induced cycles ofTr acting on the vertices ofQ equals

Xr’tr]

Caru(3.8)
r r[ xr, k=

Proof. By Lemma 2.1, the number of reduced cycles of r on the vertices of Q, is
determined by the number of fixed vertices of the signed permutations rk. If 0, then
by definition we have r 1, and (3.8) follows from Lemma 2.1 and Proposition 3.5. We
now assume that # 4 0. By Proposition 3.5, 7r

k does not have any fixed vertex if 7r
k is

not balanced. To make rk balanced, by Lemma 3.4, k must contain the factor r; otherwise,
there exists an unbalanced cycle 0 of 7r such that Ok is totally unbalanced. In other words,
7r
k has no fixed vertex unless 7r

k (rr). Clearly, 7r is a balanced permutation of type
)r tO ar. Suppose that r is of order m. Since the identity permutation is balanced, it
follows that rn must contain the factor r. Since 7r is balanced, the order of (Trr) is just
the order of an ordinary permutation of type ),r CI ar, which is xr, a]. Therefore, the
order of 7r equals rn r[ xr, at]. By Lemma 2.1, it follows that the number of induced
cycles of r on the vertices of Q equals

2 (thenumberfcyclesfrrk) C),rt_jr(2 ). I---]
F[ r #r] k

COROLLARY 3.7. The cycle polynomial ofBn is given by

2nn
, ( n )

p+q=n P (),u)-(P,q)

where r is given as in Theorem 3.6.
By P61ya’s theorem, the number of nonisomorphic vertex colorings of Q, by using

rn colors equals the cycle polynomial of B, evaluated at x m. In particular, for
rn 2, it yields the number of types of Boolean functions in n variables.

4. The cycle polynomial of H.. In this section, we restrict ourselves to induced
permutations of signed permutations on the edges of Q,. In the same vein ofthe preceding
section, we expect that the number of cycles in an induced permutation on the edges of
Q, depends only on the type of the original signed permutation. The aim of this section
is to compute the number of induced cycles on the edges of Q, of a signed permutation
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of given type. To this end, we first consider the number of fixed edges of a signed per-
mutation of given type. Again, a signed permutation is considered to act on edges of Qn
through its induced permutation. Now we need the following result from 1]" Let r be
a signed permutation acting on the edges of Qn; then r has a fixed edge if and only if
is balanced and contains a 1-cycle, or 7r contains an unbalanced 1-cycle and all the other
cycles are balanced (namely, 7r is of type k, ), where is a partition of n ). Using
this result, we may derive the number of fixed edges of a signed permutation of
given type.

PROPOSITION 4.1. Let r be a signed permutation acting on the edges ofQ,. IfTr is
balanced and of type k, then it has k2)- fixed edges. If 7r is of type (k, ), then it
has 2 fixed edges.

Proof. We first consider the case when r is balanced. If k 0, i.e., 7r has no 1-
cycle, then it has no fixed edge either. So we may assume that k >_- 1. As in [1], an edge
ofQ is represented by a sequence of n O’s or l’s with one occurrence of the symbol

For example, 00101 10 denotes the edgejoining the vertices 00101010 and 00101110.
Treating 7r as a symmetry on the vertices ofQ, it then fixes an edge, a. ag_ a; + . a,
if and only if r contains the 1-cycle (i) (by the separation argument in [1]). In such a
case, a. ai- ai + " a, becomes a fixed vertex for the signed permutation r’ obtained
from 7r by removing the cycle (i). Thus, by Proposition 3.5, there are 2 z’) 2
choices for the subsequence a’"ai_ ai+ "" an. Moreover, considering all the 1-cycles
of r, there are k choices for the position of ,, so that the total number of fixed edges of

equals 2)-

Let us now consider the case when 7r is of type (, ), that is, 7r contains only one
unbalanced 1-cycle, say, (i), and all other cycles of 7r are balanced. Then the separation
argument of[1 shows that the symbol must appear at the ith position in the above
representation of fixed edges of 7r. Thus, a fixed edge of 7r is of the form
a’"ai_ ,a+...a,, and the number ofchoices for the subsequence a’"ai_ a+...a
equals 2), which makes the number of fixed edges of

Analogous to the strategy of computing the cycle polynomial of B,, to compute the
cycle polynomial of H, we need to count the number of induced cycles on the edges of
Q of a signed permutation of given type. Because of the two cases in Proposition 4.1,
we proceed accordingly. For a partition c, we use/3j.(c) to denote the number of occur-
rences ofj in c. Let ’2... n ". From (3.5), it follows that

(4.1) /3(Xk) iXi.
ilk

We now give the main result of this section, which leads to the cycle polynomial
of H,.

THEOREM 4.2. Suppose that r is a signed permutation of type (, ); then the
number ofinduced cycles ofr equals

(
2[)‘21 [)’21
] 2l )‘) + /(X2c)2 l()‘a)(4.2) 2[ka = =

If 7r is a signed permutation of type , #), where # 4: 1, then the number of induced
cycles ofr is given by

[]

("y) 21)‘*)(4.3)
r[3’] =l

where r is defined as in Theorem 3.6 and , )k .J ]Ar.
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Proof. We first prove (4.2). Suppose that r is of type (X, ). Recall that, for such
a type, the number r equals 2, and the order of - equals 2 X2 ]. If k is odd, then 7r

k is of
type (Xk, ). By Proposition 4.1, the number of edges fixed by .k equals 2 l(Xk). If k is
even, then rk is balanced and of type Xk U 1, and from Proposition 4.1 it follows that
the number of fixed edges of 7r

k equals

/31(,k U )2 txkU 1)- (/3(k) + )2 tx) 2 lx) +/3(k)2lx).

Hence by Lemma 2.1, the number of induced cycles of 7r adds up to (4.2).
Next, we prove (4.3). Suppose that 7r is of type (,, ), where tz 4: 1. We claim that

rk does not have any fixed edge unless 7r
k is balanced. We may assume that u 4: 0;

otherwise, the claim becomes obvious. Suppose that 7r
k is not balanced. Then there exists

an unbalanced cycle 0 of r such that 0k contains an unbalanced cycle. By the Cycle
Splitting Lemma, every cycle of 0k must be unbalanced. Let be the length of the cycle
0; then 0k contains (i, k) cycles with each of length i/(i, k). If > 1, then either
i, k) > or i/( i, k) > 1; that is, 0k contains either an unbalanced cycle of length at least
2 or at least two unbalanced 1-cycles. By Proposition 4.1, .k cannot have any fixed edge.
We now consider the case when 0k is balanced for every unbalanced cycle 0 of r with
length at least two. If such a cycle 0 exists, then k must be even (by Lemma 3.4). Thus
7r must be balanced because for any signed 1-cycle r, ak is balanced whenever k is even.
Finally, we are left with the case when 7r does not have any unbalanced cycles of length
at least two. Since # 4: 1, 7r has at least two unbalanced 1-cycles. Therefore, for any odd
number k, rk has the same number of unbalanced 1-cycles as 7r, which implies that rk

has no fixed edge and for any even number k, 7r
k becomes balanced. Thus, we have

arrived at the conclusion that rk does not have any fixed edge unless 7r
k is balanced. As

we have shown in the proof of Theorem 3.6, rk is balanced if and only if 7r
k 6 (rr). By

Proposition 4.1, 7r
rk has/l(’yk)2 l()- fixed edges. Since 7r is of order r[3’], by Lemma

2.1, we obtain (4.3). Vq

Similar to Corollary 3.7, Theorem 4.2 gives the cycle polynomial ofHn by summing
over all double partitions of n. Let K(Hn; x) be the cycle polynomial of H; then, by
Prlya’s theorem, K(H,; rn) gives the number of nonisomorphic edge-colorings ofQ by
using rn colors.

5. Cycle indices of B. and H.. In view of Prlya’s theorem, the cycle index of a
permutation group gives the generating function of nonisomorphic coloring patterns,
which contains more information than just the number ofnonisomorphic colorings. For
this reason, sometimes it is necessary to know the cycle index of a permutation group.
In this section, we achieve this goal for both B, and Hn. The cycle index ofB has been
computed by Harrison and High [8 in a rather complicated way, but our formula is
much more natural and clearer. Moreover, our formula for Hn is believed to be new.

Again, we resort to the number of fixed vertices and the number of fixed edges of
a signed permutation of given type. Given any permutation 7r of type X on a set S, by
(4.1) and the number theoretic Mrbius inversion formula, it immediately follows that
the cycle structure of r is, in fact, determined by the number of fixed points of 7r

k for
=< k -< o(r), where o(r) is the order of 7r. For clarity, we state this fact as follows.

PROPOSITION 5.1. Let 7r be a permutation on S; then the number ofk-cycles ofr
is given by

u(k/i)(Tri),(5.1)
ilk

where t is the classical MObiusfunction, and p(Tri) is the number offixed points ofTd.
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As expected, the purpose of the remainder of this paper is to obtain the induced
cycle structures on the vertices and edges of Qn of a signed permutation of given type.
In accordance with the above proposition, this problem reduces to computing the number
of fixed vertices and fixed edges of a signed permutation 7r

k based on the type of 7r. At
this point, we have already encountered these numbers in computing the cycle polynomials
of Bn and H. In the proofs of Theorem 3.6 and Theorem 4.2, we have actually shown
the following two propositions. Recall that for a double partition (, #), the number r is
determined by # as in Theorem 3.6.

PROPOSITION 5.2. Let 7r be a signed permutation of type (), #); then 7r has
21*u")fixed vertices if r]k; otherwise, r has nofixed vertex.

PROPOSITION 5.3. Suppose that rr is a signed permutation of type (), ); then r
has 21x)fixed edges ifk is odd; otherwise, r has ((k) + )2x)fixed edges. IfTr is
a signed permutation oftype (), t), where t 4 1, then the number offixed edges ofr is
given by () t3 #)2U")- ifrlk; otherwise, r has nofixed edge.

Finally, we note that the maximum length of an induced cycle of a signed permu-
tation 7r of type (, ) is bounded by the order of r, which has been shown to be
r[)r tO Ur]. Since the number of signed permutations of given type is determined in
(3.4), like Corollary 3.7, the cycle indices of B and H, can be obtained by summing
the cycle structures of signed permutations r of type (k, ) over all double partitions
(x, u).

Acknowledgment. I thank the referee for many helpful comments on an early version
of this paper.
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COLLISIONS AMONG RANDOM WALKS ON A GRAPH*

DON COPPERSMITH-, PRASAD TETALI:I:, AND PETER WINKLER

Abstract. A token located at some vertex v of a connected, undirected graph G on n vertices is said to be
taking a "random walk" on G if, whenever it is instructed to move, it moves with equal probability to any of
the neighbors of v. The authors consider the following problem: Suppose that two tokens are placed on G, and
at each tick of the clock a certain demon decides which ofthem is to make the next move. The demon is trying
to keep the tokens apart as long as possible. What is the expected time M before they meet?

The problem arises in the study of self-stabilizing systems, a topic of recent interest in distributed computing.
Since previous upper bounds for M were exponential in n, the issue was to obtain a polynomial bound.
The authors use a novel potential function argument to show that in the worst case M ( + o( ))r/3.

Key words, random walk, graph, Markov chain, collision, token management

AMS subject classifications. 60J 15, 68E10, 05C35

1. Introduction. Let G be a connected graph on n vertices and let v be a fixed vertex
of G. A random walk on G, beginning at v, is a stochastic process whose state at any
time is given by a vertex of G; at time 0, it is at vertex v, and, if at time it is at vertex
u, then at time + it will be at one of the neighbors of u, each neighbor having been
chosen with equal probability.

The random walk thus constitutes a Markov chain, with state transition probability
Px,y 0 ifyis not adjacent to x, and Px,y 1/d(x) ifyis adjacent to x, and x has degree
d(x). The Markov chain will be irreducible (unless G is bipartite ), and it is easily verified
that its stationary distribution 7r satisfies 7rx d(x)/2m, where m is the number of edges
of G.

Thus, we have that, in the limit, the probability of being at any particular vertex is
proportional to its degree--regardless of the structure of G. This remarkable fact is the
key to numerous applications.

In Aleliunas et al. [4], random walks are used to establish the existence of short
universal sequences for traversing graphs; in Doyle and Snell [12 ], they are elegantly
associated with electrical networks; in Borre and Meissl 5 ], they are employed to estimate
measurements given by approximate differences. Broder 7] and Jerrum and Sinclair
[15 made use of random walks on graphs to obtain the first randomized polynomial-
time algorithm for approximating the value ofthe permanent ofa matrix; see also Dagum
et al. [10 ]. Random walks were used by Dyer, Frieze, and Kannan [13] to estimate the
volume of a convex body and by Karzanov and Khachiyan [16] to sort partial orders
when comparisons are expensive. Recently, Coppersmith et al. [8] have found an ap-
plication of random walks to on-line algorithms.

Aldous [1] gives many other contexts in which random walks on graphs arise, and
a valuable bibliography [2 compiled by the same author lists numerous additional ref-
erences on the subject.

In this work, we are motivated by the work ofIsraeli and Jalfon 14 on self-stabilizing
token management schemes. A protocol for a distributed computing network is said to
be self-stabilizing if, no matter what state it is begun in (or perturbed to), it eventually
enters a "legal" state and resumes normal operation.
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In a token management scheme, only one processor at a time is supposed to be
"enabled" to change state or perform some particular task. This processor is said to
possess the token, the token being an abstract object that is passed from processor to
processor like the baton in a relay race.

The obvious problems in designing a self-stabilizing token management scheme are
in recovering from (a) a situation in which no token is present and (b) a situation in
which several tokens are present. The former can be neatly avoided by allowing a processor
to use information from its neighbors to determine whether it has a token. For example,
in Israeli and Jalfon’s scheme, each processor has a special token-management register,
and a processor deems itself to possess the token just when the value in its register is at
least as great as the value in any of its neighbor’s.

Then, of course, if x is the highest value in any processor’s token management
register, all processors holding x possess a token--as do other processors that hold "local"
maxima.

To reduce the number of tokens to 1, the tokens are passed randomly to neighbors,
and, whenever two or more collide, they merge to become a single token. The tokens do
not, however, move simultaneously; the processors are not synchronized but are fired at
the will of a "demon" who, in the worst case, is trying to delay stabilization. Naturally,
we must assume that the demon must activate token-possessing processors from time to
time, so the question becomes the following: What is the expected number of such ac-
tivations before the tokens have collapsed to ?

If said time is polynomial in n, then it follows from Markov’s inequality that, in
polynomial time, we can make the probability of stabilization as close to as desired;
furthermore, it clearly suffices to consider the case where the system begins with just two
tokens. Accordingly, we define the meeting time MG(u, v) to be the expected number
of moves before tokens placed initially at vertices u and v of G collide, given optimal
(delaying) play by the demon in deciding at each step which token moves.

Israeli and Jalfon noted that, if G is an n-cycle, that is, if the processors are placed
in a ring, then it makes no difference which of the two tokens is moved; hence
MG( u, v) is bounded by the "hitting time" (definitions below) across the cycle, which is
about n2 / 4.

However, in a general connected, undirected, n-vertex graph G, they were able only
to get the exponential upper bound

M(u, v)= O((A- 1)z-),
where A is the maximum degree of G and D is its diameter.

Our main contribution has been to obtain a polynomial upper bound in the general
case, namely,

M(u, v) =< n plus lower-order terms.

Our primary technique is the use of a somewhat odd-looking potential function to
bound the meeting time; the function is designed to drop by in expected value no
matter which token is moved. Using distance and electrical resistance arguments, we are
then able to reduce the constant to 7, which is the best possible.

Since the demon is an adversary, our results apply also to the case where the decision
as to which token moves next is random and to the case where the tokens move simul-
taneously. A recent result of Aldous [3 implies that, in the latter case, meeting time is
bounded by a (large) constant times the maximum hitting time. Thus our results generalize
Aldous’s to cover the adversarial case, and it happens that we also lower Aldous’s constant
to 1. However, it should be noted that we do not determine the adversary’s optimal
strategy in the general case.
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2. Notation and preliminaries. The hitting time Ha(x, y) from x to y is defined to
be the expected number of steps for a random walk on G beginning at vertex x to reach
vertex y for the first time. Thus, for example, if x and y are at opposite ends of a path
on n vertices, then we have a "standard" random walk with reflecting barrier, and any
of a number of arguments shows that the hitting time from x to y is precisely (n )2.

We might at first be tempted to guess that this represents the largest possible hitting
time in an n-vertex graph, but, in fact, it has been known for many years that there are
n-vertex graphs G (barbells, for example) with vertices x, y such that Ha(x, y) is 2(n3).
The precise upper bound for Ha(x, y) was found by Brightwell and Winkler [6]; the
unique extremal graph is a "lollipop" consisting ofa clique on m /(2n + / 31 vertices
with a path on the remaining n m vertices attached at one end. The start vertex x is
in the clique, and the end vertex y is, of course, at the far end of the path. The hitting
time proves to be precisely

4__n3 n2
27 +-n-- +c,

where c 0, -7, or -n + , according as n 0, 1, or 2 mod 3, respectively.
This same value is thus a lowerbound for the worst-case value ofMa(x, y), obtainable

if the tokens begin as described above and the demon moves only the token that started
at x (this is, in fact, the demon’s best strategy on the lollipop). However, as we see, it is
not generally the case that, on a fixed graph G, the maximum meeting time is bounded
by the maximum hitting time.

Let us now fix an n-vertex graph G. A (possibly randomized) strategy S for the
demon on G consists ofinstructions that tell the demon, for each possible starting position
and progress of the game so far and each possible value of some random variable, which
token he should move. We let MS(x, y) be the expected number of moves until the
tokens meet, when the game is begun with tokens at x and y, and the demon follows
strategy S.

An optimal strategy is one for which MS(x, y) is maximal, that is, equal to
Ma(x, y), for every x and y; a pure strategy is one in which the demon’s choice at each
turn depends only on the current locations of the tokens. Note that a pure strategy is
equivalent to a tournament on the vertices of G; from each pair u, v of vertices, the
"winner" is the vertex from which the demon will move the token when the tokens are
located on u and v.

For convenience, we adopt the following convention: Iff is any real-valued function
on the vertices ofa graph, then f() is defined to be the average off(u) over all neighbors
u of v. Thus, for example, hitting time satisfies Ha(x, y) + Ha(Y, y) for all distinct
x and y.

3. Lemmas.
LEMMA 1. On any graph G, the demon has a pure optimal strategy.
Proof. For any two distinct vertices x and y, let S(x, y) be a strategy maximizing

Msx’y)(x, y). Define a tournament T by letting x be the winner over y when, given a
starting position with tokens at x and y, S(x, y) moves the token at x, similarly for y.
If either token may be moved, we assign a winner arbitrarily. We claim that the pure
strategy S corresponding to the tournament T is optimal.

If not, let c > 0 be the maximum value ofMa(x, y) MS(x, y), and, of all pairs
x, y attaining this discrepancy, choose one of minimum distance. Assume that x beats
y in T and that, with tokens starting at x and y, S(x, y) moves x with probability
p > 0. Then

MSX’y)(x, y) + pMa(, y) + p)Ma(x, ),
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since S(x, y) is supposed to be optimal at x, y; furthermore, we must have

Ms(x’y)(x, y) + MG(., y),

else moving the token at y would be a superior strategy. Then, however,

Ms(x’Y)(x, y) + MG(, y)

<= + MS(.g, y) + a

MS(x,y)+a

M(x, y)

MSX,y)(x, y).

The catch is that the inequality in the middle is strict since one of the neighbors z of x
must be at smaller distance to y than x was; thus Ma(z, y) MS(z, y) < c or z y,
so that M(z, y) 0. Either way, the contradiction proves the lemma.

We remark that Lemma can also be proved by formulating it in terms of Markov
decision processes and applying the general theory, as found, e.g., in [11 ].

The next lemma establishes a critical relation among hitting times.
LEMMA 2. Let x, y, and z be vertices ofa connected, undirected graph G. Then

H(x, y) + H(y, z) + H(z, x) Ha(x, z) + H(z, y) + H(y, x).

Proof. Essentially, this equality is a consequence of the reversibility of the Markov
chain for random walks on an undirected graph. Note that the left-hand side of the
equation in the lemma is the expected time for a random walk to go from x to y, then
to z and back to x, and similarly for the fight.

Now fix a number r and begin a random walk at x, ending when x is reached again
for the rth time. Let x, v, v2,..., v, x be the outcome of the walk; its probability is

d(x) ./11 d(I)

where d(u) is the degree ofthe vertex u, i.e., the number ofedges incident to u. However,
this value is, of course, the same as the probability of the reverse walk x, vk, vk_ i,

vl, x. Now, we claim that the number of x-to-y-to-z-to-x tours in one of these walks is
the same as the number of x-to-z-to-y-to-x tours in its reverse; to see this, note that the
greedy algorithm for finding such tours starting from the left is optimal and thus yields
at least as many such tours as we can find by listing x-to-z-to-y-to-x tours from the fight;
the symmetric argument establishes equality. It follows that the expected lengths of the
two types of tours from x to x are the same, proving the lemma.

Remark. For those readers accustomed to thinking of random walks in terms of
electrical circuits, we note that the lemma follows also from the following formula, which
appears in Tetali 17 ]"

H(x, y) mR(x, y) + - Z d(z)[R(y, z) Rr(x, z)]

in which m is the number of edges of G, and R( u, v) is the effective resistance between
u and v when G is regarded as an electrical network with a unit resistor on each edge.

A strategy S for the demon will be called a hitting time strategy if, whenever the
tokens are on x and y with H(x, y) > H(y, x), S requires that the demon move the
token from x. It looks reasonable to guess that the demon always has a hitting time
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strategy that is optimal, but this proves not to be the case. However, from the next lemma,
we can deduce the fact that there is a pure hitting time strategy whose tournament is
transitive.

LEMMA 3. On any graph G, the vertex-relation given by

u <-_ v ifand only ifH(u, v) <= H(v, u)

is transitive, i.e., constitutes a preorder on the vertices ofG.
Proof. The proof is immediate from the equation ofLemma 2. For us, the important

consequence ofLemma 3 is that there is always a vertex that is minimal in this preorder
and thus satisfies H(v, t) >= H(t, v) for every other vertex v of G. Such a vertex will
be called hidden. (As an example, the reader may verify that a vertex of a tree is hidden
just if its average distance to other vertices of the tree is maximum.)

4. Examples. In tuning our intuition with regard to hitting times and meeting times,
it is helpful to look at some examples. In the following cases, hitting times can be verified
by using Tetali’s formula or by solving simple equations.

Let us begin with a simple but already counterintuitive case: What should the demon’s
strategy be on a path? It seems perhaps that he should always move the token nearest
the center, but, in fact, it makes no difference what he does, so long as he never moves
a token from an endpoint unnecessarily.

A strategy for the demon is termed a degree strategy if, whenever the tokens are on
vertices of different degrees, he moves the token from the vertex of larger degree. Thus,
on the path, a degree strategy never moves a token off an endpoint unless it must.

THEOREM 1. On a path, a strategy for the demon is optimal if and only if it is a
degree strategy.

Proof. Let G be the path on vertices Vo,..., Vn 1. As a pair oftokens moves within
G, let us imagine a single "distance token" moving around a second copy G’ ofG according
to the following rule: If the tokens on G are at vertices v; and vj, then the location v of
the distance token is given by k -Jl.

If the demon follows a degree strategy, then the distance token takes a completely
normal random walk on G’, with absorbing state v and reflecting state v, 1. The expected
duration of the game is precisely the absorbing time from the distance token’s initial
position. If, however, at any pair v0, v; or vi, Vn- 1, the demon has positive probability
of moving the token at the endpoint, then the probabilities along the edges leading from
the corresponding vertex on G’ are skewed toward v, decreasing the expected time to
finish. V1

For our next example, we make only a small departure from the path; let G be the
graph depicted in Fig. 1, consisting ofa path ofnine vertices with a pendant edge attached
to the middle vertex vs.

V V 2 V 5 V 9

X

FIG. 1. Hitting time strategy not optimal.
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FIG. 2. Meeting time more than maximum hitting time.

In this graph, Ha(v2, x) 32 and Ha(x, v2) 40, so, if the demon follows a hitting
time strategy, he will move from x when the tokens sit at x and v2. This strategy will net
him an expected meeting time of M(x, v2) 46 steps from that position.

However, it turns out that the demon’s optimal strategy never moves a token at x
unless the other token is on v or v9. If the demon follows this rule and otherwise moves
the token that is closer to vs, he achieves M(x, v2) 52.

For our last example, we consider the tree T pictured in Fig. 2. Here we have the
following hitting times: HT(x, y) 84, HT(y, t) 73, and H(t, y) 67. Note that
is the unique hidden vertex here. Although the maximum hitting time in T is indeed 84,
we can easily verify that the maximum meeting time from x to y is more than 87.

To see this, let the demon proceed as follows: Move the token that begins at x and
continue moving it until it hits y or t. If it hits first--which happens with proba-
bility > 50%rathe demon switches horses by moving the token at y, thus gaining the
difference 73 67 6 between Hv(y, t) and Hr(t, y).

We see, however, that the maximum meeting time in a graph can never be more
than twice the maximum hitting time.

5. The main theorem.
THEOREM 2. Let G be any connected, undirected graph and let be a hidden vertex

ofG. Then, for every pair x, y ofvertices ofG,
MG(x, y) <= HG(x, y) + H(y, t) H(t, y).

Proof. We define a potentialfunction in accordance with the fight-hand side of
the above inequality; thus

,b(x, y) H(x, y) + H(y, t) HG(t, y)

H(y, x) + H(x, t) H(t, x)

because of Lemma 2. Thus is symmetric, and, no matter which token the demon
decides to move, its expected value after the move will decline by 1, as follows:

(x, y)= + (, y)= + (x, 7).

Since ff is nonnegative (on account of being a hidden vertex), the statement of
the theorem is already plausible, but, to make it rigorous, an argument similar to that
used in Lemma seems to be the most elementary route.

Assume, accordingly, that the theorem is false and let/3 be the maximum value of
M(x, y)- b(x, y). Among all pairs x, y realizing/3, choose one ofminimum distance,
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which cannot, of course, be 0, since q(x, x) >= 0 Ma(x, x). We may assume the
demon’s strategy with tokens on x and y is to move x. Then

MG(x, y) ,I,(x, y) +

>_- + M6(2, y) Ma(x, y);

again, at least one neighbor ofx must be closer to y than x was, so the inequality is strict,
and the contradiction proves the theorem.

In view of the Brightwell-Winkler bound on hitting time 6 ], we can now readily
obtain a cubic bound of (7)n for Ma(x, y). However, more careful analysis (below)
will obtain the fight constant. Before proceeding, however, let us rescue some of the
virtue ofthe hitting time strategies, by showing that their behavior with respect to hidden
vertices is correct.

COROLLARY 1. For any hidden vertex of G, the demon has a (pure) optimal
strategy that never moves a token off t.

Proof. For any other vertex x, we have

Ma(x, t) <= b(x, t) Ha(x, t),

so the demon cannot achieve a higher expected time to finish than he gets by merely
waiting for the token from x to hit t.

The commute time Ca(x, y) between vertices x and y of a graph G is defined simply
by

Ca(x, y) Ha(X, y) + Ha(y, x).

LEMMA 4. In a graph G on n vertices, n >= 13, for any three distinct vertices
x y, z we have

Ca(x y) + Ca(y, z) + CG(Z X) < n + n2 + n 592
27"

Proof. By Chandra et al. [9], we know that

Ca(x, y) 2mRa(x, y),

where m is the number of edges of G and where Ra(x, y) is the effective resistance
between x and y (see the remark above).

Let oa(x, y) denote the distance between x and y in G, that is, the number of edges
in a shortest path between x and y. Then Ra(x, y) <= oa(x, Y); so

Ca(X, y) + Ca(y, z) + Ca(z, x) -< 2m[pa(x, y) + pc(Y, z) + pc(z, x)1.

Case I. Let pc(x, y) + PG(Y, Z) + pc(Z, X) 2k be even.
Then there are nonnegative integers a, b, c such that

pG(x, y) a + b, pc(Y, z) b + c, pc(z, x) c + a, and k=a+b+c

(note that a, b, c are nonnegative, owing to the triangle inequality for distances). Partition
the n vertices into the following a + b + c + nonempty subsets:

D(x, 0), D(x, 1),..., D(x, a 1),

D(y, 0), D(y, 1),..., D(y, b 1),

D(z, 0), D(z, 1),..., D(z, c- 1),

and Residue everything else,
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where D(x, i) is the set of vertices with oa(x, t) i. Disjointness follows from
the distances: If D(x, i) f) D(y, j) is nonempty for < a, j < b, then o(x, y) <=
+ j < a + b. Furthermore, D(x, i) and D(y, j) must be nonadjacent, since other-

wise O(x, y) <= + j + < a + b. Since G is connected, this implies that Residue is
nonempty.

The only edges that can exist are between D(x, i) and D(x, + ), between
D(x, a and Residue, similarly for y and z, and within the subsets themselves.

Let F be composed of one vertex from each of the k + a + b + c + subsets
and let H G F be the remaining n k vertices. The number of edges among F
is at most k. The number of edges among H is at most (n k )(n k 2)/2. The
number of edges between H and F is at most 4 (n k ). (Each member ofH can be
adjacent to at most four members of F, and can achieve 4 only if it is in Residue. If it
is adjacent to five members ofF, it is adjacent to 4 among D(x, i), D(y,j), and Residue,
and thus gives a shortcut between x and y.)

Thus the number of edges is bounded by

k+(n-k- 1)(n-k-2)/2+4(n-k- 1),

and by 9 ], the sum of the round-trip times is bounded by

22k[k+(n-k- 1)(n-k-2)/2+4(n-k- 1)].

If n is at least 13, this expression is maximized at k n + 3/3].
Thus, depending on n, we get the following bounds:

n----0(mod3),k=(n+3)/3, bound=(8/27)n3+(8/3)n2- 16,

n (mod 3), k (n + 5)/3, bound (8/27)n + (8/3)n 2 + 4n/9 740/27,

n 2 (mod 3), k (n + 4)/3, bound (8/27)n + (8/3)n 2 + 4n/9 592/27.

Case II. Suppose that oG(x, y) + oG(Y, z) + oG(z, x) 2k + is odd. Then we
can find nonnegative integers a, b, c such that

oG(x,y)=a+b+ 1, pc(y,z)=b+c+ 1,

o(z,x)=c+a+ 1, and k=a+b+c+ 1.

Now construct k + 2 disjoint nonempty subsets, along with a Residue that may or may
not be empty, below:

D(x, 0), D(x, 1),..., D(x, a),

D(y, 0), D(y, 1),..., D(y, b),

D(z, 0), D(z, 1), D(z, c),

and Residue everything else (may be empty).

Let F be composed of one vertex from each D(x, i), D(y, j), D(z, k) and let H be
everything else (including Residue). The only edges in F are between D(x, i) and
D(x, + ), between D(x, a) and D(y, b), and others by symmetry, totalling a + b +
c+ + + -a+b+c+3 =k+2. Thereareatmost(n-k-2)(n-k-3)/2
edges in H. A vertex in H can be adjacent to at most four vertices in F. (Otherwise, it
is adjacent to at least four subsets among D(x, i) and D(y, j) and thus forms a shortcut
between x and y, or similarly between y and z, or z and x.) So at most 4(n k 2)
edges exist between H and F.



COLLISIONS AMONG RANDOM WALKS ON A GRAPH 371

The total number of edges is at most

k + 2 + (n k- 2)(n k- 3)/2 + 4(n k- 2).

The sum of the round trips is bounded by

2(2k+ 1)[k+2+(n-k-2)(n-k-3)/2+4(n-k-2)].

This is maximized when k l(n + 3)/3 J, if n is at least 9. Once again, depending on
the value of n, we get the following bounds:

n--0(mod3),k=(n+3)/3, bound=(8/27)n3+(20/9)n2- 18,

n (mod 3), k (n + 2)/3, bound (8/27)n + (20/9)n 2 392/27,

n---2(mod3),k=(n+ 1)/3, bound=(8/27)n3+(20/9)n2-4n/9-280/27.

It follows that, irrespective of whether k is even or odd, when n >= 13 we obtain an
upper bound of at most

2_%/73 _]._ /72
__

/7 592
27"

THEOREM 3. Maximum meeting time (for n >= 13) is bounded by

(4/27)n + (4/3)n 2 + (2/9)n 296/27.

Proof. It follows that

Co(x, y) Ho(x, y) + Ho(y, x),

Mo(x, y) <-_ Ho(x, y) + Ho(y, z) Ho(z, y) Ho(y, x) + H(x, z) H(z, x).

Afortiori,

MG(X, y) <= Ho(x, y) + Ho(y, z) + HG(z, y),

Mo(x, y) <= Ho(y, x) + HG(X, z) + Ho(z, x).

Thus

2MG(x, y) <= Ho(x, y) + HG(y, z) + Ho(z, y) + Ho(y, x) + Ho(x, z) + Ho(z, x)

Co(x, y) + Co(y, z) + Co(z, x).

If z is distinct from x and y, then the lemma gives the theorem. If z x, then

Mo(x, y) <= Ho(x, y) + Ho(y, x) Ho(x, y) Ho(y, x) < CG(X, y).

Select z’ different from x and y and note that Co(y, z’) + Co(z’, x) >= Co(x, y). So
2Mo(x, y) <- Co(x, y) + Co(y, z’) + Co(z’, x). Then the lemma again suffices. D

What is the precise maximum meeting time on an n-vertex graph? Although we
have seen that, for a given G, maximum meeting time may exceed maximum hitting
time, we strongly suspect that the extremal case for meeting time is the Brightwell-
Winkler lollipop of[6 ], where maximum meeting time and maximum hitting time are
the same (the vertex at the end of the "stick" is hidden).

6. Additional remarks. Our methods may be applied also to meeting times for two
tokens when the choice ofwhich token to move is not made by an adversary. For example,
the choice may be random; it may alternate; it might be made by an "angel" who is
trying to minimize the expected time to collision. In all these cases, our upper bound
still applies; moreover, it is still tight to within a multiplicative constant, since the meeting
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times for points on opposite sides ofthe barbell graph depicted in Fig. 3 are always cubic.
Throughout this paper, we assumed that a token moved from a vertex to any of the
neighboring vertices with equal probability. We must remark that our main theorem
(Theorem 2), in fact, holds true in a more general case--a token, when instructed to
move, takes one step ofa "general random walk" prescribed by the transition probabilities
of a reversible Markov chain. Thus the meeting time in this case is still upper bounded
by twice the hitting time.

Suppose that we reinstate the demon but give him more than two tokens to work
with; as in the description of Israeli and Jalfon’s self-stabilizing token management scheme
above, the rule is that, whenever two tokens meet, one is eliminated. However, for our
purposes, it is more convenient to think oftokens not being eliminated but simply "glued
together" when they meet; then when there are k tokens at the beginning, we can employ
throughout the multivariable potential

bk(x Xk)
k -. MG(Xi

<j

where the xi’s will cease to be all distinct once collisions begin. Suppose, for example,
that tokens corresponding to indices e I are currently on vertex v and are designated
for movement by the demon; then the expected value of M(xi, xj) drops by at least
when ]{ i, j} f-) II 1, which occurs for II1 (k- II) >= k- of the terms, while the
other terms remain constant. Hence the expected value of ffk diminishes by at least at
every step, as desired.

Note that M(xi, xj) remains at zero when and j are both in I, since tokens and
j continue to travel to the same vertex. It is for this reason that we use MG rather than
our original in the definition of k; the expected value of if(v, v) can in some circum-
stances jump as v moves, e.g., when v is a hidden vertex.

Now the proofofTheorem 2, suitably amended, shows that the expected time before
reducing to a single token is at most the maximum value of ff. on G, which is, in turn,
bounded by k times the maximum two-token meeting time. Thus we have the following
result.

THEOREM 4. The expected number ofsteps before tokens on k ofthe n vertices ofa
graph reduce to one is at most (4/27)kn 3.

In the worst case for the Israeli-Jalfon protocol, we may as well have a token on
every vertex, in which case our bound is of order n 4. Indeed, the value of ’In can reach
order n 4, as in the barbell graph; nevertheless, the "total meeting time" in that case is
still only order n 3. We do not currently know of any sequence of graphs for which the
total meeting time is asymptotically more than the lollipop’s (4/27)n Hence, we have
the following conjecture.

11/4 n/4

hi2

FIG. 3. Cubic meeting times.
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CONJECTURE 1. The total expected time for tokens at every vertex of an n-vertex
graph to reduce to one is O(n3).

Note that it may in some graphs take more time to reduce three tokens (say) to
two, in the worst case, than two to one. Define the collision time for a collection oftokens
on a graph to be the expected number of steps before any two tokens collide, with the
schedule demon trying to keep them apart as usual. As an example, let G consist of
several copies of a long path with their fight-hand endpoints identified; starting with
tokens at three left-hand endpoints, the demon moves one until it becomes adjacent to
a second, then moves the third exclusively. Asymptotically, this takes 50% longer than
the largest two-token meeting time, obtained by hitting one endpoint with a token from
another.

However, addition of more tokens, in this case, reduces collision time. We cannot
find any case where this is not so; hence the following conjecture holds.

CONJECTURE 2. The maximum collision time on any graph is achieved either with
two or three tokens.

There is one further consideration, which leads perhaps to the most intriguing con-
jecture of all. Let us put two tokens on a graph and let them take random walks, as
before, but now suppose the schedule demon is clairvoyantmthat is, he can see where
each token will go, infinitely far into the future. The question is, with this advantage,
can he now keep the tokens apart forever? Of course, we must ask the question in a
probabilistic context, since the tokens may, e.g., be headed toward each other along the
same path, at the outset. In some graphs (e.g., a tree or a cycle), it is easy to see that the
demon will come to grief with probability 1. However, we think that on sufficiently large
complete graphs the demon will win with probability greater than 0 (in fact, K4 may be
big enough). Hence, we have Conjecture 3.

CONJECTURE 3. Let two tokens begin random walks on a large complete graph.
Then with probability > O, the clairvoyant schedule demon can keep them apart forever.
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MINIMUM EDGE DOMINATING SETS*

J. D. HORTON"f AND K. KILAKOS:I:

Abstract. Let G (V, E) be a finite undirected graph with n vertices and m edges. A minimum edge
dominating set of G is a set of edges D, of smallest cardinality 3"(G), such that each edge ofE D is adjacent
to some edge of D. Let S(G) be the subdivision graph of G and let T(G) be the total graph of G. Let a(G) be
the stability number of G (cardinality of a largest stable set) and let a2(G) be the 2-stability number of G
(cardinality of a largest set of vertices in G, no two of which are joined by a path of length 2 or less). The
following results are obtained. For any G, 3"(S(G)) + ot2(G) n and 23"(T(G)) + o(T(G)) n + m or
n + rn + 1. Also, for any depth-first search tree S of G, 3"(S)/2 =< 3"(G) =< 23"(S), and these bounds are tight.

The edge domination problem is NP-complete for planar bipartite graphs, their subdivision, line, and total
graphs, perfect claw-free graphs, and planar cubic graphs. The stable set problem and the edge domination
problem are NP-complete for iterated total graphs.

The edge domination problem is solvable in O(n3) time for claw-free chordal graphs, locally connected
claw-free graphs, the line graphs of total graphs, the line graphs of chordal graphs, the line graph of any graph
in which each nonbridge edge is in a triangle, and the total graphs of any of the preceding graphs.

Key words, graph theory, complexity, line graphs, total graphs, subdivision graphs, dominating set, stable
set, 2-stable set

AMS subject classifications, primary 68R10; secondary 05C35, 05C70

1. Introduction. Despite being closely linked with several important graph problems,
edge domination has not been extensively studied. Most of the known results appear in
Yannakakis and Gavril 20 ]. Two obvious connections with well-known problems relate
edge dominating sets to matchings and vertex dominating sets. An edge dominating set
of any graph G is a vertex dominating set in the line graph of G, and an independent
edge dominating set of G is a maximal matching of G. Many of the results in this paper
first appeared in 13 and come primarily from associating the edge domination problem
with the stable set problem. In total graphs, line graphs, and claw-free graphs, these two
concepts are closely related and allow us to answer complexity questions in these classes
of graphs.

All graphs considered here are finite, undirected, without loops or multiple edges.
The graph G (V, E) has vertex set V with n vertices, and edge set E with m edges. An
edge e { v, u } has vertices v and u that are saturated by e. Given a set of edges D,
denote the vertices saturated by edges ofD by Vz.

An edge { v, u } is said to dominate all edges that have v or u as a vertex, including
itself. A set of edges M is said to be independent (a matching) if no two of its edges have
a vertex in common. A set of edges D is said to be an edge dominating set if every edge
is dominated by an edge in D. It is known that the size of a minimum independent edge
dominating set is equal to the size of a minimum edge dominating set in a graph (see
[2] or [20] for a proof). We call the cardinality of the smallest edge dominating set of
G the edge domination number of G and denote it by 3"(G). A set I of vertices of G is a
stable set if no two of its vertices are adjacent. The set I is said to be a 2-stable set if the
distance of any two vertices in T is greater than 2. We denote the stability number (2-
stability number) of G by a(G)(a2(G)), the cardinality of a largest stable (2-stable) set
of G. Also, we denote the cardinality of a largest matching in G by re(G). A set of
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vertices that is incident with all edges is called a vertex cover. A set of edges such that
every vertex is incident with exactly k of the edges is called a k-factor. In particular, a
one-factor is called a perfect matching.

The subdivision graph of G is S(G) (Vt3 E, E’), where E’= { {e, v }: e 6 E, and
v is incident with e }. In effect, each edge of G is replaced by a path of length 2. The line
graph of G is L(G) (E, E*), where E* { e, f} e andf are adjacent edges of E }.
The edges of G become vertices of L(G), and two edges of G are adjacent vertices of
L(G) if and only if the edges are adjacent in G. The total graph of G is defined by
T(G) (V tO E, E tO E’ U E* ). Thus the total graph is the union of the graph, its line
graph, and its subdivision graph. The total graph is also the square of the subdivision
graph; that is, two vertices of T(G) are joined if and only if the same two vertices are
joined by a path of length or 2 in S(G). The vertex of T(G) or S(G) corresponding
to edge { v, u } of G is called an e-vertex and is denoted by [v, u].

We conclude this section by stating some results that will be useful in subsequent
sections. The first of these results (Proposition 1.1 is trivial. Theorems 1.2 and 1.3 are
due to Yannakakis and Gavril [20].

PROPOSITION 1.1. Let D be a set ofedges ofa graph G. Then D is an edge dominating
set ifand only ifthe vertices not saturated by Dform a stable set.

THEOREM 1.2 (see [20]). Let I be a maximum stable set ofT( G). Then, for every
maximal matching M ofG containing all the e-vertices ofI, the set M, together with all
vertices of G not saturated by M, form a maximum stable set of T( G), and M is a
minimum independent edge dominating set ofG.

THEOREM 1.3 (see [20]). IfD is a minimum independent edge dominating set of
G, then D, together with the vertices ofG not saturated by D, form a maximum stable
set ofT(G).

2. Depth-first search trees. The numerous applications involving depth-first search
spanning trees has motivated a considerable amount of research towards them. For in-
stance, Savage [18] has shown that re(G) <= 2m(T), where T is a depth-first search
spanning tree of G. A similar result holds true also for 3/’(G).

THEOREM 2.1. If T is a depth-first search tree of a connected graph G, then
3‘’( T)/2 <= 3‘’( G) <= 23"(T). Both bounds are tight.

Proof. Clearly, no two leaves of T are joined by an edge in G. Thus any set ofedges
that saturates all the interior vertices of T (including the root) dominates all the edges
of G. Consider a minimum edge dominating set D of T. For an interior vertex v of T,
either v is saturated by D or all its children are saturated by D. Hence the number of
interior vertices not saturated by D is at most D 3’’(T). Adding edges to D to cover
these unsaturated interior vertices gives an edge dominating set of G of cardinality at
most 23"(T). Thus the upper bound is proved. The lower bound is actually valid for
any spanning tree T. Consider

3‘’( T) <= m( T) n a( T) <= n a(G) <= 23‘’(G).

The first inequality says that a minimum maximal matching is no larger than a maximum
matching. The next equality is a statement of K6nig’s 14 theorem for bipartite graphs.
The next inequality follows because a stable set in G is also a stable set in T. Finally, the
last inequality follows from Proposition 1.1.

It remains to show that both bounds are tight. For the upper bound, consider the
graph G shown in Fig. (a) consisting of 5k vertices and 7k edges, where k is an
arbitrary positive integer. A depth-first search tree T with an edge dominating set of size
k is also given. G contains k 4-gons, each ofwhich requires two edges ofan edge dominating
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(a) /’(G)----- 2/’(T)

r

(t) ’(T)=

FIG.

set D. Since there is no edge joining any pair of the 4-gons, 3"(G) 2k. For the lower
bound, let T be a path on 4k vertices rooted at a vertex r of degree 1, augmented by
attaching a child to each vertex at an odd distance from r. Referring to Fig. (b), we see
that T is a depth-first search tree of the graph G, obtained from T by adding edges
between the vertices at an odd distance from r. It is easy to see that 3"(T) 2k, while
3"(G) k. IS]

3. Subdivision graphs. Yannakakis and Gavril [20 initially studied the complexity
of the edge domination problem for planar graphs and bipartite graphs and showed that
it is NP-complete for both of these classes of graphs. However, the edge domination
problem is NP-complete even for the intersection of these graph classes. First, we prove
a theorem that relates 2-stable sets of a graph G with independent edge dominating sets
in the subdivision graph of G, S(G).

LEMMA 3.1. IfI is a nonempty set ofvertices ofa connected graph G V, E), then
there exists a maximal matching M orS(G) I such that MI n

Proof. Let H G I and let Hi be a connected component of H. Construct a
spanning tree T of H; rooted at a vertex w adjacent to a vertex v of I in G. Include the
edge { w, [w, v] in M. Observe that, for any e-vertex [x, y] of S(T), with x closer than
y to the root w of T, the edge { [x, y], y } in S(G) can also be included in M. Extending
this process to every connected component of H, we construct M such that MI
n III. Thus all vertices of V I are saturated, and no pair of e-vertices of S(G) are
joined by an edge, so that M is a maximal matching. []

LEMMA 3.2. IfM is a maximal matching orS(G), then I V- VM is a 2-stable
set ofG.

Proof. Suppose that I is not a 2-stable set. Let v and u be any two vertices of I that
are not distance 2 or more apart. If v and u are adjacent, then neither { v, [v, u] } nor
{ u, [v, u] } is dominated by M. Thus we can let w be a vertex adjacent to both v and
u. Then at least one of { v, v, w] } and { u, u, w] } cannot be dominated by M. Hence
I must be a 2-stable set of G.

The preceding two lemmas lead immediately to the following result.
THEOREM 3.3. For a graph G and its subdivision graph S( G), an independent edge

dominating set D is a minimum independent edge dominating set ofS( G) ifand only if
V- VD is a maximum 2-stable set ofG.
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COROLLARY 3.4. The edge domination problem is NP-complete when restricted to
the subdivision graphs ofplanar bipartite graphs with no vertex degree exceeding 3.

Proof. The stable set problem is NP-complete for planar cubic graphs (see the Ap-
pendix). Also, Chang and Nemhauser 3 have shown that the 2-stability problem is
NP-complete by applying the following transformation from the stable set problem. Given
a graph G, they construct G by replacing each edge (v, w) by a tree consisting of the
paths (v, u, w) and (u, u’, u"). G has a stable set of size k if and only if G’ has a 2-stable
set ofsize m + k. The combination ofthese two results shows that the 2-stability problem
is NP-complete for planar bipartite graphs with no vertex degree exceeding 3. By Theorem
3.3, this problem is polynomially equivalent to finding a minimum edge dominating set
in S(G).

Since the subdivision graph of a planar bipartite graph is also planar bipartite, we
have the following result.

COROLLARY 3.5. The edge domination problem is NP-completeforplanar bipartite
graphs.

The results obtained so far can be extended to the k-iterated subdivision graphs,
Sk(G). Define for a graph G and a positive integer k, Sk(G) S(S_ (G)), where
S0(G) G. Note that a 2-stable set of G is a stable set in the square of G. Since T(G)
is the square of S(G), Theorems 1.2 and 1.3 show how to find in polynomial time a 2-
stable set in Si(G) given an edge dominating set in Si_ (G), and vice versa. Theorem
3.3 shows how to find in polynomial time an independent edge dominating set in S(G)
given a 2-stable set in Sg (G), and the opposite also holds. These two results, combined
with the fact that the 2-stability and edge domination problems are both NP-complete
in the class of planar bipartite graphs, gives us the following.

COROLLARY 3.6. For any fixed positive integer k, the edge domination problem
and the 2-stability problem are both NP-complete for k-iterated subdivision graphs of
planar bipartite graphs.

However, the problems of 2-stability and edge domination are not of equivalent
complexity on all classes of graphs. It is shown in 3 that the 2-stability problem is NP-
complete for split graphs. G (V, E) is a split graph if V can be partitioned into a stable
set I and a clique C. On the other hand, Proposition 1.1 makes it easy to find in polynomial
time a minimum edge dominating set for this class of graphs. We must choose a set of

Degree 1 attuehment

FIG. 2

Degree 2 attachment
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edges that saturates all but possibly one vertex of C, the complete subgraph in G. If C
contains a vertex v that is not adjacent to any vertex of I, then leading v unsaturated
solves the problem, and -’(G) [ C / 2]. Otherwise, 3"(G) [ C / 2].

The edge domination problem is NP-complete for planar cubic graphs as well. Cor-
ollary 3.4 shows that it is NP-complete for planar bipartite graphs of maximum degree
3. It is easy to find components to attach to vertices of degree or 2, that both make the
graph cubic and that do not affect how a minimum edge dominating set occurs in the
original graph. Two such components are shown in Fig. 2, with edge dominating sets.
Each edge of the dominating set dominates five edges, no edge is dominated twice, and
the number of edges in the component are exactly divisible by 5. Hence these edge
dominating sets are minimum.

4. Line graphs. Often, problems that are difficult for general graphs become solvable
if restricted to line graphs. Edge domination is not such a problem.

THEOREM 4.1. The edge domination problem is NP-completefor the line graphs of
planar bipartite graphs.

Proof. We transform vertex cover for 3-connected cubic planar graphs to this prob-
lem (see the Appendix). The transformation is similar to that used in [20 for proving
Theorem 1. Given a 3-connected cubic planar graph G, each vertex vi is replaced by the
subgraph Hi shown in Fig. 3(a). The three edges formerly incident with vi now become
incident with the vertices xi, Yi, and zi. The replacement must not allow a vertex xi to
bejoined to a vertex xj. To prevent this from happening, first decompose the 3-connected
cubic graph into a 1-factor and a 2-factor 17 ]. Orient each circuit of the 2-factor and
always replace a vertex vi so that xi is joined to the next vertex in the circuit, Yi is joined
to the previous vertex in the circuit, and zi is joined to the neighbouring vertex in the 1-
factor. Then an original edge of G, v;, vj }, gets replaced by an edge { Xi, yj }, { Xj, Y }
or { zi, zj. }. Call this new graph G*.

We claim that G has a vertex cover ofsize k ifand only ifG* has an edge dominating
set of size 7n + k, where n is the number of vertices in G. As a first step in the proof of
this claim, note that Hi satisfies the following properties:

Hi has an edge dominating set of size 7;
(2) H; has an edge-dominating set of size 8 that saturates xi, Yi, and
(3) There is no set of six edges of Hi that dominates all the edges of H

(4) There is no set of seven edges of Hi that dominates all edges of Hi Y and
includes an edge incident to xi or zi;

(5) There is no set of seven edges of Hi that dominates all edges of Hi zi and
includes an edge incident to xi or y;;

(6) There is no set of seven edges of Hi that dominates all edges of Hi
and includes an edge incident with xi.

The verification that Hi satisfies these six conditions can be made easier by shrinking
three paths of length 3 and decreasing the number of edges in the edge dominating sets
by three.

Let C be a vertex cover of G with k vertices. We now find an edge dominating set
of G*. For each vertex vi not in C, by we can dominate all the edges ofHi with seven
edges. For each vertex vj. in C, by (2) we can dominate all the edges of Hi with eight
edges, saturating x, y, and zj. These 8k edges also dominate all edges derived from edges
of G because C is a vertex cover. Thus all edges of G* are dominated by 7n + k edges.

Conversely, let D be an edge dominating set of G* of size d. Let di be the number
of edges ofD in the subgraph H;. By (3), d; is greater than 6; thus d >= 7n.
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FIG. 3. H; L(H).

Now form a set of, say k, vertices C of the original graph G. Put v into C if di >= 8
or if the edge { xi, yi} is in D. If the edge { zi, zj } is in D, put either vi or vj- into C. To
each vertex of C, there is an edge ofD in excess of the 7n mentioned before. Thus m >=
7n+k.

It still remains to show that C is a coveting set of G. Consider any edge of G, say
e { vi, v }, and the corresponding edge e* of G*, which is of the form { xi, yj. } or
{ zi, z }. If this edge is in D, then either v; or v is in C, and so e is covered by C. Other-
wise, e* is dominated by an adjacent edge ofHi or/-/. In this latter situation, if either
or d is at least 8, then either vi or vj. is in C and e is covered. The remaining case is that
di 7 d. By (4) and (5), e* can be dominated from Hi only if some edge of Hi is
dominated by edges ofM that are not in Hi. In particular, if e* zi, z }, then by (4)
the seven edges ofM N Hi cannot include an edge incident with zi, so the edge attached
to X from outside Hi, say { xi, Yt is in D. Then, however, vi is in C. If instead e*
{ xi, y } and e* is dominated by an edge from/-/, by (5), D includes an edge { x, Yt }
and vj is in C. The one remaining case is that e* { xi, y } and that e* is dominated
by an edge from Hi. By (6) this is impossible. This completes the proof that the vertex
cover problem in G is equivalent to the edge domination problem in G*.

G* is the line graph of a planar bipartite graph, since each Hi is isomorphic to the
line graph of the graph H in Fig. 3 (b). It is bipartite, and the distance between the other
endpoints of ex, ey, and ez are all even. Hence, if H replaces each vertex of G in the
natural way, the remaining graph is planar, bipartite, and has G* as its line graph.

COROLLARY 4.2. The edge domination problem is NP-complete for perfect claw-
free graphs.

Proof. The line graph of a bipartite graph is both perfect and claw-free.

5. Total graphs. Theorems 1.2 and 1.3 associate edge dominating sets in G with
stable sets in the total graph T(G). However, a direct relationship exists between these
two parameters in T(G) alone. First, consider the related problem offinding a maximum
cardinality matching in T(G) minus a stable set.

THEOREM 5.1. Let G be a connected graph and let I be any stable set ofvertices of
T( G). Then either H T( G) I has a perfect matching or, for any vertex v of I,
T(G) (I- v) has a perfect matching.
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Proof. It is easy to see that H is connected. Let S be a spanning tree of G and let r
be the root of S. Consider the following algorithm that visits all the vertices of S in
postorder and adds edges to M.

The algorithm starts with Mbeing the empty set. Let xbe the vertex that the algorithm
is currently visiting and let z be x’s parent in S. If x is the root r, then z does not exist,
and the steps must be modified appropriately. At this point in the algorithm, all vertices
beneath x in the tree have been visited, and so all these vertices and all e-vertices adjacent
to them, other than neighbours ofx itself, have been paired and are saturated by M. No
ancestor of x has yet been visited, so that the e-vertices of M corresponding to edges
above x in the tree S have not yet been paired. Perform the following operations at x.

Pair off all e-vertices of H adjacent to x, other than [x, z l, that are not yet
saturated, and add the pairs to M. This operation may or may not leave any e-vertex of
the form [x, v unsaturated.

(2) If[x, v] is still not saturated, and ifx is in H and is not yet saturated, then add
{x, [x, v]} to M.

(3) If [x, v is unsaturated and x is either not in H or has already been paired, put
Ix, v], [x, z] } into M. If x is the root so that z does not exist, [x, v] is left unpaired,

and the algorithm halts.
(4) If all e-vertices ofH beneath x in S are saturated, and x is in H and is not yet

saturated, add { x, [x, z] } to M. If[x, z] is in I, then { x, z } is added to M instead.
Again, if x is the root, x is left unpaired, and the algorithm halts.

(5) Proceed to the next vertex in the post-order of S.
It is necessary to verify that steps 3 and (4) can always be performed when required.

In step (3), for a nonroot vertex x, [x, z] must be available to be paired. It cannot yet
have been paired, since the edge { x, z } is above x in the tree S. The only problem that
could occur is that [x, z] is in the stable set I of T(G) that has been removed to form
H. However, x, z cannot be in I if x is I. The only other way step 3 is required is if
x has already been paired. This can only happen in step (4) on a previous iteration when
x is playing the role of the parent z. Then, however, an e-vertex adjacent to x is in I, so
that [x, z] cannot be in I.

In step (4), we must check that z is available to be paired when needed. It is needed
only if [x, z is in I, so that z is not in I. However, this can happen only for one child
x of Z, since I is a stable set. Hence z is needed at most once during the course of the
algorithm and will be in H and not be saturated when required to be paired.

To prove that the algorithm works, it is sufficient to note that, for any nonroot
vertex x, the algorithm pairs all e-vertices beneath x as well as x itself, and that no e-
vertex for the tree S is paired until an endpoint occurs in the post-order tree transversal.
Thus the necessary conditions, required before processing a vertex x, are met after all
descendents of x have been processed.

The algorithm stops when the root r is processed. If the number of nodes of H is
even, then all vertices are paired, and M is a perfect matching. Otherwise, the algorithm
leaves either root r or a neighbouring e-vertex unmatched. []

Theorem 5.1 and Proposition 1.1 establish the following relationships between sta-
bility and edge domination in total graphs.

COROLLARY 5.2. Let T( G) be the total graph of a connected graph G having n
vertices and m edges, let D be a minimum edge dominating set of T( G), and let I be a
maximum stable set of T( G). Then

(1) 3,’(T(G)) [(n + m a(T(G)))/2],
(2) The vertices not saturated by D form a stable set of cardinality a(T(G)) or

a(T(G)) 1,
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(3) IfM is a maximum matching of T( G) I, then any independent edge domi-
nating set of T( G) having M as a subset is minimum.

Theorem 5.1 also leads to more NP-completeness results.
COROLLARY 5.3. The edge domination problem for total graphs ofplanar bipartite

graphs is NP-complete.
Proof. The proof follows by reduction from the stable set problem on the total

graphs of planar bipartite graphs (see Theorems 1.2 and 1.3 and Corollary 3.4). Given
a connected planar bipartite graph G with n vertices and m edges, find 3"(T(G)). By
Corollary 5.2, a(G) n + m- 23"( T(G)) or n + m- 23"(T(G))+ 1. Define another
graph G’ from G by adding one edge, with a triangle attached to the other end, to any
vertex of G. Clearly, a( T(G’)) a( T(G)) + 2. Hence, c( T(G’)) (n + 3 + (m + 4)
23"(T(G’)) + xl a(T(G)) + 2 n + m- 23"(T(G)) + 2 + x2, where xl and x2 are
0 or 1. Thus we have 2(3"(T(G’)) 3"(T(G))) 5 + xl x2. Hence, d(T(G’))
d(T(G)) 2 or 3. If this difference is 2, then c(T(G)) n + m 23"(T(G)) + 1,
whereas, if the difference is 3, then c(T(G)) n + m 23"(T(G)). Thus a polynomial
algorithm for the edge domination problem for the class of total graphs leads to a poly-
nomial algorithm for the stable set problem in these graphs. The converse is also true by
Corollary 5.2.

Define the iterated total graph Tk(G) by Tk(G) T( T_ I(G)) for k 1, 2,
and T0(G) G. Theorems 1.2 and 1.3 show that finding a maximum stable in T;(G)
is polynomially equivalent to finding a minimum edge dominating set in Ti- (G). Also,
Corollary 5.2 combined with the construction used in Corollary 5.3 shows how to find
an independent edge dominating set from a stable set in Ti(G), and vice versa.

COROLLARY 5.4. For anyfixed positive integer k, the edge domination problem,
as well as the stable set problem, are NP-complete on k-iterated total graphs.

6. Algorithms for edge domination. The previous sections have shown that it is
hard to find a minimum edge dominating set in many types of graphs. Nevertheless,
there are some classes of graphs for which the edge domination problem can be solved
efficiently. Mitchell and Hedetniemi [16], Yannakakis and Gavril [20], and Farber [6
have all given efficient algorithms for finding minimum edge dominating sets in trees. A
more general algorithm is included in the work of Corneil and Keil [4] on domination
in k-trees.

A very simple algorithm, based on Proposition 1.1, produces an approximate so-
lution, given a solution to the minimum stable set problem. This is the basic algorithm
for all the algorithms in this paper. Given a graph G (V, E),

Find a maximum stable set of vertices in G, I,
(2) Find a maximum matching in G I, M,
(3) For each vertex v of V- I- Vt, choose an incident edge e. Then add these

edges to M to form an edge dominating set D M tO { evlV V- I- VM}.
The algorithm gives an edge dominating set D since V- VD I is a stable set. Step

(2) is polynomial, as shown by Edmonds [5 ]; step (3) is linear. Thus the algorithm is
polynomial for a given class of graphs if there is a polynomial solution to the stable set
problem for that class of graphs. This fact was used in the transformation of the stable
set problem to the edge domination problem in 5.

Of course, the algorithm does not necessarily give a minimum edge dominating set.
In fact, the algorithm can be off by up to a factor of 2, even for trees if the wrong
maximum stable set is chosen. Figure 4 exhibits such a family of graphs. Choosing the
black vertices leaves 2k mutually disjoint vertices to be covered. On the other hand, the
k edges that are the centre edges ofthe k vertical paths oflength 3 form an edge dominating
set. The approximation algorithm seems to be particularly poor for bipartite graphs.
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FIG. 4

The algorithm solves the edge domination problem for split graphs, as noted in
4. The reason is that G I is a complete graph and hence has either a perfect matching

or a near perfect matching. The algorithm finds a minimum edge dominating set in any
graph G if G I has either a perfect matching or a near-perfect matching (matches all
but one vertex). Several authors have noted that all connected claw-free graphs have this
property. See Jfinger, Reinelt, and Pulleyblank 12 ].

THEOREM 6.1. IfG is a connected claw-free graph, then either G, orfor some vertex
v, G v has a perfect matching, which can befound in O( rn time.

Proof. Let T be a breadth-first search tree of G. Then, except for the children of
the root, siblings must be joined by an edge, since otherwise they together with their
parent and grandparent form a claw. Using a post-order transversal of the tree, pair off
as many of the unmatched children ofa vertex as possible. If an unmatched child is left,
pair it with the vertex itself. When the root is reached in the transversal, only the root
and some of its children remain unmatched. Some of the root’s children may not be
connected to each other, but still all but two of the children can be matched with each
other. If three of the children could not be paired, then they would form a claw with the
root. As the final step in the algorithm, the root is matched with some unpaired child if
there is one. This algorithm is linear in the number of edges. D

Thus, ifG is a claw-free graph such that G I is connected, then there is a polynomial
algorithm to find a minimum edge dominating set in G, since both Minty 15 and Shibi
19 have given polynomial algorithms to find a maximum stable set in claw-free graphs.
The latter algorithm is O(n3). We have already seen one class of graphs that has this
property and that is total graphs (see Theorem 5.1 ).

A second class of graphs for which the removal of a stable set cannot disconnect
the graph is two-connected chordal graphs. A graph is said to be chordal if any simple
circuit of length greater than 3 has a chord, that is, an edge of the graph joining two
vertices of the circuit that are not adjacent in the circuit. A linear time, O(m) algorithm
to find a maximum stable set in a chordal graph G is given in [10].

A third class of graphs with the property that the removal of any stable set does not
disconnect the graph is the class of locally connected graphs. A graph is said to be locally
connected if the subgraph induced by the neighbourhood of any vertex is connected.
Clearly, a path in such a graph can avoid a vertex by taking a detour around it in its
neighbourhood, and hence a path in such a graph can be replaced by a path with the
same endpoints but avoiding any given stable set of vertices. Two subclasses ofthe locally
connected claw-free graphs are the line graphs of 2-connected chordal graphs, and the
line graphs of the total graphs. Both 2-connected chordal graphs and total graphs have
the property that any edge is in a triangle. The neighbourhood of an e-vertex in a line
graph always consists of two cliques. The triangle guarantees that these two cliques are
connected by an edge and hence that the neighbourhood of the e-vertex is connected.
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Thus we have the following results.
COROLLARY 6.2. There is a polynomial algorithm tofind the maximum edge dom-

inating set in thefollowing classes ofgraphs:
a) 2- connected claw-free chordal graphs;
b locally connected claw-free graphs;
c line graphs oftotal graphs.

The time-complexity of the algorithm is O(n3), which can be improved to O(m) for
case b ).

The class of graphs for which the edge domination problem can be solved in poly-
nomial time can be made larger. For the following algorithm to work, we must deal with
a slightly more general problem. Given a graph G and a set of vertices R that we call the
required vertices, find the smallest edge dominating set D such that all the required
vertices are saturated by the edge dominating set. Note that the basic algorithm solves
this extended problem for the classes of graphs mentioned in Corollary 6.2, if one mod-
ification is made. Instead of finding a maximum stable set in G, find a maximum stable
set I in G R. Then M matches vertices of R as much as possible, and D saturates the
vertices ofR. That D is a minimum edge dominating set that saturates R follows because
G I has a perfect or near perfect matching in these classes of claw-free graphs. The
following theorem gives a polynomial algorithm for some graphs that are not claw-free.

THEOREM 6.3. Consider the class ofgraphs in whichfor each graph G the 2-connected
induced subgraphs ofG all belong to classes ofgraphsfor which the edge domination with
required vertices problem can be solved in polynomial time. Then the edge domination
with required vertices problem can be solved in polynomial timefor this class ofgraphs.

Proof. Let G be a member of this class of graphs and let R be a required set of
vertices. The algorithmic technique used is divide-and-conquer. We may assume that G
is connected, since otherwise each connected component can be handled separately. If
G is 2-connected, then the problem can be solved in polynomial time by hypothesis.
Hence we may assume that G has a cut vertex v.

Let A be one component of G v containing at most (n )/2 vertices and let B
be the remainder of the graph, G A v. IfA consists of only one vertex, then { u, v }
must be the only edge incident to u. The problem can be solved by making v a required
vertex and finding a minimum edge dominating set saturating the required vertices in
the smaller graph G u. We henceforth assume that A contains at least two vertices.

Note the following inequalities, where dR(H) denotes the cardinality of DR(H),
which in turn denotes a minimum edge dominating set of the subgraph H that saturates
all the vertices of R in H. Also, let H + x denote the subgraph induced by the vertices
ofH together with the vertex x

dR(A) <= dR(A + v) <= dt,}(A + v) <= dR(A) + 1.

The first inequality is true, since an edge dominating set in A + v gives an edge dominating
set ofA of the same size, any edge incident to v being replaced by any adjacent edge in
A. The second inequality is true, since an edge dominating set that saturates R t_) { u)
also saturates just R. The last inequality is true because an edge dominating set of A,
together with any edge incident with v, gives an edge dominating set of A saturating v.
These inequalities are also valid with A replaced by B.

Clearly, exactly one ofthese three inequalities is strict. Thus a minimum edge dom-
inating set of G that saturates R, DR(G), must be one (or more) of

(1) DR(A) tO DR {}(B + v),
(2) DR(A + v) tO DR(B + v),
(3) Dgt(,}(A + v) tA Dg(B).
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In the first case, v is saturated by an edge from B; in the last case, v is saturated by
an edge from A; in the other case, v may not be saturated at all. However, we do not
need to find all of these sets. Calculating which of the above inequalities for A is strict is
sufficient to determine one formula that can be used. Thus we need only calculate all
three of DR(A), DR(A + v), DRU (v(A + v) and one of DRU (v(B + v), DR(B + v),
and DR(B). These, of course, are calculated recursively, using the algorithm itself, unless
the subgraph involved is 2-connected, in which case the algorithm from the hypothesis
is used. In fact, v can always be chosen so that A + v is 2-connected. (Use a post-order
transversal of the block-cutpoint tree (see [7] or [11, p. 36]), which can be found using
depth-first search in O(m) time (see [1, p. 185]).)

Let the time complexity of the algorithms solve the edge domination problem with
required vertices for a 2-connected subgraph with n vertices be f(n). Let the time com-
plexity of the above algorithm be t(n) (assuming that A + v is always 2-connected and
that the block-cutpoint tree is already known). Then, iff(n) O(n +), t(n) O(n +),
whereas, if n + O(f(n)), then t(n) O(f(n)), where e is any positive real number.
This follows by induction from the relationship (when G is not 2-connected)

t(n) <= t(a) + 2f(a + 1) + t(n a),

where a is the number of vertices ofA, =< a < n/2; t(a) is a bound on the time to find
DR(A); f(a + 1) is a bound on the time to find DR(A + v) and DRu(A + v);
t(n a) is a bound on the time to find the rest ofDR(G) in the rest of the graph.

There are several classes of graphs for which the edge domination problem can be
solved in this way.

COROLLARY 6.4. The edge domination problem can be solved in 0(/7 3) time for
thefollowing classes ofgraphs"

a trees and cacti,
b claw-free chordal graphs,
c line graph ofchordal graphs,
d line graph ofany graph in which each nonbridge edge is in a triangle.

The time bound can be reduced to O(n2)for cases (a) and (b).
Proof. (a) The problem can be solved in O(n) time for trees and simple circuits.
(b) The edge domination problem for 2-connected claw-free chordal graphs can be

solved in O(m) time (Corollary 6.2 (b)).
(c) Any nonbridge edge of a chordal graph must be in a triangle, and hence this

case reduces to case (d).
(d) The 2-connected components of a line graph L(G) are the line graphs of the 2-

edge-connected component of G. Every edge of such a component is a nonbridge edge
and hence in a triangle. By the discussion before Corollary 6.2, the line graph of a graph
in which every edge is in a triangle is a locally connected claw-free graph. Thus the basic
algorithm solves the problem for these 2-connected components, and the algorithm of
Theorem 6.3 is applicable. []

Theorems 1.2 and 1.3 show that the stable set problem in T(G) is polynomially
equivalent to the edge domination problem in G. As well, Theorem 5.1 shows how to
get a minimum edge dominating set for T(G) from a stable set in T(G).

COROLLARY 6.5. The stable set problem and the edge domination problem can be
solved in polynomial timefor the class oftotal graphs and iterated total graphs, ofany
graph mentioned in Corollaries 6.3 and 6.4.

7. Conclusion. There are still many open questions concerning the complexity of
the minimum edge domination problem. We do not know whether the problem is poly-
nomial or NP-complete for many classes of graphs such as chordal graphs.
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We were somewhat surprised to find that edge domination is such a difficult problem.
It is NP-complete for many classes of graphs for which the stable set problem is solvable
in polynomial time, including subdivision graphs, planar bipartite graphs, line graphs,
perfect graphs, claw-free graphs, and even the intersection of the last two classes. On the
other hand, we know of no class of graphs for which the stable set problem is NP-
complete, and the edge domination problem is solvable in polynomial time. Of course,
this may be due to our basic algorithm that requires having a maximum stable set first,
before finding a minimum edge dominating set.

Appendix. Proof that vertex cover is NP-complete for 3-connected planar cubic
graphs. The proof requires several transformations, starting from vertex cover for general
graphs. We transform a general connected graph G by adding two new vertices adjacent
to all other vertices of G, including each other. This new graph G* has a vertex cover of
size k + 2 if and only if G has a vertex cover of size k. G* is clearly 3-connected.

The next transformation takes a general 3-connected graph to a planar 3-connected
graph. The standard technique embeds the graph in the plane with only a polynomial
number of edge-crossings and replaces each edge-crossing with a cross-over subgraph as
given by Garey, Johnson, and Stockmeyer [9 ]. The following crossover subgraph, Fig.
5, can be used to maintain 3-connectedness.

At the same time, one replacement by this crossover increases the vertex cover by
exactly 11.

To make a 3-connected planar graph cubic, each vertex of degree d > 3 can be
replaced by a subgraph with one vertex of degree d- and 9 vertices of degree 3
(Fig. 6).

FIG. 5. The crossover graph.

FIG. 6. Degree reduction.
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This transformation is similar to that used in Garey and Johnson 8 ]. One replace-
ment always increases the vertex cover by exactly 5. The number ofreplacements required
to make the graph cubic equals the sum of the amounts by which the degrees of the
vertices exceed 3, that is, 2m 3n. It is clear that the properties of 3-connectedness and
planarity are maintained.

Acknowledgments. Thanks are due to the anonymous referees for improving Lemma
3.1, suggesting changes throughout the text, and drawing our attention to several literature
references.
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RECIPROCAL SUMS OVER PARTITIONS AND COMPOSITIONS*

A. KNOPFMACHER AND J. N. RIDLEY

Abstract. The authors obtain precise asymptotic estimates for certain combinatorial sums over products
of reciprocals of the summands in the partition or composition of a natural number n. These estimates are
applied to determine the mean value of a certain arithmetical function over the polynomial ring :q[X ], where
zq is the finite field with q elements.
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1. Introduction. In considering a problem concerning the factorization of polyno-
mials over a large finite field, Greene and Knuth [3, p. 52] were led to consider the
infinite product generating function

(1.1) h(z) ]-I +--
n----1 /7

If we regard this generating function purely from a combinatorial point of view, the
coefficient of z in h(z) corresponds to the sum

(1.2) h(n)
+ i2 + + ik

=< il <i2 <ik<=n
k_l

ili2" "ik

summed over all distinct partitions of the positive integer n. It seems natural to investigate
the asymptotic behaviour of the analogous combinatorial sums

(1.3) f(n) ,
+ i2+ + ik= li2" "ik

<= i i2 <= <= ik
k_l

summed over all partitions of n, and

il+i2+...+ik= ii2"" "ik
ij_ l,l <=j<=k,

k_l

(1.4) g(n)

summed over all compositions (ordered partitions) of n.
Corresponding to the asymptotic estimate

h(n) e- +
n

+ 0 /72 n-- ,
obtained by Greene and Knuth [3 ], we show the following theorem by a related but
somewhat different approach.
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THEOREM 1. Letf n be defined by 1.3 ); then, as n -- o,

f(n)=e-’(n-lgn+l+lg2-3’)+o(lgn)"n
Here and henceforth, 3’ denotes Euler’s constant. In addition, by applying techniques

of complex integration we show the following theorem.
THEOREM 2. Let g(n) be defined by 1.4); then, as n -- oo,

g(n)
e- e’ +O(1).

As a consequence of Theorem 2, we can deduce an asymptotic estimate for the
following sum over the unsigned Stirling numbers of the first kind.

COROLLARY 3. It holds that

k!s(n,k)=n +0(1)
=, (e- 1)

In 3 we apply Theorem 2 to obtain an estimate for the mean value of a certain
arithmetical function over Zq[X], where :q[X] denotes the polynomial ring in one in-
determinate X, over a finite field Zq. Finally, in 4 we interpret Theorems and 2 in
terms of cycles of permutations.

2. Analysis. Our approach to Theorems and 2 is based on an analysis of the
respective (ordinary) generating functions whose coefficients are f(n) and g(n). In the
first case, it is easily verified thatf(n) has generating function

(2.1) f(z) l-I=1
(compare 1.1 )). In the second case, we use the result (see, e.g., Jordan [4, p. 146 that

gk(n)
il + i2+ + ik ii2" ik

ij>= l,l <=j<=k

has generating function (-log z)) k for fixed k. Since g(n) = gk(n), it follows
that g(n) has generating function

(2.2) (--log (1-- z))k --log(1 --z)

k= +log(I--z)

To prove Theorem 1, we require a number of preliminary results, see below:

(2.3)
Define r(z) (1 z)2f(z),

and letr(z)= rnzn,ro= 1.
n=0

z:/:l

Also, let c(z) denote the formal power series

(2.4) c(z) Z OnZn Z
r’(z)

= r(z)
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Formal integration and exponentiation of (2.4) leads to

(2.5) r(z)= exp(=nCzn)
PROPOSITION 4. For n >= 1,

(2.6) (i) nr, ckr,-k,
k=l

(2.7) (ii) c=-I and Cn , (_)a-
din
<d<n

forn >-_2.

Proof. (i) By (2.4) and (2.3), we have the identity

(n )Cn Zn rn Zn nrn Zn.
--1 --1

By equating coefficients on each side, (2.6) follows.
(ii) We have

(2 + Cn)Z
2z- Z Cnzn Z
1--zn--1 n=l

f’(z)
f(z)

by (2.3).

By dividing by z and then integrating, we obtain

It follows that

Z (2 + Cn)Zn

n=l
=logf(z)=-= log 1---n

n=l m=l mrtm

din n din
2<=d<n

as required.
PROPOSITION 5. We have that

+(-1)n O( )(2.8) (i) c, +
n -5

o(1)(2.9) (ii) rn -(2.10) (iii) r(-1)=4 and r(1) e-.
Proof. (i) If n is even, then, by separating out the term for d 2 from (2.7), we

obtain

2
Cn 2i-

n
3_d<n

2

3d<n
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2
d2

d-3

--+ O
/7

--3

2(1)
If n is odd, then there is no term for d 2, so Cn O( 1/n2), and (2.8) follows.

(ii) We use induction on n. By (2.6),
n-I

n rn Ckrn k + Cn
k=l

--O
=lk(n-k)

+ O -n
using (2.8) and the inductive hypothesis. This gives

( nl (- -t- )) (1 nl+O ) (1)nr O
= n k n l(n k)

+ O -n

which gives (2.9).
(iii) It follows from (2.9) that the power series (2.3) for r(z) converges absolutely

and uniformly on and inside the unit circle, so r(z) is continuous for zl 1. At
z -1, we may use the product expression (2.1) to give

r(-1)= (1-(-1))z=
=4.(214365123456

From (2.3) and (2.1), we have for [zl < that

(-1)n)-n
-1

=4.

logr(z)=21og(1-z)- log 1-
n--I n

log z) n2= log --n

=l =2 mN

zmn
=-+En=2 =2

M

=-l+ lim y
Thus, since r(z) is continuous for zl 1,

logr(1)=-I + lim --log 1----
Mm m=2 m

lim { (234 M )}--+ log
=m 23 M-1
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Remark. If ’(s) ; o= / ns) denotes the Riemann zeta function, we can deduce
from the proof of Proposition 5 the identity

Z ’(s)-l-1-3’.-
Ss=2

By contrast, it is easily seen that = (’(s) 1. These elementary identities do
not appear in standard textbooks on the Riemann zeta function such as 10 ].

PROPOSITION 6. As n

(2.11 r, n2 + O

Proof. From (2.6), (2.8), and (2.9),
n-1

nrn Ckrn-k Cn-mrm
k=l m=0

nl i[1 -t- (--1) n-m)
n-mm=0

rm+ 0 +0 2 2
m=l m (n- m)

{ nl (nl ((1 -t-(--1)n-m)rmnt-O
m=0 m=l n-m :)5)} +

(r(1) + (-1)nr(-1 )) h- + O
n - ’ n--m

by (2.10).
Proof of Theorem 1. By equating coefficients in the defining identity f(z)
z)-2r(z) and using (2.10), we obtain

(2.12)

n

f(n)= (n+ 1- k)rk= (n + 1) , rk- , kr
k=0 k=0 k=0

=(n+ 1)e--(n+ 1) E r-Ekr.
k=n+l k=O

First, by (2.11 ),

k=n+l

(2.13)

Hence

(_1) (oo logkrk=e- n+ +4 Z )- +O Z 5 ]k= k=n+l k=n+l

(2.14) (n+l) r=e- +
k=n+l
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Also by (2.11 ),

n(_l)kn(logk), krk=e-, +47+ O
k2k=l =1; = k k=,

e- log n + O(1),

from which we can immediately deduce the estimate

f(n) e-(n log n) + O( ).

The sharper estimate of Theorem requires a more detailed analysis, which is set forth
in Lemma 7, below.

LEMMA 7. As n ,
(2.15 , krk e-’ { log n + 3’ log 2 } + O

log n

k=l n

Proof. By (2.6),
k

E krk= E , Cjrk-j= E cj E rk-j
k=l k=l j=l j=l k=j

(2.6 22 c r= 22 c 22 r- N r
j=l k=O k=n-j+l

Now, by (2.7),

(2.17)

Now

(2.18)

Next, ifj qd, then

j=6

(2.19)

j=l j=l k=n-j+l
rk.

j= j=4
2 <-_ d_j]2

j=4 J j=6 dlj
2lj =< d_j/2

2 2] (n)()j=4;-- k=2
c=lg +’Y- +O

21j

Z ()d-I 72[n/3] [nq] ()d-1
dlj d= 3_
d<=j/2

in/3] (q-l)[n/q]-2
q=2 - l_q-1
[n/3] [n_2] q-[n/q]

q(q q= q-1

+0(1) (
In/31

)+ 0 q-In
n q=2
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To bound this sum, we use. q-[n/ql--- O max q-In
q=2 2<=q-[n/3]

n]-3
since the function x’ decreases for 0 < x < e-. Substituting this into (2.19), and then
substituting 2.19 and 2.18 into (2.17 ), yields

(2.20) c.=logn-log2+3,- +O
j--1

Next, consider the second sum in (2.16). Since the inner sum is O( /(n j + )), by
(2.13) and cj O(1/j) by (2.8),

cj r=O
jn-j+l

(2.21) = =-+

We substitute (2.21 and (2.20) into (2.16) to obtain (2.15 ), which completes the proof
of Lemma 7.

Theorem now follows from (2.12), (2.14 ), and (2.15 ).
Remarks. (i) Equation (2.1) is a special case of a general product expansion

= an zn) -1, which can be developed for an arbitra power series A (z) +
AlZ + Az + ". These and other more general product representations for power series
are investigated in [6 ]. In addition, the roblem of finding the region of analyticity of
such product expansions corresponding to a given function A (z) is considered in [5].

(ii) We can fuher improve the eor estimate in Theorem from O(log nn) to
e- log n/n + O( / n), but we omit the details. This improved estimate, which we denote
by f(n), can be used to obtain accurate numerical estimates for the coecients f(n),
even for fairly small n, as Table shows.

(iii) Since the generating function (2.1) has the unit circle as a natural boundaw,
we cannot apply standard asymptotic techniques such as the Darboux method (see, e.g.,
Bender ]) or the transfer methods for singularity analysis of generating functions, de-
veloped recently by Flajolet and Odlyzko [2]. These methods are, however, applicable
in the case of generating function (2.2) but lead to weaker error estimates than that of
Theorem 2.

Proofof Theorem 2. By substituting w z into (2.2), we obtain

g(n)(1-w)"=
-logw
+logwn=l

We wish to expand this function as a power series about w 1. It has a branch point at
w 0 because of log w and simple pole at w e-1 with residue e-1 Therefore -log w

+ log w) e-1/(w e-) is analytic for ]w 1[ < 1. In addition, this function is
bounded on the circle [w 1[ because

-log w --- asw--0.+ log w (log w)- +
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TABLE
Estimates off(n) with errors oforder 1/n.

n f(n) f(n) n(f(n) -f(n))

100 54.21582 54.21274 0.3077
200 109.95989 109.95853 0.2723
300 165.87349 165.87263 0.2581
400 221.85541 221.85479 0.2501
500 277.87451 277.87402 0.2449
600 333.91701 333.91661 0.2412
700 389.97562 389.97528 0.2384
800 446.04599 446.04569 0.2363
900 502.12532 502.12506 0.2345
1000 558.21172 558.21149 0.2331
1100 614.30383 614.30362 0.2319
1200 670.40065 670.40046 0.2308
1300 726.50142 726.50124 0.2299
1400 782.60556 782.60539 0.2292
1500 838.71259 838.71244 0.2285
1600 894.82214 894.82200 0.2278
1700 950.93391 950.93378 0.2273
1800 1007.04764 1007.04752 0.2268
1900 1063.16312 1063.16300 0.2263
2000 1119.28017 1119.28005 0.2259

Suppose therefore that

(2.22) G(w)
-log w e- -1+logw w-e

an(W- 1) n.
n=O

By Taylor’s theorem,

an= (W-- +1

where, by the above, C can be taken to be the circle w 1. Therefore

(2.23) lan[ max{la(w)l lw- 11- 1},
since C has circumference 2r. Now, for w on C,

(2.24)

G(w)l
log w
+logw ew-

min {1 + (log w) -1} + 0(1).
Iw-ll=l

For w < e-1, however,

Z g(n)(1- W)

_
an(W--1)n+

n=l n=O (w-- 1)--(e-1- 1)
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It follows that
--1

g(n)
(1 e-)n+l + (-1

e,, 4- 0(1),
(e-l) e

using (2.24).
Remarks. (i) Using a computer, we obtain the numerical estimate

min + 0.72159. ..
[w--l[=l log W

From this, we deduce that

g(n)
(e 1) e 1 < 0.721---- + 2.3858.. -.

(ii) The generating function g(z) can be used to derive the following recurrence
relation for g(n), which is useful for computational purposes. Since

g(z)(1 + log (1- z)) -log (1- z),

we can equate coefficients on each side of this identity to obtain

g(k)
(2.25) g(n) n >= 1,

k=on-k
where we define g(0) 1.

Proof of Corollary 3. By Jordan [4, p. 146 ], the unsigned Stirling number of the
first kind s(n, k) is given by the formula

n!
ili2.., ik

(2.26) s(n, k)
k! i,+i2+...+ik=,

summed over all compositions of n of length k. It follows that (1/n!) , k!s(n, k)
g(n), from which we now deduce the asymptotic estimate using Theorem 2.

3. Ordered irreducible factorizations of polynomials. As is the case with Greene
and Knuth’s estimates for h(n), our asymptotic estimates for g(n) can be applied to
investigate a problem involving polynomials over a large finite field.

Let =q[X] denote a polynomial ring in one indeterminate X over a finite field =q
with exactly q elements. Let P denote the set of all monic polynomials of degree n in
=q[X], of cardinality q. Let r(n) r(n) denote the number of monic irreducible
polynomials in P. It is well known (see [8, p. 93]) that

qH
(3.1) r(n) + O(q-"/2)).

n

For a(X) P,, we use ft(a) and w(a) to denote the arithmetical functions that count
the total number (respectively, the distinct number) of irreducible factors of a(X).

These functions are investigated in 7] for general additive arithmetical semigroups
that satisfy a certain axiom. For convenience, we confine our discussion below to the
case of:q[X]. We introduce a new arithmetical function as follows: For any a(X) Pn,
define b(a) to be the number of orderedfactorizations of a(X) into irreducibles. The



RECIPROCAL SUMS OVER PARTITIONS AND COMPOSITIONS 397

function b is prime independent, since, if p(X) is any irreducible polynomial, then
b(pm(X)) for all m, which is independent of the choice of p(X). However, the
function b is not multiplicative, since b(plp2) 2 va b(pl )b(p2) for irreducible
polynomials p, P2. In general, if a(X) pl(X)p2(X)...pk(X), where k w(a),
a + a2 + + ak f(a), we have b(a) Q(a)!/al!aZ!’’ "ak!. We deduce that

(3.2) w(a)! <= b(a) <= 2(a)!

with b(a) w(a)! in the case that a(X) is square-free.
An arithmetical function F" :q[X] is said to be of normal order G(n) if, for

almost all polynomials a(X) in Pn (i.e., for all except o(q) polynomials in P,),

F(a):G(n)(1 +o(1)) asn--*.

We now show that log b(a) has normal order log n(log log n ).
THEOREM 8. For almost all a(X) P and any 6 > O,

log b(a) log n(log log n 1)( + O(log n)-1/2+6) as n -- c.

Proof. By Theorem 9.7 of Knopfmacher [7, p. 90] applied in the case of:q[X],
we have, for almost all a e P and for any 6 > 0, that

w(a) log n(1 + O((log n)-/2+6)), 2(a) log n(1 + O((log n)-/2+6)).
Thus, for almost every a P,

log w(a) log log n + log + O(log n) -/2+6) log log n + O(log n) -1/2+6

Now, by Stirling’s formula,

Hence, for almost every a e Pn,

log w(a)! log n(1 + O(log n)-l/2+6)(log log n 1)
12+6

n ))(1+ ))
log n(log log n )( + O(log n)-/2+6).

Since exactly the same estimate holds for log f(a) !, we can deduce the result from 3.2 ).
In addition to the normal value, it is useful to investigate the mean value of b(a),

given by /qn) a’, b(a). By letting q - oo, we can apply Theorem 2 to estimate the
asymptotic mean value of b(a) as n --THEOREM 9. As q -- co, the asymptotic mean value ofb(a) tends to

( e )
n

q b(a) + O(1), n--
e-1 e-1

Proof. By letting q -- oe in (3.1), we may take the proportion of irreducible poly-
nomials in P, namely r(n)/q, to be / n. Then

qn
a

b(a) ? il+i2++ik=n
ij_ l,l <=i<=k

k_l

r( i 7r( i2 )"" 7r( ik

g(n).

Now we apply Theorem 2 to obtain the asymptotic estimate.
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Note. (i) From the logarithm of the asymptotic mean value, we obtain log g(n)
n log (e/(e )) + O( ), in contrast to the normal order of log b(a) in Theorem 8.

(ii) The mean value of the related arithmetical function bk(a), which denotes the
number of ordered factorizations of a(X) into products of exactly k irreducibles, is es-
timated as n -- by Knopfmacher 7, Lem. 9.12, p. 94 for fixed k. These estimates
are then applied to obtain the mean value of several related arithmetical functions when
k is fixed.

(iii) By letting q -- and using (2.28), we can show in the same way as in the
proof of Theorem 9 that bk(a) has mean value (k!/n!)s(n, k). By applying known
asymptotics for s(n, k) (see, e.g., 9 ), it is possible to extend the estimates for the mean
value of bk(a) in [7] to the range =< k -_< n.

As noted by the referee, our estimate forf(n) can also be applied to determine the
asymptotic mean value of an arithmetical function d" :q[X] - . For any a(X) Pn,
define d(a) to be the number of ways of writing a(X) pl(X)pE(X)" "ps(X), where

Pi are irreducible and deg Pi >= deg Pi + 1.

THEOREM 10. As q - , the asymptotic mean value old(a) tends to

e-(n logn+l+log2 3’)+o(lgn/ n-- oo.
\

Proof. We have that

qn d(a) 7r(il)Tr(i2) 7r(ik)
aPn i + i2 + + ik

<= <=...
_

<= ij;k

_
f(n) asq-- .

4. Cycles of permutations. Let t, be the probability that a permutation of n letters
has cycles whose lengths are all different. Wilf [11, p. 97] shows that { t, } has ordinary
generating function ]-I = (1 + zn/n). It follows from the estimate for h(n) obtained
by Greene and Knuth 3 that

e- (log n)tn e-’ + + 0 ’FI 2 n-- .
n

Similarly, we can interpret Theorems and 2 in terms of cycles of permutations.
Given a permutation r e I-In, the set of permutations on n letters, let u(Tr) denote

the number of ordered decompositions of r into cycles.
THEOREM 12. The asymptotic mean value ofu(r) is

n!, e-1 e
+O(1),

Proof. The result follows immediately from Corollary 3, since,_ u() , k!s(n .
n!n .=l

Finally, given r e ]-I,, define v(Tr) to be the number of decompositions of r into
cycles rrz" "rs, where the cycles ri are in nondecreasing order with respect to their
lengths. Then 7]n, v(r) has exponential generating function given by (2.1), which
leads to the following theorem.
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THEOREM 13. The asymptotic mean value ofv(r) is

(log n)nV
v(Tr) e-’r(n- log n + + log 2 3’) + O

n
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DOMINATION ON COCOMPARABILITY GRAPHS*

DIETER KRATSCH" AND LORNA STEWART

Abstract. The authors determine the algorithmic complexity ofdomination and variants on cocomparability
graphs, a class ofperfect graphs containing both the interval and the permutation graphs. Minimum dominating,
total dominating, connected dominating, and independent dominating sets can be constructed in polynomial
time. On the other hand, DOMINATING CLIQUE and MINIMUM DOMINATING CLIQUE remain NP-
complete on cocomparability graphs.

Key words, domination, cocomparability graphs, graph algorithms

AMS subject classifications. 05C85, 68Q25, 68R10

1. Introduction. Many NP-complete graph problems become tractable when re-
stricted to special subclasses ofperfect graphs. For a particular problem, we are interested
in graph classes that are as close as possible to the borderline between P and NP; i.e.,
there is no larger class for which a polynomial time algorithm is known. This motivates
the search for larger graph classes for which the problem is still tractable.

Two well-known graph classes that admit many polynomial time algorithms for
NP-complete graph problems are the interval and the permutation graphs. However, if
we generalize both in a natural way to chordal and comparability graphs, respectively,
things change, and many problems become NP-complete. This is especially the case for
the well-known domination problem ([GT 2 of 18 and its variants, total and connected
domination. However, this generalization may be in the "wrong direction." Both classes
of graphs have the additional property of being cocomparability, i.e., the complement
of comparability graphs (see 19 ]). We intend to show that this is a generalization in a
"good direction."

In this paper, we study the algorithmic complexity ofdomination and four variants,
where the input is restricted to cocomparability graphs. The hope is to generalize the
known polynomial time algorithms for interval and permutation graphs. It turns out
that this is indeed possible in four cases; only clique domination becomes NP-complete.

Another encouragement for this work came from Colbourn and Lubiw, who studied
the CARDINALITY STEINER TREE problem ND 12 of 18 for cocomparability
graphs using exactly the labeling that is our main tool. They were able to give a polynomial
time algorithm and suggested the study of the somewhat similar connected domination
problem.

Finally, another source for our work can be seen in the study of vertex orderings of
graphs in 10 ]. The paper contains a complete study of the graph classes that arise by
forbidding one or more ordered subgraphs on three vertices. There are four different
classes of graphs resulting if we forbid exactly one ordered subgraph on three vertices
(which is not one of the trivial casesmempty or complete), namely chordal, cochordal,
comparability, and cocomparability graphs. The first three classes are well studied for
many NP-complete graph problems. We extend this to the last class, which naturally
contains all graph classes resulting from forbidden ordered subgraphs if one of them is
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FG. 1. Theforbidden ordered subgraph (in allfigures, wavy lines indicate nonedges ).

the forbidden ordered subgraph for cocomparability graphs (see Fig. ). Thus we consider
this as a first attempt at a general approach to designing polynomial algorithms for NP-
complete graph problems on graph classes that admit a certain labeling of the vertices.

The paper is organized as follows. Section 2 gives the necessary definitions and
notation and summarizes known results. Then the following algorithms on cocompara-
bility graphs resulting from a somewhat general dynamic programming approach are
presented: O(/73) algorithm for constructing a minimum independent dominating set in

3; O( n 3) algorithm for constructing a minimum connected dominating set, which can
always be assumed to be an induced path, in 4; 0(/7 6) algorithms for constructing a
minimum dominating set and a minimum total dominating set, respectively, in 5 and
6. Finally, in 7 we show that finding a minimum dominating clique is NP-hard and
that even the question of whether a cocomparability graph has a dominating clique is
NP-complete.

2. Preliminaries. For the standard graph-theoretic notions not mentioned here, we
refer the reader to ], 19 ]. Throughout the paper, we consider finite, simple, undirected
graphs. Let G (V, E) be a graph with vertex set Vand edge set E; then n and m denote
the cardinality of V and E, respectively. Gw, the subgraph of G induced by W _c V, is
the graph with vertex set Wand exactly the edges from E that have both incident vertices
in W. A path in a graph is a sequence x x2 X3 Xk of vertices such that xi
is adjacent to xi + for { 1, 2 k }. A path on k vertices is called induced or
simple if it has exactly k edges, i.e., only the edges of the path itself. An induced
path on k vertices is also called P.

A set V’ V is called independent (a clique) if, for any pair of vertices u, v V’,
it holds that { u, v E( { u, v } E). A set S

_
V is a dominating set if each vertex of

V- S is adjacent to some vertex of S. Usually, the following variants of dominating sets
are also considered. In each case, an additional property of Gs is required. S is called an
independent dominating set if S is both independent and a dominating set. A connected
(respectively, total) dominating set S has the additional property that Gs is connected
(respectively, has no isolated vertices). Finally, S is called a dominating clique if S is
both a clique and a dominating set. For each of these kinds of dominating sets, the
construction ofa minimum (cardinality) set ofthis type is NP-hard, and the corresponding
decision problem is NP-complete. Considerable work has been done in recent years to
clarify the algorithmic complexity of these problems when restricted to special classes of
graphs. For an overview, see [9 ]. We give the results important for our work and con-
centrate on perfect graphs.

The five variants are all solvable in polynomial time on interval [2 ], [4], [15 ],
16], [22], [24], [27] and permutation graphs [4], [5], [7], [9], [17]. Our aim is to

extend the polynomial algorithms to a larger class ofgraphs containing both interval and
permutation graphs, namely, the cocomparability graphs. On the other hand, the decision
problems (i.e., given a graph and an integer k, decide whether G has a dominating set,
or an independent, connected, or a total dominating set, of size at most k) are NP-
complete for bipartite graphs 8 ], 14 ], 23 and hence for comparability graphs. The
minimum dominating clique problem on comparability graphs is fairly easy, since every
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comparability graph having a dominating clique has one of size at most two [4 ]. All the
problems, except independent domination 15 ], remain NP-complete for split graphs;
this can be shown by using one reduction only 3 ], 8 ]. Thus all these problems remain
NP-complete for chordal graphs; however, independent domination is tractable even for
chordal graphs 15 ]. Naturally, the four basic problems CLIQUE, INDEPENDENT
SET, CHROMATIC NUMBER, and PARTITION INTO CLIQUES are polynomial on
perfect graphs. For cocomparability graphs, we can use the algorithms for comparability
graphs 19 on the complement of the graph for the complementary problem; e.g., find
a maximum clique for the cocomparability graph by constructing a maximum indepen-
dent set on its complement.

We conclude with presenting the necessary knowledge on the graph classes consid-
ered. For any graph classes not defined here and for more details, refer to 19 ]. A graph
is chordal if each cycle of length greater than three has a chord, i.e., an edge joining two
nonconsecutive vertices ofthe cycle. A graph G (V, E) is a comparability graph ifthere
is a transitive and antisymmetric orientation F of the edges of G; hence, for every
{ u, v } E, either (u, v) F or (v, u) F, and

(u, v) eF /’x (v, w) 6F---(u, w) 6F.

If fq is a class of graphs, then we call the class of its complements co-fq

G" G fq }. We are interested in the classes of cochordal and cocomparability graphs.
Interval graphs are the intersection graphs of intervals of the real line. They are exactly
the graphs that are both chordal and cocomparability. Permutation graphs are defined
as follows: Let 7r be a permutation from { 1, 2,..., n }. Then G { 1, 2,..., n }, E)
with E { i, j } i, j in reversed order in r} is the inversion graph of 7r. G is a
permutation graph if and only if there is a permutation r such that G is isomorphic to
G. Permutation graphs are exactly those graphs that are both comparability and cocom-
parability graphs.

It is well known that chordal graphs have perfect elimination schemes ofthe vertices
19 ]. This labeling of the vertices is completely characterized by the fact that it does not
contain the ordered subgraph ch 1, 2, 3 }, { 1, 2 }, { 1, 3 } } ). For any comparability
graph, we can get an ordering of the vertices by any topological sort with respect to the
orientation F, corresponding exactly to a labeling not containing cp ({ 1, 2, 3 },

1, 2 }, 2, 3 } } ). Such an ordering for a comparability graph G gives a labeling for G
not containing c-- 1, 2, 3 }, { 1, 3 } } ). Thus, cocomparability graphs can be char-
acterized as those graphs having a labeling that does not contain cp. An interesting
direction of research is the characterization ofother classes ofgraphs in terms offorbidden
ordered subgraphs. This has been studied in [10].

The following technical definitions are used throughout the paper. First, we assume
that the vertices of the cocomparability graph G (V, E) are ordered on a straight line
according to a labeling without cp and numbered from left to fight with 1, 2, n.
Note that there is an O(n2) algorithm to construct this labeling for a given cocomparability
graph G by constructing the transitive orientation for G [25 and then any topological
sort gives a labeling of G with the desired property. We will often use the natural
ordering on { 1, 2 n } as forcing an ordering on V. Note that in our labeling the
existence of an edge { i, j } e E implies for every vertex k with < k < j that i, k } e E
or { k, j } E, since cp is forbidden. (This proves to be the main reason that all our
algorithms work.)

i, j] { k" <- k =< j } is a useful notation, and we will say that { i, j } E covers
the interval i, j], meaning that each vertex between and j has at least one of and j as
a neighbour. This is generalized as follows: Let S

___
V, where Gs is connected. Then S
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covers [min (S), max (S)]. We say that S c_ V dominates T
_
V if and only if each

vertex e T has at least one neighbour in S. Thus, for Gs connected, the interval
[min (S), max (S)] is dominated by S.

3. Independent domination. We present an O(n 3) algorithm that constructs a min-
imum independent dominating set of a given cocomparability graph. This is done, as
for all other variants having polynomial time algorithms, by a dynamic programming
approach using a linear scan through the labeling of the given graph. (As in all following
sections, we assume that the vertices are labeled 1, 2, 3, n, according to the order
in the labeling.)

The independent dominating set S is constructed by considering all possible cases
of including in S and excluding from S, respectively, a certain vertex i. All the necessary
information on the computation, for a certain S

_
{ 1, 2, 3, i} chosen up to the

processing of i, is stored in states Z { 0, 1,..., n } 3. Thereby the components of Z
[z, z2, z3] indicate

Z1

Z2

Z3

number of vertices in current S;
last vertex of the current S with respect to the labeling, i.e., max (S);
last processed vertex (current level of computation).

We describe the storage of the states in two arrays A and B, immediately after the
algorithm.

ALGORITHM 1. Start with A containing only [0, 0, 0], s
Fori:= tondo

For each state Z [Zl, z2, 1] in array A do
if { z2, } t E and each x with z2 < x < is dominated by z2 or then

INCLUDE(Z, i) [z + 1, i, i]
if { i, x } Efor each x with < x
thens:=min{s, zl + 1}
else Store INCLUDE(Z, i) in the array B

Store EXCLUDE(Z, i) [z, z2, i] in B.
A:=B.

Storing in the array B is done in the following way. The index in the array is given
by z2. Then z is stored if it is less than the present value of B(z2); otherwise, the value
ofB(z2) is not changed. It is not necessary to store the value ofz3; it is simply the number
of the iteration.

THEOREM 3.1. INDEPENDENT DOMINATING SET is solvable in time O(n 3)
for cocomparability graphs.

Proof. In each iteration, at most n different states are stored, and each of these
states gives at most two new states. All computation for a state is completed in O(n)
time. The O(n 3) time bound follows.

It remains only to prove the correctness of the algorithm. Each state corresponds
to at least one set S

_
V. We show that, for each state INCLUDE (Z, i) zl + 1, i, i]

with { i, x 6 E for each x with < x, all the corresponding sets S are independent
dominating sets of size Zl + 1.

Let S be any set corresponding to the state Z [Zl, z2, 1]. If S is independent,
then S U { } is independent, too, even though the algorithm checks only that { z2, }
E. This is because any vertex a 6 S with a < z2 and { a, } 6 E would create the forbidden
ordered subgraph (see Fig. ).

Furthermore, S t_l { } is a dominating set. For the first vertex ftaken into S, the
algorithm checks that all x with x < fare dominated by f. In addition, the algorithm
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0 0

Sj Sk+ Sk+ Sj

FIG. 2. Situation in the labeling.

checks that all vertices between two consecutive vertices of S are dominated by these
two vertices. At the end, INCLUDE (Z, i) is under consideration for the minimum,
since the last vertex dominates all x with x > i.

Could there exist a smaller independent dominating set S* in which vertices outside
the set are not necessarily dominated by their "closest" neighbours in the set? The answer
is "no." Assume that another vertex sj- e S* not closest to a q S* is adjacent to a, where
sk and Sk+l are the elements of S* that are closest to a (see Fig. 2). Then one of the
vertices of S* closest to a is also adjacent to a; i.e., it is enough to consider the region
inside an interval [s, sk / l] and check whether the two vertices s and sk +1 dominate
[s, s+].

Finally, the algorithm checks all possibilities avoiding only bad states; i.e., if
[zl, z2, z3] and [z’, z2, z3] are both states and z’ > Zl then the algorithm need only
extend the smaller set, i.e., only zl, z2, z3 is stored.

Therefore the value ofs after the termination ofthe algorithm is really the minimum
size of an independent dominating set in the cocomparability graph G. U]

Remark 3.2. Using the same states but storing all the states in a matrix of type
[0... n, 0-.. n] and again storing only the minimal zl at the entry [z2, z3] and using
pointers from a state back to the one that was its origin, we can in the same time bound
construct a minimum independent dominating set of G. Furthermore, it is possible to
solve the problem even for arbitrary real vertex weights with the same algorithm and
within the same time bound, if z stores now the sum of the weights for all vertices
of S.

4. Connected domination. In this section, we present an algorithm for connected
domination. We first describe the minimum cardinality Steiner tree algorithm of 6 ],
which serves as an introduction to the connected dominating set algorithm. The two

problems are closely related on many classes of perfect graphs (see 9 ], 21 ], 27 ]).
The minimum cardinality Steiner tree problem is as follows. Given a graph G

(F, E) and a subset T
___
F of target points, find a subset U

___
F T of minimum

cardinality such that the subgraph of G induced by U t3 7" is connected. We consider
this problem when the given graph G is a cocomparability graph with an associated
cocomparability ordering.

Let and r be the leftmost and rightmost vertices of Tin the cocomparability ordering
for G. Any connected subgraph S of G containing both and r necessarily dominates all
vertices between and r, including all vertices of T. This is because every vertex x between
and r is either in S or is between two adjacent vertices of S. Thus, either x e S or the

ordering implies that x is dominated by S.
On the other hand, any Steiner tree containing all vertices of T is a connected

subgraph containing and r. Thus, a minimum cardinality Steiner tree is exactly a con-
nected subgraph of G containing both and r, having the minimum number of vertices
of V- T. This is nothing but a minimum weight path between and r where vertices of
T have weight zero and vertices of V- T have weight one.

Therefore, to find a minimum cardinality Steiner tree in a cocomparability graph
G for a particular set of target vertices T, we can produce a cocomparability ordering,
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place appropriate weights on the vertices, and then make use ofa shortest path algorithm.
Because ofthe small integer weights, such a shortest path algorithm could be implemented
to run in O(m + n) time, as mentioned in [26].

Initially, it appears that a similar approach cannot be used to solve the connected
dominating set problem, since a connected dominating set is not necessarily a shortest
path between a particular pair of vertices. For example, in the graph of Fig. 3, { 2, 3, 4 }
is a minimum connected dominating set that is not a shortest path. Note, however, that
there is a shortest path between 2 and 5 that is a minimum connected dominating set.
In a shortest path approach to this problem, all vertices would have weight one; any
shortest path in this situation is an induced simple path in the graph. We now show that,
in a cocomparability graph, there always exists a minimum connected dominating set
that induces a simple path.

We make use of the following definition. For any graph G (V, E) and set U
_

V,
a private neighbour of u U with respect to U is a vertex v U such that { u, v } E
and for allu’U- {u},{u’,v}E.

LEMMA 4.1 (Key Lemma). For a connected cocomparability graph G, there exists
a minimum cardinality connected dominating set that induces a simple path in G.

Proof. Let G be a cocomparability graph that is ordered according to a cocompara-
bility labeling. Let S be a minimum cardinality connected dominating set for G, and
suppose that S does not induce a simple path.

If min (S) and max (S) n, then let S’ be the vertices of a shortest path
between and n in G. S’ is a connected dominating set that induces a simple path in G.
In addition, IS’[ --< IS I, since S is connected.

Suppose that min (S) 4:1 and max (S) n. Let S’ be the vertices of a shortest path
between and n in S t3 { }. S’ is clearly a connected dominating set that induces a path.
Furthermore, S’I =< IS[, since S does not induce a path. A similar result is obtained
when min (S) and max (S) 4: n.

Suppose that min (S) 4:1 and max (S) 4: n. Let S* be a shortest path between
and n in S t_J { 1, n }. If S S*I 2, then S* is a minimum connected dominating set
for G that induces a path. If IS S*I 0, then S is a minimum connected dominating
set for G that induces a path. If S S*I 1, then there is exactly one vertex x S that
is not on the shortest path. Therefore, S { x must induce a path. The vertex x must
have a private neighbour with respect to S, for, otherwise, S- { x } would be a smaller
connected dominating set, a contradiction. In the ordering, any such private neighbour
y must be such that y < min (S x } or y > max (S x } ). Otherwise, y would be
adjacent to some other vertex of S.

Ifx has two private neighbours, y < min (S { x } and z > max (S { x } ), then
S’ { x, y, z } is a minimum connected dominating set for G. It is clear that all vertices
between min (S’) and max (S’) are dominated by S’. Consider a vertex w outside this
range, w must be adjacent to x or to some vertex of S { x }. If { w, x } E, then any
edge from w to a vertex of S- { x } covers y or z, and, since neither y nor z can be
adjacent to any vertex ofS { x }, this forces the edge { w, y } or { w, z }. We know that
{ y, z } E, since this would force each vertex ofS to be adjacent to y or z, contradicting
the fact that y and z are private neighbours of x. In addition, since S does not induce a

FIG. 3
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simple path, it must contain a subgraph isomorphic to K1,3 or a cycle, implying that
IS[ >_- 3. Therefore, S’ is a minimum connected dominating set for G that induces
a path.

Finally, suppose that every private neighbour y of x has y < min (S { x } ), or
every private neighbour y of x has y > max (S { x )). Suppose that every private
neighbour y of x is such that y < min (S { x and consider S’ (S { x } U { }.
Note that S’ S* { n }. S’ induces a path that clearly dominates every vertex to the
left ofmax (S’) max (S). Any vertex to the fight ofmax (S) is not a private neighbour
of x; therefore all such vertices are dominated by S’. A similar argument holds when all
private neighbours of x are to the fight of S- { x }.

From the lemma, we see that a minimum connected dominating set can be found
using an approach similar to the Steiner tree algorithm. We must only compute all
shortest paths between all pairs of vertices; a minimum cardinality such path that dom-
inates all vertices is then a minimum connected dominating set. For each shortest path,
we can check in polynomial time whether it dominates G, but unfortunately the number
of shortest paths can be exponential in n. We can improve upon this by noting the
following.

LEMMA 4.2. Let P Pl P2 Pk }, k >= 3 be an inducedpath in a cocomparability
graph G with pk > pl in the cocomparability ordering. Then, for all < <-k- 2,
Pi + 2 > pi.

Proof. Let be the smallest index for which Pi + 2 < Pi. Suppose that 1. Since

P > Pl, there must be an edge {pj., pj +}, j >_- 3, which covers p, creating an edge
{p, pj } or {pl, P +l}, contradicting the fact that P is an induced path. Suppose that
> 1. If Pl < Pi + 2, then there must be some edge pj., pj. + }, j < i, which covers Pi + 2,

forcing an edge Pi + 2, P } or { p; + 2, Pj +1}. If p > Pi + 2, then there must be an edge
{p, P + }, j >- + 2, which covers Pl, forcing an edge { Pl, Pj or { Pl, P + }. Both cases
contradict the fact that P is an induced path. [2]

This lemma tells us that an induced path can always be traversed from left to fight
as follows. Each step is either a forward step, i.e., the next vertex is further to the fight
than any previous vertex, or a backward step, i.e., the next vertex is to the left of the
previous vertex but to the fight of all other vertices. There cannot be two consecutive
backward steps.

LEMMA 4.3. IfS c_ V is a minimum connected dominating setfor a cocomparability
graph G (V, E) with cocomparability ordering, and if S induces the simple path
{p, p2, p }, then every vertex x < min (S) is dominated by { pl, P2 }, and every
vertex y > max S) is dominated by {p_ 1, p }.

Proof. We prove the lemma for vertices x < min (S). The remainder follows by a
similar argument. One of {Pl, P2 } must be min (S). This follows from the previous
lemma. Any edge connecting a vertex x < min (S) and a vertex z S {p, P2 } covers
Pl, implying that { x, Pl E.

Now, for each edge of G, we can check whether the endpoints dominate all vertices
to the left or all vertices to the fight. If so, then that edge is a candidate for the first or
last edge in the dominating path. Now we need only calculate the shortest paths between
these pairs of edges. We describe how this is done in the following algorithm. When the
algorithm stops, s is the minimum cardinality of a connected dominating set of G.

ALGORITHM 2.
S:= ?’l

If any single vertex dominates V then s := 1; stop
For each edge { u, v E

if { u, v } dominates 1, min { u, v } ([ max { u, v }, n ])
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then the vertices u and v, and the edge { u, v ), are labeled L R
if { u, v ) is labeled both L and R
then s := 2; stop
if either u or v is labeled both L and R
then s := 3

if s 3 then stop
D := the distance matrixfor G
For each vertex u with label L:

d := the minimum distancefrom u to any vertex v with label R
s := min{s, d + 3}.

THEOREM 4.4. CONNECTED DOMINATING SET is solvable in time O(n3)for
cocomparability graphs.

Proof. Let s* be the minimum cardinality of a connected dominating set for G. It
is clear that, if s* or s* 2, then s is correctly calculated. If s* 3, then it must be
that two edges, which share a vertex, dominate all vertices of G. s is correctly calculated
in this case, also. If s* >= 4, then no vertex or edge will be labeled both L and R by the
algorithm. Let L u V: u is marked L and R { u V: u is marked R }.

Suppose that s is incorrectly calculated by the algorithm. Suppose that 4 s < s*.
From the algorithm, we see there must exist a path from a vertex u L and a vertex v
R of length s 3, i.e., with s 2 vertices. This path, together with any neighbour of u
in GL and any neighbour ofv in GR is a connected dominating set, by our earlier lemmas.

Suppose that s > s* >= 4. From our earlier lemmas, we have seen that there must
exist a minimum connected dominating set that induces a simple path beginning with
an edge that dominates all to the left and ending with an edge that dominates all to the
fight. Such a path surely begins with a vertex of L and ends with a vertex of R. The
algorithm examines all such shortest paths and hence will certainly find s correctly.

The labeling of the vertices and edges can be done in O(mn) time, and an all-pairs
shortest path algorithm requires at most O(n3) time (see 26 ]). The remaining operations
can be done in 0(/7 2) time. This gives an overall time complexity of O(r/3). [-]

We note that slight modifications to the dominating set algorithm of 5 would yield
an O(r/6) dynamic programming algorithm for connected domination. The details are
mentioned in 6.

5. Domination. We show that our techniques can be extended to the well-known
domination problem itself.

LEMMA 5.1. Every cocomparability graph has a dominating set S such that each
connected component ofGs is either an inducedpath on at least two vertices or an isolated
vertex.

Proof. This is a consequence of the key lemma in the previous section. If one of
the connected components of Gs, say C, is not an induced path, then there exists an
induced path C’ such that N[ C’]

_
N[ C]. Hence S’ (S- C) tO C’ is a dominating

set, also. Eventually, S’ may have a smaller number of components than S, since C’ and
a few components of C- S may be connected in Gs,. If such a connected component
is not an induced path, we apply the lemma again. We can obviously proceed with this
procedure until we get a dominating set in which all connected components are induced
paths of length at least two or isolated vertices in Gs. if]

First, we note that different components of a dominating set cannot overlap in the
labeling, since otherwise one would cover a vertex of the other and therefore we would
have an edge between the components. This problem is different from independent dom-
ination in that we must consider a much greater number ofcases and more ofthe vertices
of a subsolution S corresponding to a state Z { 0, 1, 2 n )5. The components
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indicate

ZI
Z2

Z3

Z4

Z5

number of vertices in current S;
third last vertex of S (in the order of the path or the components);
second last vertex of S;
last vertex of S;
last processed vertex.

Note that Z2, Z3, and Z4 are not always in this order in the labeling; exceptions occur
in an induced path with backward steps. We first consider the cases in which we include
a vertex in S with z2 4: 0, i.e., SI >-- 3, for the state Z [Zl, z2, z3, z4, 1]. For
each configuration of z2, z3, and z4, we will have three or four different possible ways of
including i. We give all possible new states for INCLUDE (Z, i), defining the main rules
for our algorithm. The word(s) connected and/or total and/or independent in parentheses
indicate (s) that this inclusion applies to connected and / or total and/ or independent
domination, respectively, also. The diagrams in Fig. 4 correspond to similarly num-
bered cases.

1. { z2, z3 } 6 E, z3, Z4 } E, z2 < z3. The last component ofS is a path of at least
three vertices with no backward step among them.
(a) { z2, i} g E, { z3, i} a E, { z4, i} E. We can include as the next vertex of

the path: INCLUDE (Z, i) [Zl + 1, z3, z4, i, i] (total, connected);
(b) {Z3, i} E, {za, i} E, ({ z2, i} E would imply that {Z4, i} E). For

every j with z3 < j < z4, { j, z4 e E, { j, } e E, { j, Z E, { j, 22 } E,
we do a backward step z4 -j and a forward one j adding two ver-
tices to the path, namely, j and i. Thus we remain with the following last
vertices of the path in the last component of S: z2 z3 z4 -j- i: IN-
CLUDE (Z, i) [Zl + 2, z4, j, i, i] for every j satisfying the conditions
(total, connected);

(c) { z3, i} E, { z4, i} E. We can always create a new component of S:
INCLUDE (Z, i) [Zl + 1, z3, z4, i, i] (total);

(d) { z3, E, { z4, E. For every j with z < j < Z4, { j, Z4 } e E, { j, }
E, { j, z3 E, j, z2 E, we do a backward step z4 j, adding one vertex
to the path containing z4. We then add vertex i, beginning a new component.
INCLUDE (Z, i) [Zl + 2, z4, j, i, i] for every j satisfying the conditions
(total).

In all cases, we consider configurations (a)-(c), below; in some cases, we must also
consider configuration (d):

(a) include in the component containing z4, with a forward step;
(b) include a vertex j and the vertex in the component containing z4, with a

backward step followed by a forward one;
(c) include creating a new component, i.e., has no neighbours in the last com-

ponent;
(d) end the component containing z4 with a backward step to a vertex j and then

begin a new component with i.
We henceforth simply list the states in INCLUDE (Z, i) for each of these three or

four possibilities.
2. { Z2, Z } e E, { Z3, Z4 } E, Z < Z2.

(a) INCLUDg (Z, i) [z1 + 1, z3, z4, i, i] if { z4, i} e E, { z3, i} E, {h, i} g
E (total, connected);

(b) INCLUDE(Z,/)= {[z +2, z4,j,i,i]:z<j<z4, {i,j}eE, {j, z4} e
E, j, z3 } g E, { j, z } a E } if { z4, } a E, { z3, } a E (total, connected);
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(c) INCLUDE (Z, i) [z + 1, z3, z4, i, i] if { z3, i} E, { z4, i} E (total);
(d) INCLUDE (Z, i) {[z + 2, z4,j, i, i]: z2 <j < z4, {i,j} E, {j, z4} 6

E, {j, z3 } E, {j, z2 } E} if { z4, i) g E, { z3, i} a E (total).
3. {z2, z3} E, {z3, z4} E.

(a) INCLUDE (Z, i) [z + 1, z3, z4, i, i] if {z4, i} e E, {z3, i} E,
{ z2, } E, and { z2, z3, z4, } dominates max { z2, z3 }, z4] (total);

(b) INCLUDE (Z, i) {[Zl + 2, z4, j, i, i]: max { z2, z3} < j < z4, {j, i} 6

E, {j, z4} e E, {j, z3} a E, {j, z2} a E, {z2, z3, z4, j} dominates
max z2, z3 }, j] } if { z4, } E (total);

(c) INCLUDE (Z, i) [Zl + 1, z3, z4, i, i] if {z4, i} E and {z2, z3, z4}
dominates [max { z2, z3 }, z4];

(d) not applicable because the vertices of a P2 component should appear in the
same order in z2, z3, z4 } and in the cocomparability ordering.

4. {z2, z3} tE, {z3, z4} tE.
(a) INCLUDE (Z, i) [z, + 1, z3, z4, i, i] if { z4, i} e E, { z3, i} a E (total);
(b) INCLUDE (Z, i) {[z, +2, z4,j, i, i]: z3 <j < z4, {j, i} 6 E, {j, z4}e

E, { j, z3 } E } if { z3, } a E, { z4, } E (total);
(c) INCLUDE (Z, i) [Zl + 1, z3, z4, i, i] if { z4, i} E, { z3, i} a E (total);
(d) INCLUDE(Z,/) {[z+2, z4,j,i,i]:z3<j<z4, {j,i}gE, {j, z4}

E, {j, z3 } a E} if { z3, i} a E, { z4, i} a E (total).
5. {Z2, Z3} E {z3, z4} E.

(a) INCLUDE (Z, i) [z, + 1, z3, z4, i, i] if {z4, i} e E, {z3, i} q E and
{ z3, z4, } dominates z3, z4];

(b) INCLUDE(Z,/) {[z, +2, z4,j,i,i]:z3<j<z4, {j, i} E, {j, z4}
E, { j, z3 } E, { z3, z4, j } dominates z3, j] } if { z4, i} E;

(c) INCLUDE (Z, i) Zl + 1, z3, z4, i, i] if { z4, } E, and { z3, z4 } dominates
z, z4 } (independent);

(d) not applicable.
(Note that cases 5 (c), 6, 7 (c), and 9 (c) are the only ones applying to independent

domination, indicating that this dynamic programming approach would work for in-
dependent domination as well.)

Before considering the correctness, we give the corresponding rules for IS[ < 3.
6. z4 0. INCLUDE (Z, i) [1, 0, 0, i, i]; any vertex may begin a dominating

set (connected, total, independent).
7. Z3 0, Z4 =/= 0.

(a) INCLUDE (Z, i) [2, 0, z4, i, i] if {z4, i} dominates [1, z4] and
{ z4, i} 6 E (total, connected);

(b) INCLUDE (Z, i) {[3, z4, j, i, i]: j < z4, {j, z4} E, {j, i} E,
{ z4, j } dominates 1, j] } if { z4, } E (total, connected);

(c) INCLUDE (Z, i) [2, 0, z4, i, i] if { z4, ) E, and z4 dominates [1, z4]
(independent);

(d) not applicable.
8. Z2 0, Z3 =/= 0, { Z3, Z4 ) E.

(a) INCLUDE (Z, i) [z + 1, z3, z4, i, i] if { i, z4 } 6 E, { i, z3 } a E (total,
connected);

(b) INCLUDE(Z,/)= {[zl +2, za,j,i,i]:z3<j<z4, {j,i}aE, {j, z4} 6

E, { j, z3 } E } if { z4, } E, { z3, } g E (total, connected);
(c) INCLUDE (Z, i) [z + 1, z3, z4, i, i] if { z4, i} E, { z3, i} E (total);
(d) INCLUDE(Z,/)= {[zl +2, za,j,i,i]:z3<j<z4, {j,i}E, {j, z4} 6

E, {j, z } E} if { z4, i} E, { z3, i} E (total).
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9. Z2--0, Z3 =//= 0, {z3, z4)E.
(a) INCLUDE (Z, i) [z + 1, z3, z4, i, i] if {z4, i} E, {z3, i} E and

{ z3, z4, ) dominates z3, z4 ];
(b) INCLUDE(Z,/)= {[z +2, za,j,i,i]:z3<j<z4, {j,i}6E, {j, z4} 6

E, {j, z3) gE, {z3, za,j) dominates [z3,j]} if {z4, i} E;
(c) INCLUDE (Z, i) z + 1, z3, z4, i, i] if { z4, } a E, and { z3, z4 } dominates

z3, z4 (independent);
(d) not applicable.

The exclusion of is always possible and gives EXCLUDE (Z, i) [z,
Z3, Z4, i].

It is not difficult to check that, for a new state Z’ [z’, zh, z, z, z], any cor-
responding set S’ dominates [1, z ]; i.e., the vertices in the labeling are dominated up
to the second last vertex of S’. The algorithm ensures that, for { z, z } g E, this interval
is dominated by two, three, or four vertices of S’. The following lemma shows that we
can indeed restrict our attention to at most four vertices.

LEMMA 5.2. Let S
_
V such that each connected component of Gs is either an

induced path on at least two vertices or an isolated vertex. Let s, S be two consecutive
vertices ofS in the labeling contained in two different components ofGs. Then S dominates
Is, t] ifand only ifone ofthefollowing is true:

{ s, } dominates s, for s and isolated vertices in Gs,
(ii) { s’, s, dominates s for isolated and s with neighbour s’ in a path ofGs,
(iii) { s’, s, t’, } dominates s, for s with neighbour s’ in a path ofGs and with

neighbour t’ in a path ofGs.
Proof. One direction is obvious. We prove that we need not check all vertices of S.

The main fact is that any vertex a s, t] that is dominated by v S, v t s’, s, t’, } is
also dominated by s, }, since the edge { a, v } must cover one of { s, }, forcing
a, s } E or a, } E by the cocomparability ordering.

In a similar way, also shown for independent and connected domination, we get
the following lemma for the domination of vertices outside min (S) and max (S).

LEMMA 5.3. Let S be a dominating set such that the components ofGs are induced
paths on at least two vertices or isolated vertices. Let s min S) and max S) and
let s’ and t’ be adjacent to s and t, respectively, ifsuch vertices exist. Then S dominates
1, s t, n ifand only ifone ofthefollowing holds:

(i) {s}({t}) dominates [1, sl([t, nl) ifs(t) isolated,
(ii) { s, s’}({ t, t’}) dominates [1, s]([t, n]) if s(t) belongs to an induced path

in Gs.
These lemmas verify the correctness of all the conditions made for defining IN-

CLUDE (Z, i) in all the different cases. (Note that the termination is checked inside the
algorithm.)

Now we are prepared to present the dynamic programming algorithm for the general
case, noting that the general nonstarting computation applies if z2 4: 0. We emphasize
that we do not repeat the conditions that must be satisfied such that INCLUDE (Z, i)
is nonempty. Also, the organization of the arrays is similar to Algorithm 1, except that
we now need arrays of type [0...n, 0...n, 0...n], and the address for storing the
component z of Z, if z is less than the previous stored value, is given by [z2, z3, z4 ].

ALGORITHM 3. Start with array A containing only [0, 0, 0, 0, 0], s vI.
Fori:= ltondo

For each state Z z, z2, z3, z4, 1] in array A do
Compute INCLUDE(Z, i).
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For each state Z’ z’, z’2, z’3, z’4, i] INCLUDE(Z, i) do
If z’2 and z’3 form a backward step, i.e., z’3 < z’2,
and { z’2, z’3 } dominates z’2, n]
then s min ( s, z’ )
else

If either the new second last and last vertices, z’3 and
z’4 i, are last vertices ofa path and dominate [i, n];
or the last vertex z’4 is isolated and dominates [i, n]
and { z’2, z’3, z’4 i} dominates max z, z }, i]
then s min s, Z’l )
else Store Z’ in the array B

Store EXCLUDE(Z, i) in the array B
A:=B.

THEOREM 5.4. DOMINATING SET is solvable in time O( n6)for cocomparability
graphs.

Proof. The time bound is implied by the fact that, in each of the n iterations, at
most O(n 3) different states are stored in the array B. We can check each condition
for INCLUDE (Z, i) in time O(n) and we get at most n new states Z’ from any Z in
array A.

Let S be a minimum dominating set of the cocomparability graph G. By Lemma
5.1, we can assume that the connected components of S are induced paths on at least
two vertices or isolated vertices in Gs. By Lemma 4.2, we know that any induced path
cannot have two consecutive backward steps. Therefore INCLUDE (Z, i) checks all
cases. If the vertices of S have the cocomparability ordering Sl, s2, Sr, then, by
Lemma 5.2, any interval [sj, sj /l] not covered by any component of Gs is dominated
by the vertices s2, s2 +1 and possibly the neighbours of s2 and sj. +1 in Gs. Furthermore,
by Lemma 5.3, [1, s] and [Sr, n] are dominated by sl or {Sl, s2} E, and Sr or
{ Sr- 1, Sr } E, respectively. Therefore the algorithm would produce a sequence of states
corresponding to the inclusion of exactly the vertices in S. Finally, after inclusion of sn,
Z’l SI would be considered for s := min { Z’l, s ), with the result that s < SI.

The algorithm does not delete any state that could lead to S. Let Z be the state
corresponding to vertices ofS in the interval 1, i] and suppose that the algorithm deletes
Z, replacing it with Z’. This implies that zl > Z’l. Then, however, we would get a dom-
inating set S’ with S’l < SI if we proceed on Z’ exactly as we would have done on Z
to get S. This is a result of the fact that only the last three vertices of a set are important
for the computation.

6. Total domination. We show that this variant of the domination problem also
becomes polynomial time solvable when restricted to cocomparability graphs. We use
the results ofthe previous section. We also show how to use the algorithm for the connected
case. The key Lemma 4.1 gives us the following lemma.

LEMMA 6.1. For a cocomparability graph G with no isolated vertices, there exists
a minimum total dominating set S such that each connected component of Gs is an
induced path on at least two vertices.

The proof is similar to the proof of Lemma 5.1 and is therefore omitted.
We would be in enormous trouble if we had to check all possible starting edges for

the path for each new component of S, as in the connected domination algorithm.
Therefore, we cannot use the shortest path approach of 4. Fortunately, the dynamic
programming approach of 5 can be modified to work for total domination.
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FIG. 4. All cases for including vertex i.

During the construction of the total dominating set S by a linear scan through the
labeling and dynamic programming, whenever the considered state corresponds to a set
S in which the last component has at least two vertices, we are allowed to start a new
component in S if the current vertex is not adjacent to the last and the second last
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vertex in the induced path of the previous component. This is the main difference from
the domination problem, where we can always create a new component by including i.
For the termination, we must make sure that we do not stop with a single vertex as last
component of S.

These are the only differences from the domination problem itself; thus we get an
algorithm for total domination working in exactly the same manner and with the same
states as Algorithm 3. We have only to avoid a few INCLUDE (Z, i)’s, which would
definitely produce an isolated vertex in S. To assist the reader, we enumerate the rules
from the previous section that apply to total domination. We call the rules INCLUDEtotal
to indicate the difference from INCLUDE:

INCLUDEtotal

{l(a)-l(d), 2(a)-2(d), 3(a), 3(b), 4(a)-4(d), 6, 7(a), 7(b), 8(a)-8(d)).
We obviously need not change EXCLUDE. This leads to the following algorithm

for total domination.

ALGORITHM 4. Start with array A containing only [0, O, O, O, 0], s VI.
Fori:= ltondo

For each state Z z, z2, z3, z4, in array A do
Compute INCLUDEtotaI(Z, i).
For each state Z’ [z’, z[, z, z, i] INCLUDEtotaI(Z, i) do

If z’2 and z’3 form a backward step, i.e., z’3 < z’2,
and z’2, z’3 } dominates z’2, n]
then s min { s, Z’l }
else

If the new second last and last vertices z’3 and z’4 i,
are last vertices ofa path and dominate i, n]
then s min { s, Z’l }
else Store Z’ in the array B

Store EXCLUDE(Z, i) in the array B
A:=B.

THEOREM 6.2. TOTAL DOMINATING SET is solvable in time O(n6)for cocom-
parability graphs.

The proof is similar to the proof of Theorem 5.4 and is therefore omitted.
Remark 6.3. Using a corresponding INCLUDEconn { (a), (b), 2 (a), 2 (b), 6,

7(a), 7(b), 8(a), 8(b) instead of INCLUDEtotal in Algorithm 4 yields a similar 0(/76)
algorithm for CONNECTED DOMINATING SET on cocomparability graphs.

7. Clique domination. In this section, we show that finding dominating cliques is
NP-hard for cocomparability graphs, although the problem is trivial on interval and
comparability graphs. (For both interval graphs and comparability graphs, if the graph
has a dominating clique, then it has a dominating clique of size at most two.)

THEOREM 7.1. MINIMUM DOMINATING CLIQUE (i.e., given graph G and
integer k, does G have a dominating clique ofsize <- k? is NP-complete on cocomparability
graphs in fact, on cobipartite graphs with one pendant vertex).

Proof. We transform HITTING SET { (M, /, k): /g
___

go (M), k integer, there
is a hitting set H M with HI --< k, such that for every A / holds H f3 A 4:
SP 8 of 18 to our problem.
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Clique

FIG. 5. The constructed graph.

C1ique

For an instance (M, //, k) of HITTING SET, we construct the following graph
G (V, E) (see Fig. 5)"

V= MU I U {a, b},
E= { { m, M } m c= M, Mj c= //l, mi c= Mj }

U {{mi, mj}" mi, mjeM, 4j}

U {{Mi, M}’Mi, Mje.//,i4j}

U {{b, mi}’mim} U {{a, b} }.
We must show that (M, //, k) e HS (G, k + e MDC.

If (M, () has a hitting set H of size at most k, then H U { b } is a clique and a
dominating set, since it contains a vertex belonging to Mi for each

IfG has a dominating clique C ofsize at most k + 1, it must contain b, and therefore
the remaining vertices of C must belong to M, but none of them is in /. Since C
dominates //, each Mi e has at least one neighbour in C, which is surely different
from b. Hence CI =< k + gives C { b } as a hitting set of size at most k in (M, ’).

This completes the NP-completeness proof, but we still must show that G is a co-
comparability graph. The corresponding labeling is given in Fig. 6.

Even the existence problem DOMINATING CLIQUE (i.e., given graph G, does G
have a dominating clique?) remains NP-complete. The proof is similar to the one for
weakly triangulated graphs 4 ].

o

Clique C1ique

FIG. 6. Labeling ofthe graph Gfor MINIMUM DOMINATING CLIQUE.
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THEOREM 7.2. DOMINATING CLIQUE is NP-complete on cocomparability
graphs.

Proof. We transform MONOTONE 3-SAT (mentioned in the comments to the
problem 3-SAT LO 2 in 18 to our problem.

Let Wbe an instance of MONOTONE 3-SAT, i.e., W W1, W2,..., Wr, where

W/= (xTi, V x712 V x713)for Olij 6 {0, 1}
and, for a fixed i, either all %. 0 or all aij (each clause Wi contains either only
negated or only nonnegated variables). H contains the variables Xl, x2,..., Xl. As usual,
xi means xi and x means xi.

We construct a cocomparability graph G (V, E) from W, below:

V= {Wi: ie {1,2,...,m}} U {x: je {1,2,...,l}}

U {"xj:je{1,2,...,l}}.

Then let W1, W2, W, be the clauses containing only nonnegated and W,+l, W+z,
Wm the clauses containing only negated variables, without loss of generality =<

r < m. Thus we can define

E- { {Wi, Wj}:I <= i,j <-_ r, g:j}

U {{Wi, W} :r+ <=i,j<-m, i4:j}

U {{xJ,x}:je{1,2 ,l},ke{1,2,...,l},j4:k,oj,o{O, 1}}

U { {xJ, W,.} :xJ is a literal in W;}.

Note that { xj, xj } g E for all j e { 1, 2,..., }.
Let S be a truth assignment satisfying W, i.e., S(W) for all e { 1, 2,..., m }.

If S(xj) aj, j e { 1, 2,..., }, then C { x)J j e { 1, 2 } } is obviously a clique,
and it is also a dominating set, since each clause IV,. contains a literal with value one
under S and this is contained in C.

Now let C be a dominating clique of G. Assume that C contains a vertex IV,..
Assume that W,. contains only negated variables, i.e., r + _-< =< m. Therefore C cannot
contain any vertex xj for j e { 1, 2 } or a vertex Wg containing only nonnegated
variables. Consequently, W1 is not dominated by C. Similarly, the case in which IV,.
contains only nonnegated variables implies that Wm is not dominated by C.

Hence we have C
___

{ xj j { 1, 2,..., } } U { xj j { 1, 2,..., } }. Since C
is a clique, it cannot contain xj and xj for any j e { 1, 2,..., }. Thus, for each x in
C, we set S(xj) aj. No matter how we eventually extend S to a truth assignment on
all variables, we get S(W) 1, since C dominates { W1, W2, Wm}.

Clique {Perfect Matching}

FIG. 7. Labeling ofthe graph Gfor DOMINATING CLIQUE.
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Finally, we show that G is a cocomparability graph by giving the corresponding
labeling (see Fig. 7 ).

The only fact worth mentioning is that there is no edge in G from a clause to a
variable coveting the nonedge { x, x} E, since clauses on the left of the variables
contain only nonnegated variables and clauses on the fight of the variables contain only
negated variables. []

8. Conclusions. We have studied dominating set problems for cocomparability
graphs, making use of a certain labeling for these graphs. We have extended polynomial
time algorithms for domination, independent domination, connected domination, and
total domination for interval graphs and permutation graphs to cocomparability graphs,
and we have shown that the dominating clique problem is NP-complete for cocompara-
bility graphs. We believe that forbidden ordered subgraph considerations may lead to
extensions of other polynomial time algorithms to larger classes of graphs.

The clustering problem remains of unknown complexity for interval graphs and
permutation graphs and also for cocomparability graphs 8].

The Hamiltonian path and Hamiltonian cycle problems have polynomial time al-
gorithms for cocomparability graphs 11 ]- 13 ].

An important area for future research is the investigation of a general approach for
dealing with families of graphs that have a forbidden ordered subgraph characterization.
This is related to acyclic, antisymmetric orientations ofthe edges of a graph, as considered
in [20].

It has been observed that the complexity of the domination problem on perfect
graphs closely resembles that of the isomorphism problem on these families of graphs.
Indeed, for various perfect graph families, both problems have polynomial time algorithms,
whereas, for other families, isomorphism is isomorphism-complete, while domination is
NP-complete. As pointed out by Derek Corneil, cocomparability graphs provide the first
example for a class of perfect graphs for which the domination problem is polynomial,
while the isomorphism problem remains isomorphism-complete.

Acknowledgments. We thank Derek Corneil and the Department ofComputer Sci-
ence at the University of Toronto for their hospitality.

Note added in proof. After this work was submitted for publication, the time bounds
for some ofthe problems were improved. (See K. Arvind and C. Pandu Rangan, Efficient
algorithms for domination problems on cocomparability graphs, Technical Report TR-
TCS-90-18, Indian Institute of Technology, Department of Computer Science and En-
gineering, November 1990, submitted.)
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COMPLEXITY OF THE FORWARDING INDEX PROBLEM*

RACHID SAAD"

Abstract. The forwarding index problem is, given a connected graph G and an integer k, finding a way of
connecting each ordered pair of vertices by a path so that every vertex is an internal point of at most k such
paths. Such a problem arises in the design of communication networks and parallel architectures, a model of
parallel computation being represented by a network of processors or machines processing and forwarding
(synchronous) messages to each other and a physical constraint on the number ofmessages that can be processed
by a single machine. In this paper, the author proves that the forwarding index problem is NP-complete even
ifthe diameter ofthe graph is 2, thereby answering a question of F. Chung et al. IEEE Trans. Inform. Theory,
33 (1987), pp. 224-232 concerning the complexity of the problem.
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1. Introduction. A routing R of a graph G of order n is a set of n(n elemen-
tary paths specified for all ordered pairs of vertices of G. The load (or charge) of a
vertex v for a given routing R of G, denoted by (G, R, v) or (R, v) if the graph G is
understood, is the number of paths p of R passing through v, such that v is not an
end vertex of p. The forwarding index of a network (G, R) is defined to be (G, R)
maxv v(a)(G, R, v). These definitions provide an appropriate theoretical framework
in which some "network problems" can be discussed. Indeed, each vertex of G an be
viewed as an element treating and sending data or messages through paths of G to all
other vertices, and the aim in the design ofcommunication networks is then to minimize
(G, R) so as to prevent the overload of a vertex. Another relevant field of application
concerns parallel architectures. A model of parallel computation is given by a network
of processors forwarding to each other synchronous messages (to be processed), and the
goal here is to minimize the size of a maximum "queue" on a vertex (the messages
received by a vertex form a queue and are processed one after another, which induces
some delay to be minimized). This, stated more formally, yields the following problem.

Theforwarding index problem.
Instance: G a graph; k an integer.
Question: Does there exist a routing R of G such that for all x e G, (R, x) _-< k?
This problem will be denoted by FI.
In [3] and [4] some upper bounds on the forwarding index are given as functions

of some parameters of the graph (mainly, its connectivity and minimum degree). How-
ever, no efficient algorithm was obtained for FI. In [1] the authors raised the question of
the complexity of FI. The aim of this paper is to prove the following theorem.

THEOREM 1. FI is NP-complete.
Let us first recall some notions from graph theory. The girth of a graph G (F, E)

is the minimum length of a cycle in G. An xy-path of G is a path of G connecting the
vertex x to y. An xy-path P of G is said to be inclusion-minimal if the subgraph induced
by P does not properly contain an xy-path, i.e., if every xy-path included in the subgraph
induced by P uses all the vertices ofP. Observe in this respect that all the paths involved
in an optimal routing for an instance of FI can be supposed to be inclusion-minimal.
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The degree of a vertex x of G is the number of its neighbours and is denoted by
15(x). For a pair x, y of vertices of G, the distance from x to y is the minimum length of
an xy-path in G and is denoted by d(x, y).

Let us now introduce some notation. Let R be a routing of G and let Wbe a subset
of V. Rwwill denote the routing R restricted to the pairs of vertices of W. Rxy will denote
the route ofR connecting x to y. Let X1, X2,..., Xk be subsets of vertices of G. We say
that Rxy is in xXX2" Xky and we note Rxy xXS2 Sky, if Rxy XXl X2" XkY for
some x, x2, x in X, X2, X, respectively.

2. Preliminary results. To prove the theorem, we will reduce the NP-complete
three-dimensional matching problem (3DM) to FI. The reduction will occur through a
series reductions to intermediate problems as follows:

3DM -< PART1 -< PART2 -< FI’ -< FI.

-< denotes the usual polynomial reduction, and PART1, PART2, and FI’ are defined
below. The main intuition underlying the proof of our theorem is that "if we can route
near pairs of vertices by short disjoint paths, then certainly we can obtain good routings
ofthe graph." Hence, a reasonable candidate for a reduction to FI would be the problem
of partitioning the vertices of a graph into paths of length 2. However, we need for our
proofmore precise information on the "short paths" involved. Thus, the following prob-
lems are considered.

Problem PART 1.
Instance: A graph G of maximum degree A _--< 3 and girth g >= 5.
Question: Does there exist a partition of the vertices of G into paths of length 2?
Problem PART2.
Instance: A 3-regular graph G of girth g >= 5.
Question: Does there exist a partition of the vertices of G into paths of length 2?
Note that, for every instance of PART2, we know exactly the number of paths of

length 2 in the instance as well as the number of such paths passing through any fixed
vertex x of the graph. We consider now for the needs of the proof the following slight
generalisation of FI.

Theforwarding index problem 2.
Instance: G (V, E) a graph, k an integer and a subset of vertices X V.
Question: Does there exist a routing R of G, such that

VxX,(G,R,x)=O,

( G, R <= k?

This latter problem will be denoted by FI’.
We recall the definition of the three-dimensional matching problem.
Problem DM.
Instance: X Y Z a Cartesian product of three sets of equal cardinalities, and

UX Y Z.
Question: Does there exist a subset M of U, called a perfect three-dimensional

matching, such that every element ofX U Y U Z belongs to exactly one element ofM?
It is well known that 3DM is NP-complete.
In a first step, we establish the NP-completeness ofPART2 (this is done in Lemmas

and 2 by a reduction from 3DM). In a third lemma, we prove that FI’ reduces poly-
nomially to FI. Next, we prove that PART2 reduces polynomially to FI’, which will
conclude our proof. Now we can start the proof of our theorem.
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LEMMA 1. 3DM "< PART1.
Proof. Given an instance of 3DM U c (X Y Z), we will construct a graph G

of maximum degree A =< 3 and girth g >= 5 such that a solution to PART1 on G implies
a solution to 3DM on U and conversely.

For each x X, let us denote by nx the number of occurrences ofx in the triples of
U; that is, nx I{ u e UI x e u }1; ny and nz are defined likewise. We can reduce to the
case where nx, ny, nz >= 2 for all x, y, z.

Each element x e X will be represented by a graph Hx defined as follows (see Fig.
1):Hx=(Vx, Ex), Vx= SxU S’x U S UCx.

Sx (respectively, S, S) induces an independent set of order nx. Cx induces a
chordless cycle of length 3nx + 1. The vertices of Sx (respectively, S; respectively,
S) are labeled xi (respectively, x; respectively, x’) for 1, 2, nx. There is an
edge between xi and xj’ if and only if j. Similarly, there is an edge between x and
x)" if and only if j. The vertices of Cx are labeled x, x, X3nx+l.O There is an
edge between xi and Xr if and only if r 3i 2. This concludes the description of Hx.
Similarly, we construct a graph H for each y Y and a graph Hz for each z Z.

The triples of U are labeled u, u2, ul and ordered accordingly. For each
triple ui U, we construct a cycle Cu of length 6 with vertices labeled cyclically by u i,

u 2 u,6- See Fig. 2.
The graph G instance ofPART is constructed as follows: Take the (vertex-)disjoint

union of all the preceding components (namely, the Hx, Hy, Hz, Cu for all x X,
y Y, z Z, ui U). Now, for each ui (x, y, z) U, do the following: Consider the
list U(x) (respectively, U(y), U(z)) of all the triples containing x (respectively, y, z) as
ordered by the induced order of U on U(x) (respectively, U(y), U(z)).

If U is the i] triple in U(x), then add the edge xi U].
If ui is the in triple in U(y), then add the edge Yi u3.
If ui is the i triple in U(z), then add the edge zi3u (see Fig. 3, below).
The so-obtained graph G is ofmaximum degree A 3 and ofgirth >_- 5. Furthermore,

G admits a partition into paths oflength 2 ifand only if(X Y Z, U) admits a perfect
three-dimensional matching.

FIG.
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The triple Cm
3u

6

FIG. 2

Indeed, suppose that (X X Y Z, U) admits a perfect three-dimensional matching;
let Mbe this matching and consider the following set P of disjoint paths of length 2: For
each ui e M(where ui (x, y, z), ui is the i]h triple containing x, the ih triple containing

U P, Yi2U bl
4y, and the i triple containing z), xi, Ui e P, zi3u u6i e P.

Xil 2For each j , xjxj 67 e P, whereas Xil Xil P"
For each j 4: i: Y)Yj Y.i P and " "" 0

Yi2Yi2Y3i2- 2 P.
Similarly, for each j 4: i3, zfizi’z P and z3zi"3z(i3_2 P. We add all the paths

realizing the unique partition into paths of length 2 of

(Cx- {xii-2}) (.J (Cy- {Yi2-2}) [--j (Cz {zi3-2}).
4 U/6 p p forms a partition of G into paths ofFor each ui M, u u u3i P and u u

length 2. Conversely, suppose that G admits a partition into paths of length 2 and let P
be such a partition. Then, for all x X (respectively, y Y, z Z), P contains only one,,, ,o "z(i 2). Indeed, for all x (re-path of the form x x Xi 2 (respectively, yy Y3i- 2, Z Z

Yi

\ s

FIG. 3
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spectively, y, z), P must contain at least one such path; otherwise, the cycle Cx (respec-
tively, Cy, Cz) oflength 3nx + mod 3 cannot be covered by P. Moreover, P cannot
contain more than two such paths; otherwise, a path of length 2 mod 3 will be dis-
connected from Cx and G, which then cannot be covered by P. As a consequence, there
exists for each x a uniquej such that, for some -< UI, Xjlg] bl 2i ePor Xjl,l u6i P. We

2can suppose by relabeling the vertices of Cu that xjui u P. As Cu is of length 6 with
three internal points, we must have necessarily y Y, z e Z and j2 and j3 such that
yj2u3i u’ P, zj3u u P and u (x, y, z) by construction. Then let Mbe the following

2set of triples: M { ui U[3j, xu] ui P}. Mis a perfect three-dimensional matching
of(X)< Y)< Z, U).

LEMMA 2. PART1 "< PART2.
Proof. Given an instance G of PART1, we construct an instance G" of PART2,

which has a solution if and only if G has a solution to PART 1.
Consider first the two graphs H and H’ (see Figs. 4 and 5 ). H is of girth 5, and, for

each h in V(H), 6(h) 3 if h 4 h, h2 and 6(h) 2 for h hi or h h2. Moreover,
H can be partitioned into paths of length 2. Similarly, H’ is of girth 5, and, for each of
its vertices h’ 4: h0, 6(h’) 3, whereas 6(h0) 1.

Now G" is constructed from G as follows: (i) Take two copies of G: G and G’, (ii)
For each vertex x (respectively, x’) of degree in G (respectively, G’), do the following:
Take a copy ofH and join x to the vertices h and h2 of this H.

For each vertex x of degree 2 in G, consider its counterpart x’ in G’, take a copy of
H’, and join x and x’ to the vertex h0 in this H’. The so-constructed graph is 3-regular
of girth 5. Furthermore, G admits a partition into paths of length 2 if and only if G"
admits such a partition. Indeed, if G admits a partition into paths of length 2, then so
do G’, H, H’, and G".

Conversely, let P be a partition of G" into paths of length 2 and x in V(G) such
that 6(x) 1. Let us denote by Hx the copy of H that has been attached to x in (i).
Then P restricted to Hx forms a partition ofHx into paths oflength 2 because ifP contains
a path of the form c XhlZ or c xhzz or gxh or gxh2, with z Hx, g V(G), then
(Hx c) cannot be partitioned into paths of length 2. The same holds if 6(x) 2 and
H is the copy ofH’ attached to x in (ii). Hence P restricted to G to G’ is also a partition
of G tO G’. As a consequence, G admits a partition into paths of length 2.

hi

FIG. 4
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H

FIG. 5

LEMMA 3. FI’ -< FI.
Proof. Let (G (V, E), X c V, k e N) be an instance of FI’ and consider the

following graph G’:

G’=(V’,E’),V’= VtoX’toYtoY’toW, with Ix’l IXl, IwI =klxl,

YI Y’I (n IXl)(lXl), where n vI.
Description of E’: V c V’ induces the graph G. W induces the union of a clique

with an isolated point, noted w0. Y U Y’U X’to (W- { Wo }) induces a clique. Y to
Y’U X’U { w0 } induces a clique minus one single edge woYo, Yo Y. All the edges occur
between X and W. All the edges occur between V and X’ tO Y’ tO Y. This completes the
description of G’ (see Fig. 6).

Then G admits a routing R satisfying (a) ((G, R) _-< k, and (b) for all x e X,
((G, R, x) 0 if and only if G’ admits a routing R’ satisfying ((G’, R’) <- k.

Indeed, let R be a routing on G satisfying (a) and (b) and let R’ be the following
routing on G’:

The graph G.
FIG. 6. Bold lines denote the occurrence ofall edges between two sets ofvertices.
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(i) R’v R,
(ii) For all w (W\ (Wo }), R’wow (respectively, R’wwo) is of length 2 and passes

throughX(respectively, X’). As W[ k[X] k[X’], all these charges can be uniformly
distributed so that all the vertices ofX, (respectively, X’) will have charge k except one
single vertex Xo (respectively, x) that will have charge k l,

(iii) For all w in W, v in V\X, R passes through Y and is of length 2.
As here again all these charges can be uniformly distributed on Y and as

[W[[V\X[ k[ Y[, all the vertices of Ywill have charge k. Similarly, by letting all the
paths R’vw pass through Y’ (with v in V\X, w in W), all the vertices of Y’ will have
charge k.

(iv) Roy WoXoYo and R’yow yox’owo, Xo and x being the only vertices ofXto
X’to Y to Y’ of charge less than k.

The routing R’ satisfies (G’, R’, x) =< k for each x in V’.
Conversely, let R’ be a routing on G’ satisfying (G’, R’) =< k. Then, as X tO X’ tO

Y LJ Y’ separates both W from V X and { Wo ) from W- { Wo ) and as any path from
Wo to Yo must also pass through X tO X’ tO Y tO Y’, the total sum of the charges induced
onXto X’tO YtO Y’ by the routes ofR’- R’v is greater than or equal to 21Wl(I vI
Ix[) + 2([w[ + 2 Ix tO x’t_J Y tO Y’[ k. As a consequence, all the vertices of
X tO X’tO Y tO Y’ are "saturated" (that is, they have charge k) by these routes of R’. In
particular, the vertices of X are saturated by these routes of R’ that are not in R’v.
Therefore, R’v satisfies (a) and (b).

3. Main result. We refer to Theorem in 1.
Proof. It suffices to prove that PART2 -< FI’. Let G be an instance of PART2. We

can suppose that n IV(G)[ 0 mod 3. We can also suppose that n 6 mod 8;
otherwise, we take eight disjoint copies of G and we add a 3-regular graph of girth 5 and
order 6 mod 8 that admits a partition into paths of length 2 (there exists such a graph
of order 30). In the following, n 6 mod 8 and n 0 mod 3.

Let us then consider the following instance ofFI’: I (G’, X, k), where G’= (V’E’)
with V’= V tO V2 tO H tA H2 IO Y tO Y2; IVl Iv21 IV(G)[; IH21 2,
HI 8; YI 2 mod 4, and

3n(n- 10) n nlY[
8 ++ 4

This can also be written Yll 4r + 2 and

3n(n- 10) n
8 2 2

+(n+8)lYll +s withs=<3n+7.

So YI[ and s are polynomial and are obtained, respectively, as quotient and remainder
of Euclidean division. Moreover, we can suppose that Yll >-- 6, for otherwise n will be
bounded by a constant.

Y21 satisfies

3n(n- 10) n nlYll2n + 33 + 21Y21 8
+ +------

(IY21 is well defined because the fight-hand term is odd). The subgraph of G’ generated
by V is isomorphic to G and will therefore be called G. The subgraph of G’ generated
by V2 is isomorphic to the graph U on n V(G)I vertices obtained from G in the
following way: Take a copy of G and add all the edges xy such that the distance

n
2(n + 8) + (3n + 8)r + s.
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do(x, y) > 3. H1 and H2 are isomorphic to Ks and K2, respectively. Y1 and Y: are cliques.
All the edges occur between V2 and H2, Y1 and Y2, Y1 and H2, Y2 and H2, H1 and H2,
H and V, V1 and Y2. Two vertices of V1 and V2 are linked by an edge if and only if
they correspond to each other in the natural pairing between V and V2 (recall that G is
a partial subgraph of U). For every vertex x of V1, we denote by x’ the counterpart ofx
in V2. All the edges occur between U and Y1 except s of them. This completes the
description of G’. (See Fig. 7, below.)

Let us put X V_ U Y1 [O Y2 and k 2n + 33 + 21 Yzl. Then G admits a partition
into paths of length 2 if and only if (G’, X, k) admits a routing R satisfying

(a) for all x e X, ((R, x) 0,
(b) for all x e V’ X, ((R, x) _-< k.

Indeed, suppose that G admits a partition P into paths of length 2 and consider the
following routing R on G’.

If xyz P, we take Rx,z, in x’H2z’ (that is, x’ being the counterpart of x in U,
we let Rx,z, pass through H2) and we take Rz,x, z’zyxx’. (We let only one ordered pair
of the pair { x’, z’} pass through H2.)

(2) If xyz q P, where xyz is a path of length 2 in G, then Rx,z, x’H2z’ and
Rz,x, z’H2x’. Moreover, we choose R so that all the charges (or loads) induced on H2
by the routes of (1) and (2) be uniformly distributed on H2 (this is possible since
[H21 2, the number of such routes is 6n n 3 0 mod 2), and all the edges occur
between U and H2. So we have routed all the ordered pairs of vertices of U. This partial
routing is well defined because G contains no C4: There exist no xylz and xyz in G.

3 If xy e E(G), Rx,y x’xy and Rxy, xyy’.
(4) If {x, z) is a pair of vertices at distance 2 in G (that is, do(xz) 2), then there

exists only one y such that the path xyz is in G, and we take

xyz e R, zyx e R, x’xyz e R, zyxx’ e R, z’zyx e R, xyzz’ e R.

In this way, as G is 3-regular of girth 5, every vertex y of G, considered as an internal
point of three paths of length 2 in G, will be charged by + 3 6 19 routes of
and (4). Moreover, as each time we route a pair (x, z’) or (z’, x) (with x in G and z’ in
U), we use the vertex x, the charge on every vertex of G is 2 (n + 19.

(5) Let (x, y) be an ordered pair of vertices of G such that do(xy) >_- 3 (there are
n(n 4) 6n n(n 10) such ordered pairs). Then the ordered pairs (x, y), (y, x),
(x’, y), (y, x’), (x, y’), (y’, x) are routed as follows:

Ryx yHlX, Rxy xHly, Rx,y x’xHy,

Ryx, yH1 xx’, R,),, xH1 yy’, Ry,x y’yH x.

Moreover, we choose R so that all the corresponding charges be uniformly distributed
on HI. This is possible since the number of the corresponding ordered pairs of vertices
is 3n(n 10) 0 mod 8, and all the edges occur between H1 and G. We have then
routed all the vertices of G U U.

(6) If u H1 E Y2, X’ E U, then uxx’ R and x’xu R.
(7) If h2 H2 and x G, then R,2x hzHx and Rxh2 xHlh2. Furthermore, R is

chosen in such a way as to distribute all these changes uniformly on HI, which is possible
since 2[HI V(G)I is a multiple of 8.

(8) Similarly, if Yl Yl and x G, Rylx yHzHlX, Rxyl xH1Hzyl, and R is
chosen so as to distribute the charges of these routes uniformly on H1 and H2, which is
possible because Y[ and n are even.

(9) If yl Y, x’ e U and x’yl q! E(G’), then Ry,x, ylH2X’ and Rx,yl x’Hyl;
again these charges are uniformly distributed on H2.

This concludes the definition of the routing R.



426 RACHID SAAD

dges.

The graph (3’.

FIG. 7. Bold lines denote the existence ofall edges between two sets ofvertices.

Let us count the charges on each vertex. On each vertex x of G, R induces a charge
equal to the sum of the charges induced on x by the routes )-(6), which yields

19+2(n- 1)+2]Y2] +21Hi] =2n+33+2]Yz] =k.

On each vertex h ofH, R induces a charge equal to the sum of the charges induced on

h by the routes 5 ), (7), and (8) as follows:

3n(n 10) n 2n] Y]+ + =k
8 8

On each vertex of H2, R induces the charge

n
6n

3
+(n+8)lY, +s=k.

2

R induces no charge on X V_ U Y t_) Y2. Thus (a) and (b) are satisfied by R.
Conversely, suppose that there exists a routing R solution of FI’ for the instance

(G’, X, k). We can suppose that the paths of R are inclusion-minimal. First, we have
the following facts:

For each ordered pair of vertices (y, g) Y G, Ryg and Rgy pass through H2
and H.

For each ordered pair of vertices (y, h)e Y H, Ry,h, and Rh,y, pass
through H2.

For each ordered pair of nonadjacent vertices (y, g’) YI U, Ry, g, and Rg,y,
pass through Hz. Let us put W the subgraph of G’ induced by the set V(G’)\
(Y tA Y2), and u the sum of the charges induced on H by the routes ofR connecting
ordered pairs of vertices of W (that is, by Rw); similarly, u’ is defined as the sum of the
charges induced on H2 by Rw. From the preceding facts, we deduce that

(*) u <= 8k- 2nlY[ 3n(n- 10)+4n,
(**) u’=<2k-2s-2nlY[ -8IY[ =6n-n/3.
From (* * ), we deduce that there are at least n 3 ordered pairs (g’, g), g’ and

g belonging to V2 V(U), such that Rgg passes through V. Let S be a set of n/3
such ordered pairs and S’ its corresponding set of routes. All these routes have lengths
greater than or equal to 4, so they use at least 3(n/3) n charges on V’- X. Every
other xy-path ofR uses at least dG,(x, y) charges on V’ X. Hence, (R,x)>=n+ , (aG,(x,y)- 1).

V’ (x,y)S
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Now, computing the second-hand term of the inequality, we obtain precisely

n+ (d,(x,y)-l)-klV’-Xl.
(x,y)S

(This can be checked either by computing explicitly the number n ofnonadjacent ordered
pairs of vertices in G’ and the number n2 of the ordered pairs of vertices at distance 3 in
G’, or by observing that, except for n 3 ordered pairs of vertices, the total contribution
of which was n, all the routes of the routing constructed in the preceding page were
shortest paths in G’ and their total contribution, in terms of loads on V’ X, was
precisely k V’- X I.) Now, since (a) and (b) are satisfied by R, all the routes of S’ are
of length 4, and all the other ordered pairs of vertices of G’ are routed by shorted paths
in G’. This has the following consequences:

(i) H2 is saturated by the 6n n 3 remaining ordered pairs of U together with
the routes substracted from (* *) whose shortest paths pass necessarily through H2,

(ii) From (i) and * ), we deduce that H is saturated by the 3n(n 10) + 4n
ordered pairs of vertices of the form (x, y), (x’, y), (x, y’) for (x, y) in V with
dG(x, y) >= 3, or of the form (x, h2) or (h2, x) for x in V and h2 in H2, whose shortest
paths pass necessarily through HI,

(iii) From (ii), we deduce that ifxyz c G, then Rxz xyz Rzx zyx Rx, x’xyz
Rxz, xyzz’, Rx,y x’xy and Rxy, xyy’ (indeed, none of these ordered pairs can be
routed by shortest paths through H since H is saturated by the paths of (ii)).

Moreover, from (i) and the fact that the routes of R are inclusion minimal, we
deduce that if Y2 E Y2, g’ E U, then Ry2g, Y2gg’ and Rg,y g’gY2. Thus each vertex of
G is charged by at least 2n + 32 + 2IYzl paths ofR routing ordered pairs of vertices in
V’ V’ S. As a consequence, there remains on each vertex x ofG at most one available
charge to route the n/3 ordered pairs of S that together use n charges on G. The corre-
sponding routes of S are therefore pairwise vertex-disjoint, and their restrictions to G
induce a partition of G into paths of length 2. This ends the proof.

THEOREM 2. FI remains NP-completefor graphs ofdiamater 2.
Proof. The diameter of G’ in the reduction of Theorem is 2. Moreover, in the

reduction of Lemma 3, the diameter of the graph corresponding to the instance of FI is
2. This proves the theorem.

Let MFI denote the version of FI corresponding to the case where the routes of R
are shortest paths. Then, by contrast, we have the following result of[2 ].

THEOREM (see [2]). MFI is polynomialfor graphs ofdiameter 2.
Now let SFI denote, as in [2 ], the version of FI corresponding to the case where

the routes of R are symmetric; that is, Rxy Ryx for each x, y. Then, by modifying
slightly the preceding proof, we obtain the NP-completeness of SFI.
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helpful suggestions on writing.
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PARITY SUBGRAPH, SHORTEST CYCLE COVER,
AND POSTMAN TOUR*

CUN-QUAN ZHANG

Abstract. Let G (V, E) be a simple graph such that the number of odd vertices of G is V0l and the
minimum odd degree is 60. This paper proves that the number of edges in a smallest parity subgraph of G is at
most V Min io, V Vol/2 }. Consequently, some results about the shortest cycle cover problem due
to Itai and Rodeh, Fan, Zhang, Raspaud, Zhao are generalized. If G is a 2-edge-connected simple graph such
that either G admits a nowhere-zero 4-flow or G contains no subdivision of the Petersen graph, then the total
length of a shortest cycle cover of G is at most EI + V Min i0, V] Vol/2 }.

Key words, parity subgraph, cycle cover, postman tour
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1. Introduction. We follow the terminology and notation ofBondy and Murty BM].
All graphs we will consider in this paper are two-edge-connected and simple. Note that
the cycles in this paper are closed simple paths.

The shortest cycle cover problem (SCC) is to find a family F ofcycles coveting every
edge of G such that the total length of F is as small as possible. The SCC might be an
NP-complete problem (it was conjectured by Itai, Lipto, Papadimitriou, and Rodeh
[IL]). Upper bounds of solutions of the SCC for various graphs have been studied ex-
tensively ([AT], [BJJ], [F1], [F2], [FP], [IL], [IR], [Z1], etc.). In this paper the
following results will be generalized. (Refer to Younger Y for the definition ofnowhere-
zero integer flows.)

THEOREM A ([IR]; see also [F1]). Let G (V, E) be a simple graph admitting a
nowhere-zero 4-flow. Then the total length ofan SCC ofG is at most [EI + VI 1,

THEOREM B [F1]. Let G (V, E) be a simple graph admitting a nowhere-zero 4-
flow. Then the total length ofan SCC ofG is at most EI / VI 2.

THEOREM C [Z ]. Let G V, E) be a simple graph admitting a nowhere-zero 3-
flow. Then the total length ofan SCC ofG is at most EI / vI 3.

(Note: Theorem C was initially conjectured by Fan [F1 and was recently generalized
by Raspaud [R] and Zhao [ZC].)

THEOREM D JR]. Let G V, E) be a simple graph admitting a nowhere-zero 4-
flow and G 4: K4. Then the total length ofan SCC ofG is at most ]EI / VI 3.

THEOREM E [ZC]. Let G V, E) be a simple graph admitting a nowhere-zero 4-
flow. Then, exceptfor a family ofcounterexamples, the total length ofan SCC ofG is at
most EI /IVI- 4,

Let G (V, E) be a simple graph. Denote

Vo { v: v 6 V(G) and d(v) is odd }

and

6o Min {d(v): v V(G) and d(v) is odd},

where 60 is the minimum odd degree of G.

Received by the editors July 24, 1991; accepted for publication (in revised form) May 22, 1992. This
research was partially supported by National Science Foundation grant DMS-8906973.
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A better upper bound for the problem of SCC is given in the following theorem.
THEOREM 1. Let G V, E) be a simple graph admitting a nowhere-zero 4-flow.

Then the total length ofan SCC ofG is at most IE] + IV] Min 60, ]VI Vo]/2 }.
A graph admitting a nowhere-zero 4-flow is two-edge-connected. Therefore 60 >= 3.

It is obvious that VI (I V01/2) >_- [VI/2 for any graph. Thus the upper bounds in
Theorems A, B, C, and D are improved in Theorem 1, and Theorem E is also generalized
when 60 >= 4 and VI >-- 8.

Let H be a spanning subgraph of G. The degrees of a vertex v in H and G are
denoted by d/(v) and d(v), respectively. A spanning subgraph H ofG is called a parity
subgraph of G if d/(v) d(v) (mod 2) for every vertex v of G. A parity subgraph H
is called smallest if the number of edges in H is the minimum. Theorem is a corollary
of the following main theorem of the paper.

THEOREM 2. Let G (V, E) be a simple graph with the minimum odd degree
60. Then the number of edges in a smallest parity subgraph of G is at most IV[
Min { 60, Vl (I v01/2)}.

In some sense, Theorem 2 is the best possible one. A complete graph K2n has
IV01 2n and the smallest parity subgraph of K2n is a perfect matching consisting of n
edges. A complete bipartite graph K3,, with n >= 3 is two-connected and 60 3. The
smallest parity subgraph of K3, has three components and consists of n edges.

A closed trail coveting all edges of G is called a postman tour of G. The Chinese
postman problem (CPP) is to find the shortest postman tour of G (see [EJ] or [BM]).
The follow proposition is obvious.

PROPOSITION. The optimum solution ofCPP ofG is IE(G)I + E(H)I, where H
is a smallest parity subgraph ofG.

The CPP is solvable by a polynomial algorithm [EJ ], whereas the SCC might be
an NP-complete problem. The relation between the CPP and the SCC have been studied
by many mathematicians ([BJJ], [GF], [IR], [AZ], [AGZ], [Z1], etc.). Obviously the
length ofan optimum solution ofthe CPP is not greater than the total length ofa solution
of the SCC. We say that the CPP is equivalent to the SCC (CPP SCC) for a graph G
if the length of an optimum solution of the CPP is equal to the total length of a solution
of the SCC (see [Z 1] or [Z2]). The Petersen graph is an example for which the CPP is
not equivalent to the SCC (see IR ], S ], GF], or AZ]). The following theorems have
been found.

THEOREM F [AGZ]. Ira two-edge-connected graph G contains no subdivision of
the Petersen graph, then SCC CPP.

THEOREM G [Z1], [J]. If a graph G admits a nowhere-zero 4-flow, then
SCC CPP.

With Theorems F and G and the proposition, Theorem and the following theorem
become corollaries of Theorem 2.

THEOREM 3. Let G (V, E) be a two-edge-connected simple graph such that G
contains no subdivision ofthe Petersen graph and minimum odd degree is 60. Then the
total length ofan SCC ofG is at most IEI / VI Min { 60, VI (I v01/2) }.

2. Proof of Theorem 2. Because the symmetric difference of a parity subgraph and
a cycle is still a parity subgraph, we have the following lemma.

LEMMA. IfH is a smallest parity subgraph ofa graph G, then, for any cycle C of
G, we must have that

IE(H) fq E(C)I --< IE(C)\E(H)I.

Proof of Theorem 2. Let H be the smallest parity subgraph of G. Because H is
smallest, by the lemma, H is acyclic. That is, each component ofH is a tree. Because G
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is simple, by the lemma again, each edge ofE(G)\E(H)joins a pair ofvertices ofdistinct
components of H.

We only need to show that

c(H)>Min{60, .V...V0,}2

Denote the set of endvertices (degree vertices) of a component T ofH by L(T). Note
that each endvertex of a component T ofH is an odd vertex of G. If each component T
ofH is of order or 2, then the number of components of order is V Vol and
the number of components of order 2 is IVo1 Hence

IVol IVolc(O) Vl V0l Vl -.2 2

So we assume that there is a component T ofH such that IV( T)] >_- 3.
Let T be a component ofH with V(T)[ >= 3 and Xl, x2 L(T). Assume that

IN(Xl) ["1 V(T.)[ + IN(x2)A V(T.)[ _-< 2

for each component T. of H. Then

d(x,) + d(x2) =< 2c(H).
Because d(x and d(x2) >- 60, we have that

c(H) -> 60.
We now assume that if Tis a component ofH with V( T)[ >_- 3 and x, x2 L(T),

then there is a component T* ofH such that

IN(Xl) ffl V(T*)I + IN(x2)l ffl V(T*)I >_-3.

We claim that either

or

Suppose that

Because

N(Xl ["] V( T* 5

N(x2) [’ V T* .
N(x, V T* 4 5 and N(x2) f V( T* 4 5.

IN(x,) C V(T*)[ + IN(x2) V(T*)[ >= 3,

let y N(x f’l V(T*) and y’ 6 N(x2) 71 V(T*) such that y 4 y’. Let Q’ be the path in
T* joining y and y’. Let Q be the path in T joining Xl and x2. Because the distance
between x and x2 is at least 2 in T, E(Q)] >_- 2. Then the cycle xlQxzy’Q’yXl contains
at least three edges of H and two edges of G\E(H), this contradicts the lemma and
proves our claim.

Because N(x) 71 V(T*) + IN(x2) 71 V(T*) >_- 3 and either N(x1
V(T*) or N(x2) N V(T*) , we must have that either

IN(Xl) (’1 V(T*)I >->- 3

or

IN(x2) VI V(T*)I >_- 3.
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In summary, for each component T of H with V(T)I >= 3, there must be an
endvertex x of T and another component T* ofH with V( T* )1 >= 3 such that

IN(x) fq V(T*)I >_- 3.

Construct a directed graph D such that V(D) is the set of all components
of H of the order at least 3 and a vertex Ti dominates another vertex T. in D if
[N(x) fq V(Tj.)[ >_- 3 for some x . L(Ti). Because the outdegree d(T,) >_- for
each T V(D), D contains a cycle C To Tr-To. For each Ti, let x be an
endvertex of Ti with [N(xi) f’l V(Ti/ )[ >= 3 (mod r). Let P be the longest path in
Ti+ joining xi+ and N(xi) f"l V(Ti+) (mod r). Because IN(xi) f"l V(Ti+)[ >= 3
for each (mod r) and x / is an endvertex of Ti / , the length of each Pg is at least 2.
Therefore the cycle

X0xPox
contains at least 2r edges ofH and r edges of G\E(H). This contradicts the lemma and
completes the proof of the theorem.
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COMPLEXITY RESULTS FOR POMSET IANGUAGES*
JOAN FEIGENBAUMt, JEREMY A. KAHNt, AND CARSTEN LUND

Abstract. Pratt [Intemat. J. Parallel Programming, 15 (1986), pp. 33-71] introduced POMSETs (partially
ordered multisets) to describe and analyze concurrent systems. A POMSET P gives a set of temporal con-
straints that any correct execution of a given concurrent system must satisfy. Let L(P) (the language of P)
denote the set of all system executions that satisfy the constraints given by P. This paper shows the following
for finite POMSETs P, Q, and system execution :

The POMSET language membership problem (given x and P, is x E L(P)?) is NP-complete.
The POMSET language containment problem (given P and Q, is L(P) C_ L(Q)?) is II2-complete.
The POMSET language equality problem (given P and Q, is L(P) L(Q)?) is at least as hard as
the graph-isomorphism problem.
The POMSET language size problem (given P, how many x are in L(P)?) is span-P-complete.

Key words, computer-aided verification, partial orders, POMSETs

AMS(MOS) subject classifications. 68Q15, 68Q60

1. Introduction. Verification of concurrent systems has been studied as a formal
language-containment problem for a number of years [1], [15], [6]. In this formulation,
we are given a model M represented by a finite transition structure such as a finite state
machine, automaton, or Petri net (sometimes termed an implementation), together with
an abstraction A of the model, represented by an automaton or logic formula (some-
times termed a specification, defining a property to be proved about the model M). The
verification problem consists of testing whether L(M) c_ L(A), where L(X) is the for-
mal language associated with X. Typically, M is large and therefore defined implicitly in
terms of components. An inherent difficulty in this approach is the computational com-
plexity of the language containment test as a function of the size of the representation of
M in terms of components. For example, if M is defined in terms of coordinating state
machines, then the size ofM grows geometrically with the number of components defin-
ing it, and the language containment problem is PSPACE-complete [7, AL6, p. 266]. This
computational complexity issue has been addressed by a number of heuristics, notably
homomorphic reduction [11], [10], inductive methods [3], [12], binary decision diagrams
[5], [4], [17], and partial orders [8], [14].

In this paper, we consider the language containment problem for POMSETs (par-
tially ordered multisets), which were introduced by Pratt [13]. Both the implementation
and the specification of a system can be represented by POMSETs as follows. Let E de-
note a finite set of actions that the system can perform. So actions are things like "send
0 to processor p," "receive message m from processor q," and "wait." Each vertex v in
the POMSET P corresponds to a distinct event. Intuitively, an event is a logical "step"
taken by the system. The label l(v) is an element of E, and distinct vertices may have the

Received by the editors October 21, 1991; accepted for publication (in revised form) June 5, 1992. A
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AT&T Bell Laboratories, Room 2C473, 600 Mountain Avenue, P.O. Box 636, Murray Hill, New Jersey
07974-0636. jf@research.att.com

Mathematics Department, University of California, Berkeley, California 94720. kahn@math.berkeley
edu. This work was done while the author was a student at Harvard College and a summer intern at AT&T
Bell Laboratories.

AT&T Bell Laboratories, Room 2C324, 600 Mountain Avenue, P.O. Box 636, Murray Hill, New Jersey
07974-0636. lund@research.att.com. This work was done while the author was a postdoctoral fellow at the
DIMACS Center at Rutgers University, supported by National Science Foundation grant STC-88-09648.

432



COMPLEXITY RESULTS FOR POMSET LANGUAGES 433

same label; this corresponds to the fact that a given action (say "send 0 to processor p")
may be performed several times by the system during any execution. Each arc (v, w) in P
represents a constraint of the form "event v must occur before event w in any execution
of the system." For example, if l(v) is "receive message m from processor p," and l(w)
is "if the value of register r is equal to m then signal processor ql, else signal processor
q2," then the arc (v, w) has the obvious interpretation. The language of P is simply the
set of all correct executions of the system.

The following example motivates the use of POMSETs. The language L
{abil bi..., bin a}, where ili2.., i, is a permutation of 12... n and all of the bi’s are dis-
tinct, arises often in the description of concurrent processes. Its meaning is "perform
action a, then perform each of the actions b through b, in any order, then perform ac-
tion a again." A nondeterministic finite automaton (NFA) that accepts L must have at
least 2’ states. POMSETs, however, offer a much more compact representation: The
(n + 2)-node POMSET of Fig. 1 represents L.

a

bl b2 bn

a
FIG. I

Formally, the problem of interest is as follows.

POMSET language containment (PLC):
Input: Two POMSETs P and Q.
Question: Is the language of P a subset of the language of Q?
The POMSET P represents the implementation and Q the specification. We show

that the PLC problem is II-complete.
Note that P and Q are both finite POMSETs. Thus the languages in question are

finite, and the strings in them are of finite length. If we were presenting an algorithm
for PLC, this finiteness restriction would render the algorithm impractical because real
concurrent systems produce infinite sets of infinite sequences. However, we are giving a
lower bound on the complexity of PLC, and hence the finiteness restriction makes our
result all the more meaningful: Even in this restricted case, the problem appears to be
intractable.

We also give an NP-completeness result for the following simpler problem.
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POMSET language membership (PLM):
Input: A POMSET P and a string z.
Question" Is x in the language of P?
Once again, the finiteness restriction only strengthens our result, because we are

providing a lower bound rather than an algorithm.
The following problem formalizes the question ofwhether two specifications in fact

specify the same system.

POMSET language equality (PLE):
Input: Two POMSETs P and Q.
Question: Is the language of P equal to the language of Q?
It is clear that PLE is in II because it can be reduced to PLC. We show that PLE

is at least as hard as graph isomorphism. Since graph isomorphism is in NP and is not
even believed to be NP-complete, the exact complexity of PLE is still open.

Finally, we consider a problem that is interesting from a purely combinatorial and
complexity-theoretic point of view.

POMSET language size (PLS):
Input: A POMSET P.
Question: What is the number of strings in the language of P?
We show that PLS is complete for the class span-P (cf. KSbler, Sch6ning, and Toran

[9]).
2. Definitions and notation. Throughout this paper, P and Q denote (finite) POM-

SETs, and x denotes a (finite) string. We now fix these ideas precisely.
DEFINITION 2.1. A POMSET P is a triple (V, A, l). The vertex set V(P) consists of

a finite number n of distinct elements {vl,..., vn} called the events. The arc set A(P)
consists of a set of ordered pairs (v, w), where v and w are distinct elements of V, called
the constraints. The directed graph (V(P), A(P)) is acyclic. The mapping V E
assigns an action to each event in V, and l(v) is called the label of vertex v.

Recall that a linear ordering of V {vl,..., v,} extends a partial ordering of V if,
for all pairs v, v of distinct elements in V, v < v in the partial ordering implies that
vi < v in the linear ordering. Technically, a DAG (directed acyclic graph) may not be
a partial ordering because it may not be transitively closed. When we say that a linear
ordering of V extends the DAG (V, A), we mean that it extends the transitive closure of
the DAG.

DEFINITION 2.2. The language L(P) of a POMSET P (V, A, l) is a subset of E’,
where n Iv(P)l. The string cr or,, is in L(P) if there is a linear ordering vix vi,
of the vertex set V that extends the DAG (V, A) and satisfies l(vi crj, for 1 <= j __< n.

For our result about the complexity of PLS, we will need the function classes #P (cf.
Valiant [18]) and span-P (cf. K6bler, Sch6ning, and Torah [9]). A function f is in #P if
there is a nondeterministic, polynomial-time machine, say M, such that f(z) is equal to
the number of accepting computations ofM on input z. For example, the function that
counts the number of satisfying assignments of a propositional formula is in #P, as is
the function that counts the number of Hamiltonian cycles in a graph. A function is in
span-P if there is a nondeterministic, polynomial-time transducer, say N, that behaves as
follows. On input z and rejecting computation path w, the output ofN is simply "reject."
On input z and accepting computation path w, the output is the value of a polynomial-
time computable function, say b, of z and w. Then g(z) is the number of different values
that b can take on input z, i.e.,

g(x) #{z 3 an accepting path w such that (x, w) z}.
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3. PLC is II-complete.
THEOREM 3.1. The PLCproblem is II-complete.
Proof. First, note that it is obvious that PLC is in II. Suppose that we wish to

know whether L(P) is contained in L(Q), where V(P) {)1,.--, ?in} and V(Q)
{wl,..., w,}. The following is a II expression for L(P) c_ L(Q)" For all linear order-
ings v v.., there exists a linear ordering wjl ...wj. such that, if v v, extends
A(P), then wl...w, extends A(Q) and l(v) l(w) for i _<_ k _<_ n. The hypothesis
"ifv vi, extends A(P)" is equivalent to "if l(vix )... l(vi. E L(P)," and the conclu-
sion "thenw wj. extends A(Q) and l(v) l(w) for 1 _< k =< n" is equivalent to
"/(wi )... l(wi.) L(Q) and is equal to l(vil).., l(v,.)."

It is also obvious that PLC is NP-hard, because PLM is the special case of PLC in
which L(P) contains just one string, and PLM is NP-complete (see 4 below).

We show completeness by reduction from the following II-complete problem (cf.
[7, p. 166]).

Normalized B:
Input: Two sets {wl,..., w,} and {y,..., y, } ofbooleanvariables and a set {c,...,

ck} of clauses. Each clause is of the form a b V c V d, where a is either w or w-- for
some i and each of b, c, and d is// or y-j- for some j.

Question: Is it the case that, for every truth assignment to the w’s, there exists some
truth assignment to the y’s such that every ct is satisfied?

Given an instance (W {Wl,...,Wm},Y {/1,...,/n},(]’ {Cl,...,Ck})of
normalized B, we construct an instance (P, Q) of PLC as follows.

In V(P), there are three disjoint sets of vertices. The first group contains n vertices,
labeled g through y,. The second group in V(P) contains 2m + k vertices. For I < i <=
m, there are two vertices in this group labeled w; we refer to them as "the positive w
vertex" and "the negative w vertex." For 1 _<_ <_ k, there is one vertex in the second
group labeled c. The third group of vertices in V(P) is of size n + 3k. There is one
vertex in this group labeled//, for 1 =< j =< n, and there are three vertices in the third
group labeled ct, for I <= <= k. For every clause c in whichw appears on the left side of
the implication, there is an arc in A(P) from the positive w vertex to the second-group
vertex labeled cg; for every c in which - appears on the left side of the implication,
there is an arc in A(P) from the negative w vertex to the second-group vertex labeled
cg. Every w vertex in the second group is joined by an arc to every c vertex in the third
group. The rest of the arcs that make up A(P) can be seen in Fig. 2, where an example
of this construction is given. The subscripts are omitted from the labels of some clause
vertices to reduce clutter.

In V(Q), there are two vertices labeled y, for 1 _<_ j < n, and two vertices labeled
w, for 1 <= i =< m. These are referred to as "the positive / (respectively, w) vertex"
and "the negative Vj (respectively, w) vertex." V(Q) also contains four vertices labeled
c,, for 1 =< _<_ k. One group of these c vertices is associated with the V vertices; each
c vertex in this group has in-degree 1. For each clause ct in which the literal V appears
on the right side of the implication, there is an arc from the positive y vertex to a c
vertex. Similarly, for each clause ct in which the literal 97 appears on the right side of
the implication, there is an arc from the negative V vertex to a ct vertex. Note that each
label ct appears three times in this group, once for each literal in the clause. The second
group of c vertices is associated with the w vertices; each c vertex in this group has in-
degree 2. If w or- appears on the left side of the implication in clause cg, then there
are arcs from both the positive w vertex and the negative w vertex to the cg vertex in
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the second group. See Fig. 3 for an example of this construction. Once again, subscripts
are omitted from some clause vertices to reduce clutter.

Suppose that (P, Q) is a yes-instance of PLC; so L(P) is contained in L(Q). We
must show that (W, Y, C) is a yes-instance of B. Choose an assignment of truth values
to the variables in W. We will construct an assignment of truth values to the variables in
Y that, together with the initial assignment to those in W, satisfies all the clauses in C.

Consider the string

X Yl YnWl WmC,q C.qt Yl ynWl WmCqt+l C4k



COMPLEXITY RESULTS FOR POMSET LANGUAGES 437

in L(P) that is formed as follows. The prefix Yl"’’Yn comes from the first group of
vertices in V(P). In the first substring wx...w,, each wi represents a choice between
the positive wi vertex and the negative wi vertex within the second group in V(P). The
substring cq ...c, corresponds exactly to the clauses that are nontrivial to satisfy: If a
clause vertex v in the second group in V(P) is adjacent to the positive wi vertex and w
is TRUE in the initial assignment, then l(v) goes into the substring cql ...cq; similarly,
if v is adjacent to the negative w vertex and wi is FALSE in the initial assignment, then
l(v) goes into the substring Cq ...cq,. The rest of the string z is constructed in any way
that is consistent with the constraints in A(P), subject to y’s, then w’s, then c’s.

Note that z is always in L(P). Because (P, Q) is assumed to be a yes-instance of
PLC, z is also in L(Q). Consider the vertices v(cql),..., V(Cq,) in V(Q) that give rise to
the substring cql cq, of z. These vertices must all be in the first group of c vertices in Q;
that is, they must be in the group whose incoming arcs start with y’s. This is because none
of cq,..., cq, is preceded in z by two occurrences of wi, for any i. If v(cq) is connected to
the positive (respectively, negative) yj vertex, then assign the variable yj the value TRUE
(respectively, FALSE). Assign arbitrary values to any remaining y variables. Note that
no conflicts arise in making this assignment; that is, each y is assigned one value. This
is because each y symbol appears once in the prefix of z, and hence only one of the
two y vertices is used; if the y vertex that is used is adjacent to two vertices v(cq and
v(cq. ), then either y appears in both cq and cq. or appears in both cq and Cq..
This assignment, together with the initial assignment to the w variables, satisfies all of
the clauses in C. Because the initial assignment to the w variables was arbitrary, this
shows that (W, Y, C) is a yes-instance.

Now suppose that (W, Y, C) is a yes-instance of normalized B. Let x be an arbitrary
element of L(P) in the corresponding instance of PLC. We must show that x is also in
L(Q).

We construct a truth assignment that corresponds to x as follows. Each symbol in
x comes from a vertex in a linear ordering of V(P) that extends A(P). Take the first
occurrence of wi in x and see whether it corresponds to the positive wi vertex or the
negative wi vertex. If positive, assign the variable wi the value TRUE and, if negative,
assign it FALSE. Because (W, Y, C) is a yes-instance, there must be an assignment of
truth values to the y variables that, together with the assignment to the w’s, satisfies
every clause in C. This assignment to the y’s corresponds to the prefix y y, of x in a
way that will become clear below. Denote by A the full assignment to y’s and w’s.

Call a y vertex or w vertex in V(Q) "active" if it corresponds to the truth assignment
A; e.g., the positive yj vertex is active if and only if the variable y is TRUE in A. Now
Q is the disjoint union of subPOMSETs Q1 and Q:, where Q contains exactly the active
y vertices and the c vertices that are connected by arcs from active y vertices, and Q
contains exactly the active w vertices and the c vertices that are connected by arcs from
active w vertices.

The only nontrivial task involved in finding a linear ordering of V(Q) that extends
A(Q) and gives rise to x is the following: Suppose that clause c contains the variable wi
and that the first occurrence of the symbol c in x falls between the two occurrences of
the symbol wi; what is the vertex in V(Q) that gives rise to this first occurrence of c?
By construction, this vertex can be found in V(Q); that is, the active y vertices corre-
spond to the prefix y...y, of x. Thus x is in the shuffle of L(Q1) and L(Q), which is
L(Q).

There are some special cases of PLC that are easily solved in polynomial time. For
example, if each element of occurs at most once as a label in each POMSET, then
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there is at most one bijection from V(Q) to V(P), given by the labels. If no such
exists, L(P)

_
L(Q). Otherwise, let T(P) (respectively, T(Q)) be the transitive closure

of A(P) (respectively, A(Q)). It is easily seen that L(P) is contained in L(Q) if and
only if, for every arc (v, w) in T(Q), the arc ((v), (w)) is in T(P). We call this the
unique-label case of PLC.

Similarly, the no-autoconcurrence case of PLC is solvable in polynomial time. "No
autoconcurrence" means that, if v and w are in V(P) (respectively, V(Q)), and l(v)
l(w), then either (v, w) or (w, v) is in A(P) (respectively, A(Q)). The no-autoconcurrence
case can be reduced to the unique-label case as follows: For each a E E, let vl,..., Vm be
all of the vertices of POMSET P with label a. These vertices must be linearly ordered in
A(P), else there would be autoconcurrence. If the linear order is vii < < Vim, then
relabel these vertices l(v) a,..., l(v,) a,, where the a’s are not in . Do the
same for all of the vertices with label a in Q, once again using the labels aix,..., aim.

4. PLM is NP-complete. The following theorem was obtained in collaboration with
J. Kilian.

THEOREM 4.1. The PLMproblem is NP-complete.
Proof. Once again, it is obvious that PLM is in NP. To verify that x a a, is in

P (V, A), where V {v,..., v, }, simply guess a linear ordering vi vi, of V and
check that each arc in A joins a pair ofvertices vl, vi. with j < j2 and that l(v) cr
for each i.

We show completeness by reduction from the archetypal NP-complete problem 3SAT.
Recall the statement of this problem.

Three satisfiability (3SAT):
Input: Clauses c1,..., c, on boolean variables y,..., Ym. Each cj is of the form

cj V c. V cj3, where each ck is either yi or for some i.
Question: Is there an assignment of truth values to the variables y,..., Ym that sat-

isfies all of the clauses c,..., c, simultaneously?
Given an instance (C {c,..., c,}, Y {yl,..., ym}) of 3SAT, we construct an

equivalent instance (z, P) ofPLM as follows. The vertex set V ofP contains two vertices,
say v and vi., for each variable y and three vertices, say w, w2, and wj3, for each
clause c. Vertices v and v2 have label y, and vertices wl, w2, and w3 all have label
cj. For each clause c, consider the variables (say yr, y, and yt) that occur in c. Put in
exactly one of arcs (vr, wl) and (v, w) (respectively, [(v, wj.) and (v., w)] and
[(vt, w) and (vt, wa)]), by choosing the first ify (respectively, y and yt) occurs in c
and the second if (respectively, and) occurs in cj. The string in the PLM instance
is

X Yl YmCl CnYl ymC,1CIC2C2 C.nCn.

See Fig. 4 for an example of this construction.
It is easily seen that (z, P) is a yes-instance of PLM if and only if (C, A) is a yes-

instance of 3SAT. The key point is that the choice of vertices that map to the prefix
y Ym of z corresponds exactly to the choice of truth values in the satisfying assign-
ment and that this choice "covers" the first occurrence of each c symbol in z.

Next, we show that a special case of PLM is solvable in polynomial time.
THEOREM 4.2. There is a polynomial-time algorithm for the special case of PLM in

which each label in occurs at most twice in z.

Proof. We exhibit a polynomial-time reduction from this case ofPLM to 2SAT, which
is solvable in polynomial time [7, 3.1.1]. The formulation of the 2SAT problem is iden-
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tical to that of the 3SAT problem (see above), except that each clause has two literals
instead of three.

Let (z, P) be an instance of PLM in which each label occurs at most twice. We will
construct a formula such that

x E L(P) if and only if (p E 2SAT.

Assume that V(P) {1, 2,...,n}. Each position i, 1 < i < Ixl gives rise to a
boolean variable z in . In what follows, we will use < and > to denote integer inequal-
ities and <p and >p to denote inequalities in the partial order of the POMSET.

Let 7r be a linear ordering of V(P) that may or may not be an extension of P. Assume
that the word corresponding to 7r is x. Any such 7r corresponds to a truth assignment of
the z’s in the following way. If the label in the ith position of x only occurs once, then
zi is TRUE. If the label occurs twice, then observe that only two nodes, say rtl and rt2
with rtl < n2, can correspond to position i. If 7r chooses rtx to correspond to position i,
then z is TRUE and otherwise it is FALSE.

The clauses of are of the following three types. The two first types ensure that any
satisfying assignment of the variables corresponds to a linear ordering 7r of V(P). The
third type ensures that 7r extends P.

1. Suppose that label a occurs exactly once in x, in position i. We force z to be
TRUE by adding the clause "zi" to

2. If label a occurs in positions i and j, there are two corresponding variables
and zj. To ensure consistency, we add the clauses "zi V zj" and " V

3. For each pair of positions 1 < < j < rt in the string x, we construct some
clauses. The clauses will contain only the variables z and zj. Each assignment
b, b2 of z and z determines two nodes rt and rt, by interpretation of the
boolean variables. If rti >p rt, then we add the clause "(b @ zi) V (b2 @ zj),"
where @ is exclusive or. These clauses ensure that all satisfying assignments cor-
respond to linear orderings 7r in which the ith element follows the jth element
in the >p ordering.
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It is easy to see that is satisfiable if and only if (z, P) is a yes-instance of PLM and
that the reduction can be done in polynomial time. [3

Note that the PLM instances that are constructed in the proof of Theorem 4.1 have
at most three occurrences of each label. Thus the (presumed) jump in complexity from
polynomial-time solvability to NP-completeness occurs when the maximum number of
occurrences of a label is increased from two to three.

5. PLE is as hard as graph isomorphism.
THEOREM 5.1. The PLEproblem is as hard as graph isomorphism.
Proof. Let (G, H) be an instance of the graph isomorphism problem. We show how

to construct, in polynomial time, a POMSET P(G, H) and a string z such that

(A) For any permutation 7r of V(G), L(P(Tr(G), H)) L(P(G, H)), and
(B) The string z is in L(P(G, H)) if and only if G H.

Statements (A) and (B) together imply that L(P(H, H)) L(P(G, H)) if and only if
G H, and hence this construction is tantamount to a polynomial-time reduction from
graph isomorphism to PLE.

Let V(G) {v,..., v,} and V(H) {w,..., w,}. Then V(P) consists of
1. N(v, wk), where 1 < i, k < n. The label of N(v, wk) is w;
2. N’(v,vj,w,wt),where 1 < i < j < hand 1 < k,1 < n. The label of

N’(vi, vj, wk, WZ) is a;
3. N"(v, v, wk, wt), where {v, v} and {wk, wt} are in E(G) and E(H), respec-

tively. The label of N"(v, v, wk, wt) is bk,l.
The constraint set A(P) consists of all possible arcs ofthe form (N(vi,

w, wt)) and (N(v, wt), N’(vi, v, w, wz)) and all possible arcs of the form (N(vi, w),
N"(v, v, Wk, wt)) and (N(vj, wt), N"(v, v, w, wt)).

The string x is

wl wna(’)bkl,tl bk,,t.w*a*b*,

where E(H) {{wl, wt },..., {w.,. }} and w*a*b* means simply "the right number
of w ’s."k,z, a’s, and bk,1 Refer to Fig. 5 for an example of this construction.

It is easily seen that P(G, H) satisfies property (A). For property (B), the intuition is
as follows. Each symbol in the prefix wl...w, of x corresponds to a vertex in H, which
in turn corresponds to a Type-1 vertex in P. If N(v, Wk) and N(vj, wt) are two of these
chosen vertices, then wk wt. Furthermore, v vj, else we would not have satisfied

enough constraints on Type-2 vertices to be able to put the substring a(g) into x. So
the prefix w...w, actually gives us a bijection between V(G) and V(H). Finally, this
bijection must be an isomorphism, else we would not have satisfied enough constraints
on Type-3 vertices to be able to put the substring bkl ,ix bk,l, into x. fi

6. PLS is span-P-complete.
THEOREM 6.1. The PLSproblem is span-P-complete.
Proof. Brightwell and Winkler [2] have shown that the following problem is #P-

complete: Given a partial order, how many linear extensions does it have? Because PLS
contains Brightwell and Winkler’s problem as a special case (i.e., the case in which each
label appears at most once), it is clear that PLS is #P-hard.

It is also clear that PLS is in span-P. The underlying nondeterministic, polynomi-
al-time machine takes a POMSET P as input. The paths of the machine correspond
to linear orderings of V(P), and the accepting paths correspond to linear orderings
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that extend the DAG (V(P), A(P)). The output of the accepting path corresponding
to vl...v, is the string l(vi).., l(vin) in L(P).

Thus, to prove Theorem 6.1, it suffices to show that span-P is contained in the func-
tion class FP#P. (FP denotes the class ofpolynomial-time computablefunctions; this is a
generalization of P, the class of polynomial-time decidable sets.) This is straightforward:
The containment span-P c_ #pNP follows easily from the definitions of span-P and #P,
and the containment #pNP C_ FP#P is a special case of the main result of Toda and
Watanabe 16]. 13

Toda and Watanabe’s theorem yields the stronger statement FP#P FPp-P, but
we do not need this full generality to prove that PLS is span-P-complete.

7. Discussion. A natural next step to take is to identify interesting special cases of
PLC and to develop algorithms for these cases. For these algorithms to be practical, they
would have to test containment of infinite languages of infinite sequences. It is unclear
how to represent such languages by POMSETs so as to facilitate language-containment
testing. Some candidate representations are suggested in Pratt’s original paper and in
Probst and Li [14].

We propose the following notation. Each language is represented by a deterministic
Biichi automaton A and a collection P, Pk of POMSETs. Assume that each Pi
exhibits no autoconcurrence. Each transition of A is labeled by a POMSET Pi. The
language given by (A, P,..., Pk) consists of all sequences w w2..., where PI P2
is in L(A) and w is in L(Pi ).

Suppose that (A, P,..., P) and (B, Q,..., Q) are two such representations. Note
that an implicit one-to-one correspondence between the two collections of POMSETs is
given by their subscripts. Form an automaton B’ by starting with B and substituting for
each transition label Q the corresponding label P. Then a sufficient, but not necessary,
condition for the language given by (A, P1, P) to be contained in the language given
by (B, Q, Qk) is: L(A) C_ L(B’) and, for each i, L(Pi) c_ L(Q).

This test can be performed in polynomial time. We hope to investigate its applica-
bility in future work.
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Finally, there is a large gap between the known upper and lower bounds for PLE,
and we would like to close it.
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INDEPENDENT SETS OF GUARANTEED SIZE*
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Abstract. Every graph with n vertices and m edges has an independent set containing at least n2 /(2m +
n) vertices. This paper presents a parallel algorithm that finds an independent set of this size and runs in
O(loga n) time on aCRCWPRAMwith O((m+n)a(m, n)/ log2 n) processors, where c(n, m) is a functional
inverse of Ackerman’s function. The ideas used in the design of this algorithm are also used to design an
algorithm that, with the same resources, finds a vertex coloring satisfying certain minimality conditions.

Key words. Turn’s theorem, independent set, NC, graph, parallel computation, deterministic
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1. Introduction. This paper presents a fast parallel algorithm that, given a graph G,
finds an independent set of G whose size is bounded from below. The bound depends
on the number n of vertices and number m of edges of G and cannot be improved in
these terms.

Since constructing a maximum independent set is NP-hard, it cannot be done using
a polynomial algorithm unless P=NP. Johnson [13] proved that if there is a polynomial-
time algorithm that finds an independent set whose size is within a constant factor of
optimal, then there is a polynomial approximation scheme for the maximum indepen-
dent set problem, that is, an algorithm that finds an independent set whose size is within
(1 ) of optimal and whose running time is polynomial for any fixed e > 0. Nobody has
yet devised such a polynomial approximation scheme, and it is somewhat unlikely that it
exists. In particular, it seems to be unlikely that this approximation problem is in NC. In
contrast to this, ifwe require that the algorithm only find a maximal independent set (the
MIS problem), then the problem becomes polynomial. In fact, a maximal independent
set can be easily found sequentially in a linear time. Karp and Wigderson [14] showed
that MIS is in NC. Starting with their work, a number of parallel algorithms have been
proposed to solve this problem [2], [10], [11], [16], [17]. Currently, the most efficient
algorithm is presented in [11]; it runs in O(loga n) time on O((n + m)/log n) processors.

A common drawback of all NC-algorithms for MIS mentioned above is that occa-
sionally they can find too small a set. Any graph with a large independent set and a vertex
adjacent to all other vertices is a potential example of such a situation. This motivates
the approach we take here; we require that the algorithm find a sufficiently large inde-
pendent set. Besides the apparent theoretical interest in the question of whether this
task can be accomplished in NC, it is conceivable that such an algorithm can be a useful
subroutine for solving other problems. For example, in our earlier work [11], the cru-
cial part of the algorithm for MIS is a subroutine that efficiently finds in O(log n) time a
matching of sufficiently large, though not necessarily maximum, size. Note that finding
a maximum matching is not known to be in NC.
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Our interpretation of a sufficiently large independent set is based on Turfin’s theorem
[19]. It states that every graph with n vertices and m edges contains an independent set
of size at least In2/(2m + n) ]; this bound cannot be improved in terms of n and m.

The following sequential algorithm finds an independent set of this size [9]"
I;
while G is not empty begin

v ,-- a vertex of minimum degree in G;
I -- I U {v}
delete v and its neighbors from G;

end;

In this paper, we present a parallel algorithm that finds an independent set of Turfin’s
size in O(log n) time on a CRCW PRAM with O((n + m)a(m, n)/log2 n) processors,
where a(m, n) is the inverse of Ackerman’s function. We assume that whenever several
processors write to the same location at the same time, one of them succeeds. Note
that it was not known whether the problem of finding an independent set of Turfin’s
size is in NC or even in RNC. The first parallel algorithm that finds an independent set
of guaranteed size is due to Goldberg [8]. It finds an independent set of size at least
n2/a2m in O(log2 n) time on an EREW PRAM with O(n + m) processors, provided
that m >= n/2. An alternative approach is to delete all vertices of degree at least 4m/n
and then to find a maximal independent set of the remaining graph. This independent
set must contain at least (n/2)/(4m/n + 1) n2/(8m + 2n) vertices.

Our algorithm uses a graph partitioning subroutine that is of independent interest.
In the graph partitioning problem, we are asked to divide the vertices of a given graph
into two sets, A and A’, so that the number of edges joining a vertex in A to a vertex in
A’ is maximized; such edges are said to be cut by the partition (A, A’). Erd6s [7] proved
that every connected graph has a partition that cuts m/2 + n/4 1/4 edges. His proof
leads to a linear-time sequential algorithm that appears to be hard to parallelize. For our
purpose, we need a slightly better partition. We prove that the only connected graphs
for which Erd6s’s bound cannot be improved are A-graphs.

We define A-graph to be either an isolated vertex or a connected graph in which
every block is an odd clique. If a connected component C of a graph G is a A-graph,
then C’ is a A-component of G. Agraph that has no A-components is A-free. Aconnected
graph (7 is called a near A-graph if exactly one block of G is an even clique and all other
blocks are odd cliques.

We call a partition (A, A’) that cuts at least [m/2 + n/4] edges a dividing parti-
tion, provided that each part (A and A’) contains at least one-fifth of the total ver-
tices. It is easy to see that A-graphs do not have dividing partitions; we prove that all
other graphs do. For every A-graph, our partition subroutine finds an optimal parti-
tion, and, for every A-free graph, it finds a dividing partition; on a CRCW PRAM with
O((n + m)a(m, n)/ log n) processors it runs in O(log2 n) time.

An algorithm that finds a dividing partition can also be applied to the weighted vertex
coloringproblem. In the weighted vertex coloring problem, we assign a positive integer
to each vertex of a given graph so that no adjacent vertices are assigned the same number
and the sum of the numbers assigned is minimized. The sum is called the weight of the
coloring. A coloring is called minimum if it is of the minimal possible weight. A coloring
is minimal if, for each color k, every vertex of color k is adjacent to some vertex of each
color less than k.

1The term odd (even) clique means a clique with an odd (even) number of vertices.
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We can prove that any minimal coloring has weight at most m / n and that every
graph that is the union of disjoint cliques has a minimumweight coloring ofweight m+n.
We call a coloring light if its weight is at most m + n. A minimal coloring can be found
sequentially in linear time. There are no previously known parallel algorithms that find
light vertex colorings. We present a parallel algorithm that finds a light vertex coloring
in O(log3 n) time on a CRCW PRAM with O((n / m)c(m, n)/log2 n) processors. Any
coloring of this weight uses at most 12x/-] colors. Another parallel algorithm that
colors graphs using [2x/] colors is given in [8]; it runs in O(log n) time on an EREW
PRAM and uses O(m + n) processors.

The bottleneck in all three algorithms is finding the blocks of a graph. Tarjan and
Vishkin proposed an algorithm that effectively reduces the block-finding problem to the
connected-components-finding problem [18]. If the connected-components algorithm
of Cole and Vishkin [5] is used, the block-finding algorithm runs in O(log n) time on
a CRCW PRAM with O((n + m)c(m, n)/ log n) processors. We call the resulting al-
gorithm the CrV-algorithm. Using a more efficient algorithm or an algorithm for a
different model of parallel computation (for example, see [12]) will lead to other re-
suits. If T(n, m) and P(n, m) are, respectively, the time and the number of processors
required by the biconnected components algorithm, then the partitioning algorithm re-
quires O(T(n, m) log n) time and P(n, m) processors, and the independent set algorithm
and weighted vertex coloring algorithm take O(T(n, m) log2 n) time and P(n, m)/ log n
processors.

Note that, for the partitioning, we do not have sufficient resources to sort. This com-
plicates several low-level subroutines. One such case is Step 4 ofthe procedure DIVIDE.
If we were to use log n times more processors, Step 4 would be less complicated.

We follow the usual graph-theoretic terminology [3]. Our graphs are without loops
or parallel edges. The vertices of a graph on n vertices are represented by integers
0,..., n 1; the edges are given by a list of pairs {(i, j)}, where 0 <= i < j < n 1.
The decomposition tree T T(G) of a graph G is defined to be the tree whose vertex set
is comprised of the blocks and the cut vertices2 of G; two vertices of T are adjacent if
one is a block and the other is a cut vertex belonging to the block. A star is a tree with at
least two vertices, one of which, called the center, is adjacent to all of the other vertices.

Section 2 contains a description of PARTITION, a parallel algorithm that finds a
dividing partition of a graph with no A-component. Section 3 describes applications of
PARTITION to the problems of finding large independent sets in parallel and of finding
weighted vertex colorings of small weight. The list processing steps that are used by
PARTITION are described in 4. Finally, suggestions are made for further work.

2. The partitioning algorithm. We use divide-and-conquer to design our partition-
ing algorithm PARTITION.

LEMMA 1. Let (B1, B) be a partition ofG and let (At, A’) and (A2, A’) be dividing
partitions of the subgraphs GIBe] and G[Bz] induced on B and B, respectively. Then
either p (A to A2, A tO A’)or tr (A1 tO A’,A’ tO A) is a dividingpartition of G.

Proof. Since (A, A) and (A, A) are dividing partitions, each of the sets A1 U Az,
A tO A, Ax tO A, and A tOA contains at least one-fifth of the vertices of G. Every edge
that is cut by (Bx, B2) is also cut by one of p or tr; every edge cut by (A, A]) or (Az, A)
is cut by both p and tr. Thus, the sum E of the numbers of edges cut by p and cr is at least
w + ml + n/2 + mz + nz/2, where w is the number of edges cut by (B1, B), and mi

2Cut vertices are sometimes referred to as articulation points and blocks are sometimes referred to as
biconnected components.



446 MARKGOLDBERG AND THOMAS SPENCER

(respectively, hi) is the number of edges (respectively, vertices) in G[Bi] (i 1, 2). If
m and n are, respectively, the number of edges and the number of vertices of G, then
m ml + m2 + w and n nl + n2. Thus, E >= m + n/2, implying that at least one of
/9 and cr is a dividing partition of G. E]

We can prove that every A-free graph that does not contain a star as a connected
component can be partitioned into two A-free subgraphs. With the use of this fact, every
A-free graph can be split into disjoint stars. Since every star has a trivial dividing parti-
tion, we can obtain a dividing partition of the graph by repeated application of Lemma
1. For this approach to be effective in parallel, the partition into two A-free subgraphs
must be quickly computable and must consist of two graphs of approximately equal size.
Unfortunately, it is not clear how to do this. It is, however, possible to partition a A-free
graph either into two approximately equally sized A-free subgraphs or into two parts;
one of which is a A-free graph, and the other consists of a "large" star and a number of
A-components. Thus, instead of splitting A-free graphs into disjoint stars, we split them
into disjoint subgraphs, each containing a star large enough to guarantee the existence
of a dividing partition.

The following two lemmas take care of the base case, that is, graphs that consist of
stars possibly with some A-graphs. The processor counts given in these lemmas depend
on the assumption that A-graphs are represented by a list of the vertices in each block
and a list of the blocks to which each cut vertex belongs.

LEMMA 2. Every connected A-graph G with n vertices and m edges has a partition
(A, A’) that cuts >= m/2 + n/4 1/4 edges such that AI / 1 A’I. Such a partition
can be constructed in O(logn) time on an EREW PRAM with O(n/ log n)processors,
provided that the decomposition tree is given.

Proof. If G is an odd clique, then choosing A to be any [n/2J of the vertices gives the
desired partition. If G has two or more blocks, the situation is more complicated. First,
we partition each block b independently so that one part contains llbl/2/vertices and
the other contains [lbl/2 ] vertices. Moreover, we ensure that the parent of b is in the
larger part. Next, we use the Eulerian tour technique [20] to combine these partitions
into a single partition of the required size. To do this, we give each edge in the decom-
position tree between a block and its parent a weight of zero. Consider an edge e in the
decomposition tree between a cut vertex v and its parent, a block b. Then b’s parent will
be a cut vertex u. If, in the partition of b, u and v are in the same part, then the edge e
has weight zero; otherwise, it has weight one. (If the root of the decomposition tree is
a block c, then one of the vertices in c is chosen arbitrarily to act as the parent of c in
the determination of the weights of the edges between c and its children.) To determine
in which part each cut vertex v is, we calculate, using the Eulerian tour technique, the
weighted length of the path from the root of the decomposition tree to v. If this length is
even, v is in A; otherwise, it is in A’. The noncut vertices are assigned to the parts so that
the partition of each block is respected. It is easy to prove by induction on the structure
of the decomposition tree that this is the desired partition. [3

LEMMA 3. Let G be formed by taking the union ofa star S with s vertices and d A-
components andpossibly adding edgesfrom vertices in the A-components to the center ofS.
Then, if s 2 > d, G has a dividingpartition. Furthermore, this partition can be found in
O(log n) time on an EREW PRAM with O(n/ log n)processors, provided that the blocks
ofthe A-graphs are given.

Proof. To find a dividing partition of G, we partition each A-component, as above,
and then rename the parts, if necessary, so that the larger part is A’. If G contains

3We omit this proof here.
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d A-components with the total of m’ edges and n’ vertices, then the partition cuts
>__ m’/2 + n’/4 d/4 edges belonging to the blocks. We then place the center of the
star in A or A’ so as to cut at least half of the edges between the center of the star
and the A-components. We place [(d + 3s 2)/4 vertices other than the center into
the part that does not contain the center; the remaining vertices of the star are placed
to minimize the disbalance of the partition. Obviously, we can produce such a par-
tition only if [(d + 3s- 2)/4 ] __< s 1; this inequality is equivalent to the condition
s- 2 > d. [:]

From the proofs of the lemmas, we can easily extract a procedure for building a di-
viding partition of a graph described in Lemma 3. We call this procedure ,PARTITION.
Now we are ready to see how DIVIDE works. Given a A-free graph G, DIVIDE either
produces a A-free partition or a partition (A, A’) such that A is A-free and A’ satisfies
the assumptions of Lemma 3. Note that DIVIDE can treat each connected component
ofG separately; thus we can assume, without loss of generality, that G is connected. The
procedure DIVIDE comprises the following four steps.

Step 1. Either find an induced star S with at least n/3 vertices such that G S has
at most one isolated vertex, or create a partition (A, A’) such that A and A’ each contain
at least n/3 vertices, G[A’] is connected, and G[A] contains no isolated vertices. If the
star is found, do Step 2; otherwise do Steps 3 and 4.

Step 2. Put S and all of the A-components of G S into A. Put the rest of the
graph into A. Return (A, A’).

Step . Move one vertex from each A-component of G[A] to G[A’]. Choose the
vertices to be moved so that G[A’] stays connected.

Step 4. If G[A’] is a A-graph, move between one and three vertices from A’ to A, so
that the resulting partition is A-free. Return (A, A’).

Step is fairly straightforward, but the other steps need to be explained in more
detail.

Explanation ofStep 1. DIVIDE starts by finding a rooted spanning tree T of G and
a vertex v with at least 2n/3 descendants, none ofwhich have 2n/3 or more descendants.
Next, it rearranges T so that v is the root. It does this by reversing the direction of all
the parent-child links between v and the root. That is, it makes v’s parent its child, its
grandparent its grandchild, and so on. Let D V- {v} be the set ofproper descendants
of v. Then DIVIDE finds the connected components of G[D] and counts the number of
isolated vertices among them. If there are n/3 or more isolated vertices in G[D], then
v is the center of a big star S, and the isolated vertices of G[D] are the other vertices
of S. Alternatively, suppose that there are fewer than n/3 isolated vertices in G[D]. In
this case, DIVIDE looks for a A-free partition (A, A’) of G. There are several subcases,
depending on the sizes of the connected components of G[D].

If G[D] has a connected component C with at least n/3 and at most 2n/3 vertices,
then DIVIDE returns (C, G C).

Suppose that every connected component of G[D] has less than n/3 vertices. In this
case, DIVIDE makes a list of connected components of G[D] that contain two or more
vertices. Then, it calculates the minimum k so that the total size of the first k connected
components in this list is at least n/3. These components become the set A, and the rest
of the graph becomes A’. DIVIDE returns the partition (A, A’).

Finally, if G[D] has a connected component C with more than 2n/3 vertices, it
chooses A to be a subset of C. To construct this subset, it finds all the children of v
that are in C and puts them in a list so that the children that are leaves of the span-
ning tree T of G are at the end of the list. If one of these children has at least n/3
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descendants, that child and its descendants become A, and the rest of the graph be-
comes A’. Otherwise, DIVIDE calculates the minimum k so that the subtrees rooted at
the first k children ofv together contain at least n/3 vertices. Let D’ be the set ofvertices
of these subtrees. If G[D’] has no isolated vertices, DIVIDE returns (D’, G D’). If
G[D’] contains isolated vertices, then the subtrees that were not included in D’ all con-
sist of a single vertex. Thus, DIVIDE can add a subtree adjacent (in G[D]) to all of the
isolated vertices of G[D’], while ensuring that ID’I _-< 2n/3.

Explanation of Step 2. The hardest part of Step 2 is finding the A-components of
G S. The connected components are found using the Cole-Vishkin algorithm. In 4
we will see how to determine if a connected graph H is a A-graph in O(log n) time on a
CRCW PRAM with O((n + m)a(m, n)/ log n) processors.4

Explanation ofStep 4. The input to this step is a partition (A, A’) with G[A] A-free,
G[A’] connected, and each part containing at least 2n/9 vertices. If G[A’] is a A-graph,
Step 4 constructs the desired partition by transferring between one and three vertices
from A’ to A. (If G[A’] is not a A-graph, Step 4 is not executed.) Step 4 comprises
twelve substeps. Below, we describe these substeps and then prove their correctness. In
4, we show that Step 4 can indeed be executed on O((n + m)a(m, n)/ log n) processors
in O(log n) time.

Substep 4.1. Find the connected components of G[A] and the blocks of G[A] and

Substep 4.2. If one of the connected components of G[A] is not a near A-graph,
then find a vertex z E A’ adjacent to this connected component and transfer z from
A’ to A.

Substep 4.3. Else, if there is a vertex z A’ that is adjacent to a vertex v A that is
not in an even clique, then transfer z from A’ to A.

Substep 4.4. (If Step 4 gets to this point, each connected component of G[A] must be
a near A-graph. Moreover, all vertices in A that are adjacent to a vertex in A are in even
blocks of G[A].) Else, find a block B of the original graph G that is not an odd clique.

Substep 4.5. If B contains no vertices from A’, find a vertex z A’ that is adjacent
to the connected component of G[A] that contains B and transfer it to A.

Substep 4.6. Else, if B contains exactly one vertex z from A’, transfer z from
A’ to A.

Substep 4.7. Else, if B contains two vertices that are not in the same block of G[A’],
then find such two vertices z and such that no block of G[A’] contains both of them and
there is a block of G[A] containing vertices adjacent to z and y; transfer z and /from A’
to A. (At this point, every connected component of G[A] containing vertices in B must be
adjacent to two or more vertices in A; so z and 1 exist.)

Substep 4.8. (IfStep 4 gets to this point, C’ 13 fq A’ is a single block of G[A’].) Else,
if IB AI 1, then find v B A and z B A’, such that (v, z) is an edge, and
transfer z from A’ to A.

Substep 4.9. Let C’ A’ fq B. If B N A contains vertices only from a single block
of G[A] and IB AI > 1, then find three vertices z, , z C’ such that z and are each
adjacent to some vertex in B fq A and z is not adjacent to all vertices in B f A. Transfer
the vertices z, /, and z from A’ to A. (At thispoint, the vertex z exists, since B contains an
odd number ofvertices; so it is not a clique.)

4The obvious algorithm would be to find the blocks of H and then check if they are odd cliques by seeing
whether the vertices have the "right" degrees. This algorithm does not workwith the resources stated because
there does not seem to be any way to produce, for each vertex, a list that contains exactly once each block to
which this vertex belongs (see 4).
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Substep 4.10. (If Step 4 gets to this point, B contains vertices from multiple blocks of
A.) Else, if every vertex of C" B fq A’ is adjacent to every vertex of B fq A, then take
any three vertices in C’ and move them in A.

Substep 4.11. Else, find a vertex z E (7’ and an even block Co, (Co fq B 0) such
that z is not adjacent to all vertices in Co. If Co fq B consists of one vertex u only, then
let y and z be any two vertices in (7’ adjacent to u. Move z, y, and z from A’ to A.

Substep 4.12. Let g, z C’ be vertices adjacent to some vertex in Co. If g or z is z,
replace z with some vertex (other than y or z) in C". Move z, y, and z from A’ to A.

The next three lemmas prove the correctness of Step 4; the first two are quite obvi-
ous, so we omit their proofs. For all the lemmas, partition (A, A’) satisfies the conditions
of the input to Step 4.

LEMMA 4. Moving any odd number ofverticesfrom some block of A’ to A or moving
any two nonadjacent verticesfrom A’ to A makes G[A’] a A-free graph.

LEMMA 5. If, for some set R, G[R] tAx is a A-graph, then every component ofG[R] is
a near A-graph.

LEMMA 6. Step 4produces a newpartition (A, A’) for which both G[A] and G[A’] are

A-free.
Proof. Since G is connected, every component C of G[A] contains vertices adjacent

to some vertices in A’; therefore Substep 4.2 can indeed find a required vertex x E A’.
By Lemma 4, moving x into A makes G[A’] A-free, and, by Lemma 5, it does not create
A-components in G[A], provided that the premise of Substep 4.2 or Substep 4.3 holds.
Thus, if the algorithm does not halt after completion of Substep 4.3, then (a) every com-
ponent of G[A] is a near A-graph; and (b) for every edge (u, x) with u A and x A’,
u belongs to an even block.

The analysis of Substeps 4.5 and 4.6 is also simple. If IB A’[ 0, then B is the
even block of one of the components of G[A], a vertex x can be found, and moving it to
A makes G[A’] A-free. Furthermore, moving x to A does not create a A-component in
G[A], since x can only be adjacent to one vertex in B, say u, which implies that x and u
make an even block in G[A]. Similarly, if IB A’I 1, then Step 4 halts after execution
of Substep 4.6 (Lemma 4 and the fact that/3 is not an odd block). Let us now assume
that the premise of Substep 4.7 holds. We first prove that B contains two vertices, x and
y, that are not in the same block of G[A’], but are adjacent to vertices of the same block
of G[A]. Indeed, otherwise for every even block B of G[A], all vertices in A’ adjacent
to B belong to the same block of G[A’], implying that every cut vertex of G[A’] is also a
cut vertex of G. Obviously, this implication is eliminated by the premise of Substep 4.7.

If Step 4 does not halt after Substep 4.7, then, in addition to (a) and (b), the partition
satisfies two more conditions, as follows: (c) the intersection B fq A’ is a single block C’
of G[A’], and (d) for every even block C of G[A], B N CI O, or 1, or ICI.

Both properties follow from the following fact, which we already used: If a vertex is
adjacent to two vertices in a block, then it is itself in the block.

If v is the only vertex of B fq A (Substep 4.8), then moving to A any x B fq A’
adjacent to v completes Step 4. Indeed, since B is a block of G, v must be the only
vertex in A f3 B adjacent to x.

Let us now assume that Step 4 does not halt after Substep 4.8, and the premise of
Substep 4.9 holds. Since B is not an odd clique, it is obvious that the required three
vertices exist, and their transferring to A yields a A-free partition.

If Substep 4.10 is executed, G[A’] becomes A-free by Lemma 4, and G[A] is A-free
since the vertices from different even blocks are not adjacent to each other.
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Finally, reasoning similar to the above proves that, if Step 4 attempts Substep 4.11,
then the resulting G[A] and G[A’] are A-free. [3

Now we are ready to prove that the procedure DIVIDE produces the required par-
tition efficiently.

THEOREM 1. If G has n vertices and n > 27, then DIVIDEfinds a A-free partition
ofG such that each part has at least 2n/9 vertices or DIVIDEfinds a partition where one
part satisfies the requirements ofLemma 3 and the other is A-free and has at most 2n/3
vertices. Furthermore, DIVIDEfinds this partition in O(log n) time on a CRCW PRAM
with O((n + m)a(m, n)/ log n) processors.

Proof. First, let us see that DIVIDE produces an acceptable partition. If Step 2 is
executed, G S contains at most [2n/91 + 1 A-components, since G S contains at
most 2n/3 vertices and at most one of the A-components of G S has fewer than three
vertices. Therefore, A’ satisfies the requirements of Lemma 3.

If Steps 3 and 4 are executed, then after Step 3, A contains at least 2n/9 vertices,
since each A-component of G[A] has at least three vertices, and IAI _>- n/3. Further-
more, G[A] is A-free, and G[A’] is connected. Thus, Step 4 produces a A-free partition.
Therefore, DIVIDE produces an acceptable partition.

Steps 3 and 4 can be done in O(log n) time on a CRCWPRAMwith O((n+m)/ log n)
processors. Therefore, DIVIDE finds an acceptable partition in O(logn) time using
O((n + m)a(m, n)/ log n) processors in the CRCW model. ]

Finally, we describe the algorithm PARTITION, which delivers a dividing partition
for every A-free graph:

function PARTITION(G);
begin

DIVIDE(G, G, Gz);
/* G and Gz are the resulting parts and G is a

A-free graph */
(A, A]) PARTITION(G);
if G2 is not A-free, then

(A2, A) +--- .PARTITION (G2)
else (A2, A) PARTITION(G2);
p (A A2,A tO A); a +---(A tO A’2, A A2);
return p or a, whichever is bigger;

end;

The correctness of PARTITION follows from Lemmas 1-6. Putting them together
with Theorem 1, we obtain the following result.

THEOREM 2. A dividingpartition can befound in O(log2 n) time on a CRCWPRAM
with O((m + n)a(m, n)/log n) processors.

3. Applications. The algorithm that finds a dividing partition can be used to find an
independent set of a graph G with n vertices and m edges that contains at least n2/(2m+
n) vertices. It turns out that, if (G1, G2) is a dividing partition of G, then one of the parts
has an independent set of the necessary size. If, however, G has a A-component, then
G may not have a dividing partition. Thus, IND, an algorithm that finds an independent
set of Turfin’s size, must treat A-components as a special case. The treatment is based
on the following.

LEMMA 7. Let G be a A-graph and let I contain one noncut vertexfrom each block
that has one. Also, let G’ be the result ofdeleting I and its neighborhoodfrom G. Then
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the number ofvertices of G’, satisfies n’ <= n/3. Furthermore, if I’ is an independent set of
G’ such that

2ra’ + n’

where m’ is the number ofedges of G’, then I t_J I’ is an independent set ofG such that

n2

Ix x’l > 2re+n"

Proof. If G is a single clique, the lemma is obvious. Alternatively, let us assume that
G has at least two blocks.

To prove that n’ <= n/3, we consider the decomposition tree of (7. Note that any
vertex in a block containing a noncut vertex will not be in G’. Let b be the number of
blocks containing a noncut vertex. Since each block ofG has at least three vertices, there
are at least 2b + 1 vertices of G that are not in G’. Allocate each cut vertex to one of its
children in the decomposition tree. Then each block has at most one cut vertex allocated
to it. Each block that contains only cut vertices has at least two children. Therefore, there
are at most b vertices in blocks containing only cut vertices and at most b vertices in G’.
Thus, G’ has at most n/3 vertices.

Since I contains only noncut vertices and at most one vertex from each block, I is
independent. Furthermore, since G’ contains no neighbors of I, I t_J I’ is independent.

It remains to estimate the size of I U 1’. Suppose that one vertex of I and its neigh-
borhood is deleted, leaving G" with n" vertices and m" edges. It is enough to show
that

n2

<_1/
2m + n 2m" -+- n"

The following computation that appeared in [9] does this. Suppose that the vertex to be
deleted has degree d. Then all of its neighbors have degrees of at least d, so n" n-d- 1
and m" <= m d(d / 1)/2. Note that

n’’2 (n d- 1)2
1+ _>1+

( d(dq-1) )2m’+n" 2 m- 2 +n-d-1

(n d- 1)2
1 + 2m- (d+ 1)2 +n

2m + n + n2 2n(d + 1)
2m + n- (d+ 1)2

Now let us consider

1+
tt2 n2

2m" + n" 2m + n



452 MARKGOLDBERG AND THOMAS SPENCER

Simplifying, we see that

7//2 n2

2m + n 2m + n

2m + n + n2 2n(d + 1) n2

2m+ n- (d+ 1)2 2m+ n

(2m + n)2 2n(d + 1)(2m + n) + n2(d + 1)2

(2m + n)(2m + n- (d + 1)2)

(2m + n n(d + 1))2

(2m + n)(2m + n (d + 1)2)

This completes the proof. [3

To find a large independent set of a A-graph, IND computes I and G’, as suggested
in Lemma 7. If G’ is empty, I is the desired set. If G’ is a A-graph, IND repeats the
process. Finally, if G’ is neither an empty nor a A-graph, IND calls itself recursively to
find I’.

The algorithm IND, given below, implements this idea:

function IND G)
begin
JO;
for each connected component D of G do begin

if D is a A-component do begin
while D is a nonempty A-graph do begin

I one noncut vertex from each block of D that has one;
J -- Jt_JI;
Delete J and the neighborhood of J from D;
end;

J +-- JU IND(D);
/* J is a big independent set of the A-components */

end;
else/* D is not a A-component */

Delete the A-components of G;
if G is empty then I’ :=
else begin

(G1, G2) a dividing partition of G;
ni the number of vertices of Gi (i 1, 2);
mi -- the number of edges of Gi (i 1, 2);
if + => + n:)

then I’ := IND(G1)
else I’ := IND(G2); end

return J U Y;
end;
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THEOREM 3. Theprocedure INDfinds an independent set ofsize >= n2/(2m / n) of
a graph G with n vertices and m edges in O(log3 n) time on a CRCW PRAM with O((n +
m)a(m, n)/ log2 nprocessors.

Proof. The first thing to note is that IND can afford to treat the A-components
separately, since, if n + nz n and m + mz m, then

[nl(2mi + nl)l + + n )l _-> +
It remains to be seen that IND finds an independent set of Tunin’s size on the A-

free part of the graph. Suppose that this part has n vertices and m edges and that G1
(G2) has nl (n2) vertices and ml (m2) edges. Since (G, Gz) is a dividing partition,
n + nz n and ml +m <= m m/2 n/4. By induction, IND returns a set of size at
least max(n/(2m + nX), n22/(2m2 -- n2)). Thus, if IND does not return a big enough
set, then

2 2
< (i 1,2),

2mi + ni 2m + n’

so

(2m + n)n < (2mi + ni)n.
Adding the previous inequalities for i i and i 2 together, we obtain

(2m + n)(n + n) < (2ml + nl + 2m2 + n2)n2.

Since the partition is dividing, we have

(2m + n)(n + n22) < (2(m + m2) + n)n2

m n n) n2

n

This is equivalent to

2(n + n2) < (nl + n2)2, so (hi n2)2 < O,

which is impossible. Thus, IND returns a big enough independent set.
The most time-consuming part ofIND is finding a dividing partition of G. Recall that

PARTITION runs in O(log n) time, so IND runs in O(log3 n) time, since each recursive
call is made on a graph with at most 4/5 as many vertices and at most half as many
edges as the original graph. Furthermore, since there is only one recursive call, the
technique of Brent [4] can be used to reduce the processor count by a factor of log n, to
O((n + m)o(m, n)/ log2 n). [3

The other application of PARTITION is finding a light coloring. The algorithm
follows the same outline as IND, except that both parts of the partition need to be
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considered. To combine the colorings, we require that each part use different colors. It
turns out that this gives a light coloring.

procedure COLOR(G);
begin

for each connected component (7 of G begin
if C is an isolated vertex then color it 1
else begin

if (7 is a A-graph then *PARTITION(G, G1,
else PARTITION(G, G1, G2)

/*(G, G2) the resulting partition of C;*/
COLOR(G1); COLOR(G);
c - the number of colors used for G;
increase by c every color used for;
compute the sizes of the color classes of the

resulting coloring of C and sort them in
nonincreasing order;

renumber the color classes according to the new
order;

end;
end;

end;

Note that the partitions of the connected components C into G and G2 eliminate
at least half of the edges. Furthermore, since isolated vertices are part of the base case,
we can assume that n <= 2m. Thus, at each level of the recursion, the total problem size
(n + m) decreases by a constant fraction, so the same analysis as for IND shows that
COLOR runs in O(log3 n) time on a CRCW PRAM with O((n + m)c(m, n)/log2 n)
processors. It is less obvious that COLOR finds a light coloring.

THEOREM 4. Theprocedure COLORfinds a light coloring.
Proof. The proof is by induction on the progress of the algorithm. If G is an isolated

vertex, COLOR produces a light coloring. Note that, if two graphs have light colorings,
these light colorings combine in the obvious way to form a light coloring of their union.
Therefore, we can assume, without loss of generality, that G has a single connected com-
ponent.

Let n, n, and n2 be the number of vertices of G, G, and G2, respectively, and let
m, m, and m be the number of edges of G, G1, and Gz, respectively. If (G, Gz) is a
dividing partition, n +n2 n and m-m/2-n/4 >= m+m2, so m/2 >= m+m+n/2.
Alternatively, if C is a A-graph, then m m/2 n/4 + 1/4 ml + m2, so m/2
ml + m2 + n/2 1/2. Note that A-graphs have an odd number of vertices, so, in either
event, m => ml + m2 + [n/2J.

By induction, COLOR produces light colorings for G and G2. Let W be the sum
of the weights of these colorings. Then it is enough to prove that C, the coloring that
COLOR produces, has weight at most 2W n/2 . To prove this, we give each vertex
a sequence number. The sequence numbers are chosen so that the sequence numbers
assigned to each color class C of C are 1, 2,..., pc. Let Ak be the set of vertices with
sequence number k and let be the number of such vertices. Then, the total weight
assigned to Ak is l(1 1)/2. Suppose that the ll of these vertices came from G1, so l
came from G2. Then the total weight assigned to Ale by the colorings of G1 and G2 is
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Wk 11 11 1 /2+ (1 11 11 1 /2. Ifwe think ofWk as a function of 11, its minimum
value occurswhen/ 1/2. Thus, W >= 2(l/2)(l/2-1)/2 l(1-2)/4 1(1-1)/4-1/4.
Therefore, the total weight assigned to A by C is at most 2Wk 1/2. Summing over the
sequence numbers, we see that the weight ofC is at most 2W n/2. Since the weight of
C is an integer, it is also at most 2W In/2 ]. [3

4. Implementation details. A graph is represented by an array of vertices and an
array of edges. The number of a vertex is its position in the vertex array. Each vertex v
has a pointer into the array of edges showing where the list of edges incident to v starts.

The most expensive part of the whole computation is finding spanning trees, the
connected components, and blocks of graphs. These steps are done in O(log n) time on
a CRCW PRAM with O((m+ n)a(m, n)/ log n) processors by using the CTV-algorithm
appropriately modified for our purposes. It is not hard to see how to do the other steps
in O(log n) time on a PRAM with O(n + m) processors, by the liberal use of a sort-
ing routine. However, it is not obvious how the processor count can be reduced to
O((m + n)/log n). The necessary techniques based on the parallel prefix computation
are described here.

Often, IND and COLOR need to compute G[A] for various A c V. For example,
after DIVIDE finds a A-free partition (A, A’), it calculates G[A] and G[A’]. To do this,
it is enough to renumber the vertices of the original graph G so that the vertices in A
and the vertices in A’ have consecutive numbers. With a parallel prefix computation,
each vertex in A can compute the number of vertices in A with a lower original number;
this will be the vertex’s new number. Similarly, each vertex in A’ can compute its new
number. Since an n-element parallel prefix computation can be done in O(log n) time on
an EREW PRAM with O(n/log n) processors [15], the computation of G[A] and G[A’]
is not an important contribution to the overall running time of DIVIDE.

Note that the technique described above works so that the algorithm runs in O(log n)
time and uses O(n/log n) processors onlywhen it divides the graph into a bounded num-
ber of pieces. Thus, when a routine divides a graph into its connected components, it
needs to use a different technique.

LEMMA 8. Given a graph G and rooted spanning trees ofeach connected component
of G, it is possible to renumber the vertices ofG so that each connected component consists
of consecutively numbered vertices, in O(log n) time on an EREW PRAM with O((n +
m)/ log n) processors.

Proof. Consider the routine RENUMBER that does the renumbering described
above. Using the Eulerian tour technique [18], RENUMBER computes the number of
vertices in each connected component. Then, it assigns to the root of each spanning tree
the number of vertices in its connected component and to each other vertex the value
zero. A parallel prefix computation determines the range of new numbers for each ver-
tex. Actually, assigning the new vertex numbers and rearranging the edges lists can be
done with an application of the Eulerian tour technique and some parallel prefix com-
putations. The parallel prefix and Eulerian tour computations can be done in O(log
time on an EREW PRAM with O(n/log n) processors [18], [15], [6].

Some procedures, including DIVIDE, need to be able to identify A- and near A-
graphs. It is done by finding the blocks of the graph in question. Unfortunately, the
straightforward use of the CTV-algorithm is not always helpful, since its output must
be in a different form. Effectively, the CTV-algorithm returns a list of the edges in
each block, while DIVIDE and the other procedures need a data structure based on
the decomposition tree; we call it the decomposition tree data structure. In addition to
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the decomposition tree, this data structure includes the information showing, for every
noncut vertex, the block it belongs to and pointers in both directions between every cut
vertex and corresponding node in the decomposition tree. Furthermore, every block
node contains a list of the noncut vertices that belong to that block.6

LEMMA 9. Given a connected graph G, a spanning tree T of G, and the name ofthe
block that each edge belongs to, it is possible to build the decomposition tree data structure
in O(log n) time on an EREW PRAM with O((n + m)/ log n) processors.

Proof. Consider the procedure BUILD_TREE that creates the decomposition tree.
First, BUILD_TREE consults the adjacency list of each vertex v to see if all the edges
incident to v are in the same block. If they are, v is not a cut vertex; otherwise, v is a cut
vertex. The parent of the node corresponding to a cut vertex v is the block containing the
edge from v to its parent in T. If v is the root ofT, then the node corresponding to v is the
root of the decomposition tree. To find the parents of the block nodes, BUILD_TREE
forms a list of the tree edges in each block. For each block B, it then finds the endpoint
v of these edges that is highest (closest to the root) in the spanning tree T. The cut node
corresponding to v is the parent of B, unless v is not a cut vertex and is the root of T. In
this case, B is the root ofthe decomposition tree. Recall that every edge ofT has a parent
endpoint and a child endpoint. To find the children of a block node/3, BUILD_TREE
makes a list of the child endpoints ofthe tree edges in B. The child endpoints that are cut
vertices correspond to the children of/3 in the decomposition tree. The child endpoints
that are not cut vertices are the noncut vertices in/3. All of these computations can be
done in O(log n) time on an EREW PRAM with O((n + m)/ log n) processors. D

Now we show how to determine if a graph is a A-graph or a near A-graph.
LEMMA 10. Given the decomposition tree data structure, an EREW PRAM with

O((m + n)/ log n) processors can determine if a connected graph G is a A-graph, a near
A-graph, or neither in O(log n) time.

Proof. We describe the procedure IS_DELTA that determines if a connected graph
is a A-graph.7 First, IS_DELTA determines the number of vertices in each block B by
computing the number of noncut vertices in/3 and the number of cut nodes adjacent to
/3 in the decomposition tree. If one of the blocks has an even number of vertices, then
G is not a A-graph; otherwise, it might be one.

At this point, IS_DELTA needs to determine if every block is a clique. Let [B be the
number of vertices in a block/3. To determine if a block/3 is a clique, IS_DELTA first
computes the degree of each noncut vertex in B. If one or more of these vertices has a
degree that is not IB[- 1, then B is not a clique, and IS_DELTA returns "no." Otherwise,
IS_DELTA considers the edges incident to the cut vertices corresponding to the children
of B in the decomposition tree and activates some of them. An edge (u, v) incident to a
cut vertex u is activated if v is a noncut vertex in B or if v is a cut vertex and the father
of the corresponding node in the decomposition tree is B. The edges of the form (u, w),
where u corresponds to a child of/3 and where w corresponds to the father of B, are also
activated. (If B is the root of the decomposition tree, there are no edges of this form.)
If, for all the vertices u corresponding to children of B, the number of activated edges is
IB[ 1, then B is a clique; otherwise, it is not. All of these computations can be done
with the resources allowed. D

5We will use the term node to refer a vertex in the decomposition tree; the term vertex refers to a vertex in
G or a subgraph of G.

6Obviously, the list of children of a block node can contain duplicates. This is a misfeature of the data
structure and complicates its use, but there does not seem to be any way to eliminate the duplicates without
using too many resources.

7The procedure for determining if a graph is a near A-graph is similar and is omitted.
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The techniques described above are enough to show that Step I can be implemented
efficiently.

LEMMA 11. Step 1 can be done in O(log n) time on a CRCW PRAM with O((n +
m)c(m, n)/log n) processors.

Proof. The running time and processor count of the first step, and of the whole pro-
cedure, is dominated by the resources required to find the spanning tree T ofG. This can
be done in O(log n) time on a CRCWPRAM with O((m + n)tx(m, n)/ log n) processors
[5]. The number of descendants of each vertex in the spanning tree T can be found in
O(log n) time on an EREWPRAMwith O(n/log n) processors [18]. Given this informa-
tion, v (which must be unique) can be found easily. Finding the connected components
of G[D] requires another application of the spanning tree algorithm. If the largest con-
nected component of G[D] has fewer than n/3 vertices, then the connected components
that DIVIDE assigns to A can be identified by a parallel prefix computation. This com-
putation can be done in O(log n) time on an EREWPRAM with O(n/log n) processors
[18], [15]. If the largest connected component of G[D] has between n/3 and 2n/3 ver-
tices, the partition can be found in O(1) steps. Finally, if there is a connected component
of G[D] with more than 2n/3 vertices, DIVIDE finds the portion of this component that
it puts in A with a parallel prefix computation and a connected components computa-
tion. This is done in O(log n) time on a CRCW PRAM with O((m + n)c(m, n) / log n)
processors. [3

The last difficult step is Step 4.
LEMMA 12. Step 4 can be done in O(log n) time on a CRCW PRAM with O((n +

m)a(m, n)/ log n) processors.
Proof. Substep 4.1 can be done with the resources stated by the CTV-algorithm. The

only other difficult substeps are Substeps 4.7, 4.9, and 4.11.
To do Substep 4.7, DIVIDE first calculates the blocks of G[A N B]. Then, for each

block B, it finds L, the list of vertices in A’ adjacent to B. Note that a vertex A’
can appear in several of the Li and even several times in the same Li. However, the total
length of the L is at most m.

The procedure processes each L in parallel; it looks for vertices z and /in L that
are not part of the same block. First, it determines if any of the vertices in the list are
not cut vertices of G[A’]. If there is a vertex z E A’ N B that is not a cut vertex, DIVIDE
finds the block C" of G[A’] containing z. Next, it looks for a vertex l B f A’ that is not
in C". If such a vertex exists, DIVIDE returns z and /; otherwise, the desired vertices
do not exist.

Alternatively, all vertices in B fq A’ are cut vertices. Given a vertex v B A’,
let P(v) be the parent of the node in the decomposition tree corresponding to v; if v is
the root of the decomposition tree, let P(v) be null. DIVIDE calculates P(v) for each
vertex in B fq A’. If all these parent blocks are the same, the desired vertices do not exist.
Otherwise, DIVIDE finds two vertices z and /with different parent blocks. If the node
corresponding to y is an ancestor of the node corresponding to z, DIVIDE switches z
and /. If the node corresponding to z is not the parent of P(/), the parent block of ,
then z and are the desired vertices. Otherwise, DIVIDE looks for a vertex z that is
not in P(). (If z does not exist, the desired vertices do not exist.) If the parent node of
P(z) corresponds to /, then z and z are the desired vertices; otherwise, /and z are.

To do Substep 4.9, DIVIDE creates a list of the vertices in C" that are adjacent to
some vertex in B A. If this list is not all of C’, DIVIDE chooses z and to be the first
two vertices on this list, and it chooses z to be some vertex not on the list. Alternatively,
if all the vertices in C’ are adjacent to some vertex in B A, DIVIDE chooses z to be
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some vertex in C’ not adjacent to all the vertices in B N A, and z and y to be two other
vertices in C’.

Finally, we come to Substep 4.11. To do this, DIVIDE first identifies z by computing
the number of vertices in A fq B adjacent to each vertex in A’ f3 B and choosing x to be
one of the vertices adjacent to fewer than all of them. Once DIVIDE has chosen z, it
can choose (70 to be a block of G[A fq B] containing a vertex not adjacent to z. If there is
a vertex in Co that is adjacent to two or more vertices in C’, DIVIDE chooses that vertex
to be z, it chooses v to be some other vertex in C0 adjacent to some vertex z in C’, and
it chooses y z to be a vertex in C’ adjacent to z. Alternatively, if every vertex in Co is
adjacent to at most one vertex in C’, DIVIDE chooses z and v so that the vertices that
they are adjacent to in C’ are different.

Therefore, DIVIDE executes Step 4 in O(log n) time on a CRCW PRAM with only
O((n + m)a(n, m)/ log n) processors.

Putting this all together, we obtain the following theorem.
THEOREM 5. The procedure DIVIDE requires O(log n) time on a CRCW PRAM

with O((n + m)a(m, n)/ log n) processors.
5. Conclusions. One way to cope with hard problems is to find a solution that is

not necessarily optimal but has a guaranteed quality. We present an efficient parallel
algorithm that finds an independent set of a guaranteed size. It uses, as a subroutine, a
procedure that finds a partition that cuts a guaranteed number of edges. The partition-
ing procedure can also be used to obtain an efficient parallel algorithm to find a light
coloring. The problem of finding a fast parallel algorithm that finds a minimal coloring
remains open, however.

Approaching other combinatorial problems similarly should lead to interesting re-
suits. In parallel, the matching problem may be hard; no deterministic NC-algorithm is
known. Thus, we are led to the question of how big a matching we can be sure of finding
deterministically in NC. If the edges have weights, we can ask a similar question about
the weight of the matching. This question is particularly interesting, since matching is
the bottleneck in Anderson and Aggarwal’s algorithm, which finds a depth-first search
tree of an undirected graph [1]. Therefore, studying algorithms that find big matchings
may lead to a deterministic NC-depth-first search algorithm.

Acknowledgments. The authors thank H. Kierstead, for finding an error in an ear-
lier version of DIVIDE, and the reviewers for several useful comments.
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EFFICIENT DETECTION AND PROTECTION OF INFORMATION
IN CROSS TABULATED TABLES I:

LINEAR INVARIANT TEST*
MING-ANG KAOt AND DAN GUSFIELDt

Abstract. To protect sensitive information in a cross tabulated table, it is a common practice to suppress
some of the cells in the table. A linear combination of suppressed cells is called a linear invariant if the combi-
nation has a unique feasible value. Intuitively, the information contained in an invariant is not protected even
though the values of the suppressed cells are not disclosed. This paper gives a surprisingly efficient algorithm
for testing whether a linear combination of suppressed cells is an invariant. In sequential computation, the
algorithm runs in optimal linear time. In parallel computation, the algorithm runs in polylogarithmic time
using a polynomial number of processors on a parallel random access machine. The algorithm exploits a lin-
ear algebraic structure of directed and undirected cycles in a mixed graph induced by a given table. This new
structure also plays a crucial role in subsequent papers on other aspects of detecting and protecting sensitive
information in a cross tabulated table.

Key words, statistical tables, linear algebra, graph theory, mixed graphs, cycle spaces, strong connectivity,
parallel computation
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1. Introduction. Cross tabulated tables are extremely useful tools for organizing
and exhibiting information. In particular, they are routinely used to report statistical
data. To protect sensitive information in statistical reports, it is a common practice to
suppress the values of certain sensitive cells in a table. There are two fundamental issues
concerning the effectiveness of this practice. The detection issue is to decide whether
an adversary can deduce significant information about the suppressed cells from the
published data of a table. Theprotection issue is to study how a table maker can suppress
a small number of cells in addition to the sensitive ones such that the resulting table does
not leak significant information.

These two issues are of utmost concern to statistical agencies. As is briefly discussed
in Denning [19], the research into these two issues was in fact started by statisticians.
They applied linear programming techniques to various problems and obtained many
helpful computational heuristics [36], [7], [17], [18], [16], [35], [37], [15], [34], [14].

The first algorithmic advance came when Gusfield introduced a graph theoretic ap-
proach and developed several algorithms that are vastly more efficient than linear pro-
gramming techniques [24]-[26]. Chief among those results is an optimal linear-time
sequential algorithm for finding all suppressed cells that have unique feasible values.
Intuitively, these cells are in effect unprotected because their values can be precisely
deduced from the published data.

Kao conducted the first systematic study of the area by introducing a linear alge-
braic approach to complement the graph theoretic one [28]. This paper reports two
fundamental theorems, the Strongly Connected Cycle Space Theorem and the Strongly
Connected Table Basis Theorem, developed for the combined approach of Kao [28]. The
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cycle space theorem characterizes the relationship between the classic Z2 vector spaces
generated by directed and undirected cycles in a strongly connected mixed graph. The
table basis theorem is a variant of the cycle space theorem for Euclidean spaces induced
by feasible assignments to the suppressed cells of a table. These two fundamental the-
orems lay the foundation for the systematic study of Kao on detecting and protecting
sensitive information in a cross tabulated table [28].

This paper demonstrates the usefulness of the above two theorems by using them
to design a surprisingly efficient algorithm for the problem of testing whether a linear
combination of suppressed cells has a unique feasible value. A linear combination of
the suppressed cells is called a linear invariant if it has a unique feasible value. Intu-
itively, the information contained in a linear invariant is not protected even though the
values of the suppressed cells are not disclosed. In sequential computation, the linear
invariant test algorithm runs in optimal linear time. In parallel computation [21], [29],
the algorithm runs in polylogarithmic time using a polynomial number of processors on
a parallel random access machine.

To elaborate on the significance of the linear invariant test algorithm, a few defini-
tions are in order. This paper studies two-dimensional tables that publish the following
three types of data:

the precise values of all cells except a set of sensitive ones, which are suppressed;
an upper bound and a lower bound for each suppressed cell; and
all row sums and column sums of the complete set of cells.

The suppressed cells may have real or integer values. The suppressed cells may
have different bounds, and the bounds may be finite or infinite. The upper bound of a
suppressed cell should be strictly greater than its lower bound; otherwise, the precise
value of that cell is immediately known.

An unbounded feasible assignment to a table is an assignment of values to the sup-
pressed cells such that each row or column adds up to its published sum. A bounded
feasible assignment is an unbounded feasible assignment that also satisfies the bounds of
the suppressed cells.

Formally, a linear invariant is a linear combination of suppressed cells that has the
same value at all bounded feasible assignments. Similarly, an invariant cell is a suppressed
cell that has the same value at all bounded feasible assignments. An invariant cell is in
fact a special case of a linear invariant where the cell in question has coefficient 1 and all
other suppressed cells have coefficients 0 in the linear combination.

Figure 1 provides an example of a complete table. Figure 2 gives a published version
of that complete table. Let Ep,q denote the cell at row p and column q. In the published
table, E6, is an invariant because it is the only suppressed cell in row 6. E2,c and
are invariants for the following reasons. The sum of E2, and E3, is 19, and their values
are between 0 and 9.5. Thus, both cells are forced to have the unique value 9.5.

Let Rp denote the sum of the suppressed cells in row p. Let Cq denote the sum of
the suppressed cells in column q. Then Rp and Cq are clearly linear invariants.

The following linear combination is also an invariant: 2.SEl,a + 1.SE,b + 3.SE2,a +
2.5E2,b + E2,d + 1.5E2,e + 3E2,f + 3E2,g + 4E2,h + 2E2,i + 2E3,d + 2.5E3,e + 2.5E4,$ +
2.5E4,g + 2.5E5,/, + 2.5E5,g + 3.5E5,h + 1.5E5,i. This linear combination is an invari-
ant because it can be expressed as a linear combination of the above-proven invariants:
3Ca + 2Cb + 0.5Cd + Ce + 2.5C + 2.5Cg + 3.5Ch + 1.5C 0.5R1 + 0.5R2 + 1.5R3
0.5E2,c- 1.5E3,- 1.5E6,{.

Formally, the linear invaant test problem is that of testing whether an input linear
combination ofsuppressed cells is a linear invariant. The problem can be solved by linear
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column e f g
index

1 9.5 4.5 1.5 7 1.5 1.5 5.5 2 3 36.0

2 4.5 9.5 9.5 4.5 4.5 9.5 9.5 9.5 4.5 65.5

3 6 1.5 9.5 0 9.5 6 5.5 2 5.5 45.5

4 2 1.5 4 7 1.5 4.5 9.5 5.5 2 37.5

5 1.5 5.5 4 6 5.5 0 0 4.5 9.5 36.5

6 2 3 3 4 6 5.5 2 2 9.5 37.0

FIG. 1. A complete table.

row
column
index

1.5 7 1.5 1.5 5.5 2 3 36.0

65.5

6 1.5 6 5.5 2 5.5 45.5

5

6

2 1.5 4 7 1.5 5.5 2 37.5

1.5 5.5 4 6 5.5 36.5

2 3 3 4 6 5.5 2 2 37.0

Note: Let Ep,, denote the cell at row p and column q. The lower and
upper bounds for all suppressed cells, except E2,c and E3,c, are -x and
+cx. The lower and upper bounds for E2,c and E3, are 0 and 9.5.

FIG. 2. A published table.

programming. The given table is translated into a set of linear constraints such that
each suppressed cell is a variable;
each row or column sum induces an equation; and
the upper and lower bounds of each suppressed cell yield a pair of inequalities.
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To decide whether the given linear combination is a linear invariant, it suffices to treat
the linear combination as an objective function and compute its maximum and minimum
subject to the above constraints. Then the given linear combination is an invariant if and
only if its maximum and minimum are equal. Let n denote the number of rows and
columns. Let m denote the number of suppressed cells. Then there are m variables, n
equations, and 2m inequalities.

In sequential computation, using the best-known algorithm for linear programming
[40], this approach is not even strongly polynomial-time. It actually runs in O((m +
n)’.m.L) time, where L is the maximum number of bits needed to represent the row
and column sums and the bounds of the suppressed cells. In sharp contrast, given the
suppressed cells, their bounds, and a bounded feasible assignment, the linear invariant
test algorithm of this paper runs in optimal O(m + n) time.

In parallel computation [21], [29], linear programming is log-space complete for P
[23], [20] and is unlikely to have efficient parallel algorithms [11]. Again in sharp con-
trast, given the suppressed cells, their bounds, and a bounded feasible assignment, the
linear invariant test algorithm of this paper runs in O(log n) time using M(n) proces-
sors on an exclusive-read exclusive-write parallel random access machine, where M(n)
is the number of arithmetic operations used to multiply two nxn matrices. Currently,
the best known value for M(n) is O(n2"376) [12].

This paper is organized as follows. Section 2 proceeds to discuss the Strongly Con-
nected Cycle Space Theorem. Section 3 describes the linear algebraic and graph the-
oretic approaches. Section 4 states the Strongly Connected Table Basis Theorem and
uses the theorem to solve the linear invariant test problem. Section 5 uses the cycle
space theorem to prove the table basis theorem. Section 6 concludes the paper with a
brief discussion.

2. The Strongly Connected Cycle Space Theorem. The cycle space theorem charac-
terizes the relationship between the classic Z2 vector spaces generated by directed and
undirected cycles in a strongly connected mixed graph. Section 2.1 reviews some basic
facts about mixed graphs. Section 2.2 states the cycle space theorem and discusses its
implications.

The proof of the cycle space theorem uses induction based on depth-first search.
Section 2.3 reviews depth-first search in mixed graphs and proves some technical lemmas
that are needed to prove the theorem. Section 2.4 gives the proof of the theorem.

2.1. Basics of mixed graphs. A mixed graph is one that may contain both directed
and undirected edges. A traversable cycle (or path) of a mixed graph refers to one that
can be traversed along the directions of its edges. A direction-blind cycle (path, tree, or
forest) refers to one that disregards the directions of its edges; the word direction-blind
is often omitted for brevity. A mixed graph is called strongly connected if for each pair of
vertices z and V, there exists a traversable cycle containing both z and V.

An edge-simple cycle (or path) is one where no edge appears more than once. Let 7-/
be a mixed graph with m edges. An edge-simple cycle C’ of 7-/is sometimes regarded as
a vector cz in the vector space Z, the m-fold Cartesian product of Z2. Each edge e 7-/
corresponds to a dimension in Z, and the component of cz at the dimension of e is 1 if
and only if e is in C.

Based on the above convention, the rood 2 sum of two edge-simple cycles is the set
of edges that appear in exactly one of the two given cycles [6]. Note that the mod 2 sum
of two edge-simple direction-blind cycles always results in an edge-disjoint set of edge-
simple direction-blind cycles. However, the mod 2 sum of two edge-simple traversable
cycles may or may not be an edge-disjoint set of traversable cycles.
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Let T be a direction-blind spanning forest of 7-/with a spanning tree in each con-
nected component. For each nontree edge e E 7-/, let B(e) be the cycle formed by e and
the direction-blind tree path of T between the two endpoints of e. The cycles B(e) are
called thefundamental cycles of 7-/with respect to T [6].

The direction-blind cycle space of 7-/, denoted by CS(TI), is the Z2 vector space that
consists of the mod 2 sums of edge-simple direction-blind cycles in 7-/. The traversable
cycle space of 7-/, denoted by TCS(7-I), is the Z2 vector space that consists of the mod 2
sums of edge-simple traversable cycles in 7-/. Note that TCS(7-I) is a subspace of CS(7-I).

The following classic fact is extremely useful.
FACT 2.1 (Folklore [6]). Let f be the set ofall B(e). Then, f is a basis of
Remark. Let 7-l’ be a subgraph of 7-/. Let C be a vector in CS(7-I’). Note that (7 can

be regarded as a vector in CS(7-I) by assigning 0 to the edges that are in 7-/but not in 7-/’.
This embedding also applies to the traversable cycle spaces of 7-/’ and 7/.

2.2. CS versus TCS. This section states the cycle space theorem and discusses its
implications. The proof of the theorem is given in 2.3 and 2.4.

THEOREM 2.2 (The Strongly Connected Cycle Space Theorem). Let 7-I be a mixed
graph. If TI is strongly connected, then TCS(TI) CS(7-I).

The above theorem immediately implies several interesting nontrivial facts. Two
instances are mentioned here.

COROLLARY 2.3. If 7-I is strongly connected, then CS(TI) has a basis consisting of
traversable cycles.

COROLLARY 2.4. If 7-I is strongly connected, then a basis of CS(TI) is also a basis of
TCS(7-I), even if that basis contains nontraversable cycles.

The above theorem has two useful equivalent forms that are stated in the following
two theorems.

THEOREM 2.5. Let TI be a mixed graph. Ifevery connected component ofTI is strongly
connected, then TCS(7) CS(7-l).

Proof. Let 7-l,..., 7-lk be the subgraphs of 7-/induced by its connected components.
By definition, each vector of CS(7-l) is the sum of some edge-simple direction-blind cy-
cles in 7-/. Because a cycle can appear in only one connected component, each vector
of CS(7-l) is the sum of some vectors from CS(7-I),..., CS(7-lk). Therefore, CS(Tt)

k-= CS(7). On the other hand, because each 7-/i is a subgraph of 7-/, clearly CS(7-l) D_
k ki--1 i--1’i=1 CS(i). Thus, CS() CS(i), Similarly, TCS(7) -]k TCS(7-I).

Next, by Theorem 2.2, for all 7-/, TCS(7-l) CS(7-l) because 7-/ is strongly connected.
Consequently, TCS(Tt) -k= TCS(Tt) k

THEOREM 2.6. Let 7-I be a mixed graph. Let X be the set ofedges in 7-I that are not in
any strongly connected components ofTl. Then, TCS(7-I) CS(7-I X).

Proof. First, TCS(7-l) TCS(7-I X) because a traversable cycle of 7-/cannot
contain any edges fromX and because TCS(7-I) is generated by traversable cycles. Next,
from Theorem 2.5, TCS(7-l X) CS(7-l X) because every connected component
of 7/- X is strongly connected. Thus, TCS(7-I) CS(7-I X).

2.3. Depth-first search and technical lemmas. The proof of the cycle space theo-
rem uses induction on orders derived from the postorder numbering of depth-first search
trees. Both depth-first search and the postorder numbering of ordered trees are ex-
tremely useful in computational graph theory. Their definitions and a detailed discus-
sion can be found in standard textbooks on algorithms [3], [27], [4], [13], [38]. This
section reviews key facts about these concepts and proves two technical lemmas needed
for the proof of the cycle space theorem.
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Let 7-( be a strongly connected mixed graph.
FACT 2.7. Conducting depth-first search in 7-( produces a spanning tree where all the

vertices are reachablefrom the root via traversablepaths.
Let T be a spanning tree of 7-t induced by depth-first search. T is considered an or-

dered tree: for each vertex, the tree edges connecting z and its children in T are arranged
in the order of visit by depth-first search.

The induction proof of the cycle space theorem uses two orders based on the post-
order numbering of the ordered tree T. Both are denoted by -< and are defined as fol-
lows:

The first order is a total one defined on the vertices: For all vertices z in 7-t, let
#(z) denote the postorder number of z in T. For all vertices z and y, let z -< y
if #(x)< #(y).
The second order is a partial one defined on the directed edges not in T: For
all directed nontree edges e x --, y in 7-/, let #(e) #(z). For all directed
nontree edges d and e, let d -< e if #(d) < #(e).

An undirected back edge is an undirected edge not in T that connects between a
vertex and an ancestor in T. An directed back edge is a directed nontree edge that points
from a vertex to an ancestor. A directed forward edge is a directed nontree edge that
points from a vertex to a descendant. A directed cross edge is a directed nontree edge
between two vertices without an ancestor-descendant relationship.

FACT 2.8. There are four types ofnontree edges in : undirected back edges, directed
back edges, directedforward edges, and directed cross edges.

FACT 2.9. If e z y is a directed cross edge, then !1 -< c.
For visual intuition, assume that 7-/is drawn on an Euclidean plane: for every vertex

z of 7-/, z is assigned the coordinate (#(z), h(z)), where h(z) denotes the height of z in
T. For two distinct vertices z and g, z is said to be strictly to the right of y if z is to the
right of y in the above drawing and z is not a ancestor of y in T.

The following facts provide useful intuition.
FACT 2.10. For all vertices z and y, ifz -< y, then either y is an ancestor ofz in T or y

is strictly to the right of x.
FACT 2.11. All directed cross edgespoint strictlyfrom right to left.
Proof. The proof follows by Facts 2.9 and 2.10. [3

The next two technical lemmas are used to prove the cycle space theorem.
LEMMA 2.12. For each directed nontree edge e z t, there is an edge-simple

traversablepath P in 7-[ from to some vertex z such that
1. either z z or z is an ancestor ofz in T;
2. z appears only once in P and is the only vertex in P with the aboveproperty; and
3. d -< efor all directed nontree edges d E P.
Proof. P and z are constructed as follows. Because 7-/is strongly connected, there is

an edge-simple traversable path Q w,...,w from to x with w and w x.
Let s be the smallest index in Q such that either x -< w8 or x ws. Note that s exists
because wk x. Now let P wl,. ., w and let z w. The three properties ofP and
z are verified as follows.

Property 1. It suffices to show that z is an ancestor of x in T assuming z x. Then,
x -< z by the choice of s. By Fact 2.10, either z is an ancestor of x in T or z is strictly
to the right of x. To prove the property by contradiction, assume that z is strictly to the
right of x. There are two cases: (1) s I or (2) s > 1. In case (1), z y. Therefore, the
nontree edge e is a directed cross edge pointing strictly from left to right, contradicting
Fact 2.11. In case (2), w_l -< x by the minimality of s. By Fact 2.10, either w_ is an
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descendant of z in T or w8-1 is strictly to the left of z. Thus, the edge in P between
w8-1 and w is either an undirected cross edge or a directed cross edge pointing strictly
from left to right, contradicting Fact 2.8 or Fact 2.11. This finishes the proof of the first
property.

Property 2. This property follows from the minimality of the index s.
Property 3. Because P is traversable, every directed nontree edge d E P points from

some vertex wi with i < s. By the minimality of s, wi -< z. Hence, d -< e. This finishes
the proof of the third property.

LEMMA 2.13. For every directed nontree edge e 7-l, there is an edge-simple traversable
cycle C in 7-I containing e such that d -< efor all directed nontree edges d with d

Proof. Let e z - . Let P be an edge-simple traversable path in 7-/from /to
some vertex z such that Lemma 2.12 is satisfied. Let R be the tree path in T from z to
c. By the first property in Lemma 2.12, R is traversable. Thus, the cycle C formed by e,
P, and R is traversable. By the second property in Lemma 2.12, (7 is edge-simple. Next,
because R is a tree path, all nontree edges d (7 with d e are also in P. Consequently,
by the third property in Lemma 2.12, d -< e for all nontree edges d C with d e. [:]

2.4. Proving the cycle space theorem. This section completes the proof of the cycle
space theorem.

A basis f of CS(7-I) is constructed as follows. For each nontree edge e, let B(e) be
the edge-simple direction-blind cycle formed by e and the tree path in T between the
two endpoints of e. Let f be the set of all B(e). By Fact 2.1, f is a basis of CS(7-1).

A set II of traversable cycles in 7-/is constructed as follows. For each nontree edge e,
let C(e) be an edge-simple traversable cycle. If e is undirected, let C(e) B(e), which is
traversable because every undirected nontree edge in 7-/is a back edge. If e is directed,
let C(e) be a traversable cycle that satisfies Lemma 2.13. Now let II be the set of all C(e).

The following two decomposition lemmas are useful for induction.
LEMMA 2.14. Let e be a nontree edge in Tl. Let ul, z be the undirected nontree

edges in C(e) other than e itself. Let dl, dt be the directed nontree edges in C(e) other
than e itself. Then, B(e) C(e) + -is___l B(ui) + E=I B(dj).

sProof. It suffices to show that 0 C(e) + B(e) + -= B(ui) + -= B(d). In
the right-hand side of this equality, each nontree edge of C(e) is canceled for appearing
exactly once in C(e) and exactly once in a fundamental cycle B(e), B(u), or B(dy). Con-
sequently, the resulting vector of the right-hand side of this equality contains only tree
edges. Because this vector is the sum of vectors in CS(7-I), it is in CS(7-I). The lemma
then follows from the fact that the onlyvector in CS(7-l) not containing any nontree edge
is the zero vector.

LEMMA 2.15. Every B(e) f is a sum ofcycles in IL
Proof. There are two cases based on whether e is directed or not. If e is undirected,

then/3(e) C(e) is already a member ofH. If e is directed, then the proof is by induction
on -< for the directed nontree edges as follows.

Induction Hypothesis. For each directed nontree edge g with g -< e, B(g) is a sum
of cycles in H.

Induction Step. Refer to the equality in Lemma 2.14 as the traversable decomposition
of B(e). In the right-hand side of B(e)’s traversable decomposition, B(u) C(u)
because ui is undirected. Next, by the induction hypothesis, B(dj) is a sum of cycles in
H because dy -< e by the choice of C(e) based on Lemma 2.13. Therefore,/3(e) is a sum
of cycles in H.

THEOREM 2.2 (The Strongly Connected Cycle Space Theorem). Let 7-t be a mixed
graph. If 7-I is strongly connected, then TCS(TI) CS(TI).
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Proof. ClearlyTCS() is a subspace of CS(7-[). Conversely, byLemma 2.15, CS()
is a subspace of TCS(7-[). These two facts prove the theorem.

3. The graph theoretic and linear algebraic approaches to invariant testing. The
linear algebraic approach to invariant testing is outlined in 3.1. The graph theoretic
approach is described in 3.2. The two approaches are combined in 3.3. The discussion
of the approaches are introductory in this section. They are further developed in 5.

3.1. The linear algebraic approach. Let 7" be a two-dimensional table as described
in 1. The bounded kernel of T, denoted by BK(T), is the real vector space consisting of
all linear combinations ofa-5, where c and are two arbitrary bounded feasible assign-
ments of T. Similarly, the unbounded kernel of T, denoted by UK(T), is the real vector
space consisting of all linear combinations of c -/, where cz and/ are two arbitrary
unbounded feasible assignments of T.

Remark. Let 7/" be a table obtained from T by publishing the precise values of some
of the suppressed cells in T. Then, a vector in UK(T’) can be regarded as a vector in
UK(T) by assigning 0 to the suppressed cells that are in T but not in T’. This embedding
also applies to the vectors in the bounded kernels of T’ and T.

Let F be a linear combination of the suppressed cells in T. The linear invariant
test problem for F can be recast into a linear algebraic problem based on the following
lemma.

LEMMA 3.1. Let T be a table. Let [2 be a basis ofBK(T). Let F be a linear combina-
tion ofthe suppressed cells in 7/’. Then F is a linear invadant ifand only ifF(7) 0for all
7Eft.

Proof. The two directions of the lemma are proved as follows.
(=) Assume that F is a linear invariant. Let 7 be a vector in f. By definition,

h
7 -i=l ai(ci -/3i) for some h, ai, ci, and i. Then, F(7) -ih__ aiF(ci i)

h’i=l ai(F(ci) F(i)). Note that for all i, F(ci) F(fli) 0 because F is a linear
invariant of T and because c and are bounded feasible assignments of T. Thus,
F(7) 0 for all 7 E fL

(=) Assume that F(7) 0 for all 7 E f. Let 71," , 7k denote the vectors of f. Let
c and fl be bounded feasible assignments of T. By definition, c fl E BK(T). Because

kf is a basis of BK(T), c -=1 bTi for some b. So F(c ) ih__ bF(7).
Notice that for all i, F(Ti) 0. Therefore, F(c fl) 0. Consequently, F(c) F()
for all c,/ BK(T), and F is a linear invariant of 7". [3

The above lemma can be used to test whether F is a linear invariant by evaluating
F only at a basis of BK(T). The computational complexity of this approach heavily
depends upon how efficiently a basis of BK(T) can be found. Computing a basis of
BK(T) seems very difficult. In contrast, computing a basis of UK(T) appears less dif-
ficult because there are no bounds on cell values for UK(T). In light of this difference,
the key idea used in the linear invariant test algorithm of this paper is to relate the bases
of BK(T) and UK(T) via a bipartite mixed graph 7-/constructed from the input table
T. This mixed graph is defined in the next section.

3.2. The graph theoretic approach. Thesuppressedgraph 7-[ ofT is a bipartite mixed
graph constructed below [25]. For each row or column ofT, there is a unique vertex in 7-/.
Let E,j denote the cell at row i and column j. For each suppressed cell E,j of T, there
is a unique edge e in 7-/between the vertex of row p and the vertex of column q. Recall
that each suppressed cell in a table is accompanied by an upper and a lower bound on
its possible value. The direction of the edge e is determined by the relationship between
of the value and the bounds of the cell E, as follows:
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if the value is strictly between the bounds, then e is undirected;
if the value is equal to the lower bound, then e points from the row vertex to the
column vertex; and
if the value is equal to the upper bound, then e points from the column vertex
to the row vertex.

Figure 3 illustrates a table and its suppressed graph. The next theorem demonstrates
part of the relationship between a table and its suppressed graph.

column a b c sum
index

column
sum Illl 18 6

C R

R3

In the above 3 3 table, the number in each cell is the value of that cell. A cell with a box is a suppressed
cell. The lower and upper bounds of the suppressed cells are 0 and 9. The graph below the table is the
suppressed graph of the table. Vertex Rp corresponds to row p, and vertex Cq to column q.

FIG. 3. A table and its suppressed graph.

THEOREM 3.2 (Gusfield [25]). Let 7" be a table. Let 7-l be the suppressed graph of 7-.
Then, a suppressed cell of 7" is not an invariant cell ifand only if its corresponding edge in
7-I is contained in a traversable cycle of

Proof. The proof is based on the fact that along a traversable cycle in 7-/, the values
of the corresponding suppressed cells of 7" can be slightly adjusted to obtain another
bounded feasible assignment.

3.3. Combining the two approaches. The cycles of 7-/can be related to the feasible
assignments ofT via two edge-labeling processes, direction-blind labeling and traversable
labeling, described as follows.

3.3.1. Direction-blind labeling. This labeling process applies to the direction-blind
cycles of 7-/. Because 7-/is bipartite, every edge-simple direction-blind cycle of 7-/is of
even length. Consequently, the edges of an edge-simple direction-blind cycle of 7-/can
be alternately labeled with +1 and 1. Such a labeling is called a direction-blind labeling.
Observe that everyvector ofCS() can be decomposed into an edge-disjoint set of edge-
simple direction-blind cycles of 7-/. Therefore, this labeling process can be extended to
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every vector of CS(7-t) by direction-blindly labeling each cycle in a decomposition of that
vector.

A direction-blindly labeled vector of CS(7-t) can be regarded as an assignment to
the suppressed cells of 7": if the corresponding edge of a suppressed cell is in the given
labeled vector of CS(7-t), then the value assigned to that cell is the label of the corre-
sponding edge; otherwise, the value is 0. The following lemma describes a relationship
between the direction-blindly labeled vectors of CS(7-t) and the vectors of UK(T).

LEMMA 3.3. Every direction-blindly labeled vectorofCS(7-[) is also a vectorofUK(T).
Proof. Let c be the original assignment to the suppressed cells in 7". Let/3 be a

direction-blindly labeled vector of CS(7-t). To show UK(Tr), it suffices to prove that
c +/3 and c have the same row and column sums. Equivalently, it suffices to show as
follows that the sum of/3 over the suppressed cells in each column or row L of 7" is 0.
Observe that L is actually a vertex in 7-/. Also, the suppressed cells ofL in 7" are the edges
incident to L in 7-/. Therefore, the sum of fl over the suppressed cells of L in 7- equals
the sum of fl over the edges incident to L in 7-(. Consequently, the alternate labeling rule
of the direction-blind labeling process guarantees that both sums are 0. U

3.3.2. Traversable labeling. This labeling process applies to the traversable cycles
of 7-t. Because 7-t is a bipartite graph, the edges of an edge-simple traversable cycle of
can be alternately labeled +1 and -1 such that

the undirected edges may be labeled +1 or -1;
all directed edges from column vertices to row vertices are labeled -1; and
all directed edges from row vertices to column vertices are labeled +1.

Such a labeling is called a traversable labeling. This labeling process can be extended to
everyvector ofTCS(7-/) that can be decomposed into an edge-disjoint set of edge-simple
traversable cycles of 7-t. Note that not all vectors in TCS(7-[) have such decompositions.

Because a traversable labeling is a special case of a direction-blind labeling, a travers-
ably labeled vector of TCS(7-[) can also be regarded as an assignment to the suppressed
cells of 7". The following lemma describes a relationship between the traversably labeled
vectors of TCS(7-[) and the vectors of BK(T).

LEMMA 3.4. Every traversably labeled vector ofTUS(7-[) is also a vector in BK(T).
Proof. Let c be the original assignment to the suppressed cells in 7". Let/3 be a

traversably labeled vector of TCS(7-t). To show that/3 BK(T), it suffices to find a
nonzero number c such that c + c.3 is a bounded assignment of 7".

To choose c, an explanation of the traversable labeling process is helpful. In a
traversable labeling, an edge e is labeled +1 only if either e is an undirected edge or
e is a directed edge from a row vertex to a column vertex. In either case, the value of
the suppressed cell corresponding to e is strictly less than the upper bound of that cell.
Therefore, a new bounded feasible assignment can be obtained by increasing the value
of the cell corresponding to e. Similarly, if e is labeled -1, a new bounded feasible as-
signment can be obtained by decreasing the value of the cell corresponding to e.

Now c is chosen as follows. Let E, denote the cell at row i and column j. Let V,,
U,, and L, denote, respectively, the value, the upper bound, and the lower bound of
a suppressed cell E,. Let c be the minimum of {U, V,I the edge corresponding to
cell E, is labeled +1 in/3} t_J {V, L,I the edge corresponding to cell Ei, is labeled
-1 in/3}. If the minimum is +o, let c be an arbitrary positive number.

By the minimality of c, the three rules of the traversable labeling process concerning
the edge directions imply that c + c.fl satisfies the bounds of all suppressed cells. The
alternate labeling rule of the traversable labeling process guarantees that both c +
and c yield the same row and column sums.
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4. A linear invariant test algorithm. Let 7" be a table and let 7-/be its suppressed
graph. Let F be a given linear combination of the suppressed cells in 7". As discussed
in 3.1, Lemma 3.1 says that the linear invariant testing for F can be restricted to a basis
of BK(T) but does not suggest how such a basis can be efficiently found. The Strongly
Connected Table Basis Theorem can provide such a simply found basis by exploiting the
relationship between CS(7-[) and BK(T).

This section states the table basis theorem and applies it to the linear invariant test
problem; the proof of the theorem is given in 5.

In the table basis theorem, a direction-blindly labeled basis of CS(7-[) is a basis of
CS(7-[) together with a direction-blind labeling for each basis vector. A traversably la-
beled basis of TCS(7-[) is a basis ofTCS() together with a traversable labeling for each
basis vector.

THEOREM 4.1 (The Strongly Connected Table Basis Theorem). Let T be a table. Let
7-[ be the suppressed graph of 7/’. Let 7(1, 7"[k be the strongly connected components of

k7-[. Let fi be a direction-blindly labeled basis ofCS(i). Then t3i= fi is a basis ofBK(T).
Note that a basis for CS(i) can be easily found via Fact 2.1 by first computing a

direction-blind spanning tree of 7-/i and then computing the fundamental cycles of that
tree. In addition, these fundamental cycles are so well structured that it is very easy to
direction-blindly label these cycles and evaluate F at the resulting vectors of BK().
Therefore, the table basis theorem provides an efficient way to compute a useful basis
for BK(7"), leading to the following theorem.

THEOREM 4.2 (Linear Invariant Test). Let Tbe a table. Let 7-[ be the suppressedgraph
of 7". Let n denote the number ofrows and columns in 7". Let m denote the number ofthe
suppressed cells in 7".

1. In sequential computation, given 7-[, the linear invariant test problem for 7" can be
solved in 0 m + n) time.

2. In parallel computation, given 7-[, the linear invariant test problem for T can be
solved in O(log2 n) time using M(n)processors on an exclusive-read exclusive-writeparallel
random access machine.

To prove Theorem 4.2, an algorithm for the linear invariant test problem is pre-
sented in 4.1. The sequential and parallel implementations of this algorithm and their
complexities are discussed in 4.2.

4.1. Describing the linear invariant test algorithm. Let 7- be a table. Let 7-( be the
suppressed graph of 7". Let F be a given linear combination of the suppressed cells in
7". Using Lemma 3.1, Theorem 4.1, and Fact 2.1, the linear invariant testing for F can
be carried out as follows:

1. Compute the strongly connected components 7-/,..-, 7-/ of.
2. For each 7-/i, first compute a direction-blind spanning tree T of. Next, let f

be the set of all fundamental cycles induced by T. Then, direction-blindly label each
cycle in fi.

3. Evaluate F at each vector in the labeled f for all f. Then, F is a linear invariant
of T if and only if F(7) 0 for all -y E f and for all f.

Remark. In this algorithm, Ti need not be a structured tree such as a depth-first
search or a breadth-first search tree. This structural freedom is essential for obtaining
an efficient parallel implementation because structured trees often have high parallel
complexity [33], [1], [2], [22].

Note that the total size of the bases f may far exceed m + n. Therefore, to achieve
a sequential complexity of O(m + n) time, the labeled cycles in the sets f must not be
explicitly enumerated. It is shown below that the choice of fundamental cycles for the
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sets f allows efficient evaluation of F without explicitly enumerating the labelings of
the sets f.

For each edge t in Ti, let D(t) denote the depth of t in Ti, i.e., the number of edges
in the tree path from the root to t. Similarly, for each vertex v in T, let D(v) denote the
depth of v in Ti, i.e., the number of edges in the tree path from the root to v.

For each nontree edge d in 7-/, let B(d) be the fundamental cycle formed by d and
the tree path of Ti between the endpoints of d. The canonical labeling of B(d) is the
unique direction-blind labeling of B(d) where d is labeled +1. The canonical labelings
of all B(d) can be efficiently computed by labeling the edges of 7-/i as follows:

Each nontree edge d of 7-/i is labeled by +1.
Each tree edge t of Ti is labeled by (-1)l+D(t).

With these labelings, every nontree edge d in 7-/ is considered a real vector in the
same way as a direction-blindly labeled cycle is in 3.3. Similarly, for a vertex u and
a descendant v in Ti, the labeled tree path, denoted by P(u, v), from u to v in Ti is
considered a real vector. Based on these conventions, the next lemma shows how to use
the above labeling scheme to compute the canonical labelings of all B(d).

LEMMA 4.3. Let r be the root ofTi. Let d be a nontree tree edge in 7-l with endpoints
xand y. Then, B(d) d + P(ri,x).(-1)D(x) + P(ri,y).(-1)D(u).

Proof. Let z be the least common ancestor of x and y in Ti. Note that D(x)
-D(y) because 7-/ is bipartite. Thus, by definition, B(d) d + P(z,x).(-1)D(x) +
P(z, y).(-1)D(u). The lemma then follows from the fact that (-1)D(x) + (-1)D(u) 0,
P(r, x) P(r, z) + P(z, x), and P(r, y) P(r, z) + P(z, y).

With Lemma 4.3, the values of F at each fi can be computed by executing the fol-
lowing steps for 7-/:

1. For each edge e, let W(e) be the coefficient of the suppressed cell e in F.
2. For each tree edge t, compute W(t).(-1) l+D(t), the single-term value of t.
3. For each vertex v, let S(v) be the sum of the single-term values over the tree path

from the root to v.
4. For each nontree edge d, compute L(d) S(x).(-1)D(x) +S(y).(-1)D(y) +W(d),

where x and y are the endpoints of d.
LEMMA 4.4. Let d be a nontree tree edge in 7-l. Then, F(B(d)) L(d).
Proof. Let r be the root of T. Let z and y be the endpoints of d. The proof

follows from Lemma 4.3 and the equalities F(d) W(d), F(P(r,x)) S(x), and
F(P(ri, y)) S(y).

Summarizing the above discussion, Fig. 4 presents an algorithm for the linear invari-
ant test problem. The correctness of the algorithm is stated in the next lemma.

LEMMA 4.5. F is a linear invariant ofT ifand only if L(d) 0 for all 7-l and for all
nontree edges d in 7-l.

Proof. The proof follows from Lemma 3.1, Theorem 4.1, Fact 2.1, and
Lemma 4.4.

4.2. Implementations and complexities. This section discusses the sequential and
parallel complexities of the linear invariant test algorithm in Fig. 4.

The following lemma analyzes the sequential complexity of the algorithm.
LEMMA 4.6. The linear invariant test algothm in Fig. 4 runs in O(m + n) sequential

time.

Proof. The lemma follows directly from the following facts:
1. The strongly connected components of 7-/can be found in O(m + n) time.
2. A direction-blind spanning tree for each 7-/ can be computed in O(m + n) total

time.
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Procedure Linear Invariant Test
Input: the suppressed graph of a table 7" and a linear combination F of
the suppressed cells in 7". Remark: 7" is not part of the input.
Output: a yes-no answer to whether F is a linear invariant of 7".
begin

1. Compute the strongly connected components 71,.-., 7-/k of 7-/.
2. for each i do

begin
2-1. Compute a direction-blind spanning tree Ti of 7-/i.
2-2. For each edge e, let W(e) be the coefficient of the sup-

pressed cell e in F.
2-3. For each tree edge t, let D(t) be the depth of t in T,

where the edges incident to the root are of depth 1.
2-4. For each vertex v, let D(v) be the depth of v in Ti, where

the root is of depth 0.
2-5. For each tree edge t, compute W(t).(-1)+D(t), the

single-term value of t.
2-6. For each vertex v, let S(v) be the sum of the single-term

values over the tree path from the root to v.
2-7. For each nontree edge d, compute L(d)=S(z).(-1)z(x)

+S(y).(-1)(y) + W(d), where z and y are the end-
points of d. (Remark: D(z) -D(v) because 7-( is
bipartite.)

end.
3. return "F is a linear invariant" if and only if L(d) 0 for all 7-/i and

for all nontree edges d in 7-/.
end.

FIG. 4. Linear invariant testing.

3. The coefficients W(e) for the edges in all can be obtained in O(m + n) total
time.

4. The depths D(t) of the tree edges, the depths D(v) of the vertices, the single-
term values W(t).(-1) +zg(t) of the tree edges, and the sums S(v) for the vertices can
be computed in O(n) total time all by a top-down traversal in each Ti.

5. With the above computation done, the values L(d) for the nontree edges can be
found in O(m) total time by processing each nontree edge in constant time.

6. The final output can be found by examining whether the values L(d) are all zero
in O(m) total time. r

The following lemma analyzes the parallel complexity of the linear invariant test
algorithm, and thus completes the proof of Theorem 4.2.

LEMMA 4.7. The linear invariant test algorithm in Fig. 4 runs in O(log9 n)parallel time
using M(n) processors on an EREW PRAM.

Proof. The lemma follows directly from the following facts:
1. The strongly connected components of 7-/can be found in O(log2 n) time using

M(n) processors [29].
2. A direction-blind spanning tree for each strongly connected component can be

computed in O(log2 n) time using O(m + n) or fewer processors by undirected connec-
tivity algorithms [10], [39].

3. The coefficients W(e) for the edges in all i can be obtained in constant time
using O(m) processors.
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TCS(7-I) BK(T)

CS(7-l) UK(T)

FIG. 5. Theproofscheme ofthe Strongly Connected Table Basis Theorem.

4. The depths D(t) of the tree edges and the depths D(v) of the vertices can be
computed in O(log n) time using O(n/log n) processors by tree contraction techniques
[31], [5l, [8], [9], [30].

5. With the depths obtained, the single-term values of the tree edges and the sums
S(v) for the vertices can be computed in O(log n) time using O(n/log n) processors also
by tree contraction techniques.

6. With the above computation done, the values L(d) for the nontree edges can be
found in constant time using O(m) processors.

7. The final output can be then found by examining whether the values L(d) are all
zero in O(log n) time using O(m) processors. [q

5. The Strongly Connected Table Basis Theorem. Let T be a table. Let 7-/be the
suppressed graph of IT. The table basis theorem characterizes the relationship between
CS(7-I) and BK(7"). Its proof exploits the five pairwise relationships among CS(),
TCS(7-I), UK(T), and BK(T) indicated in Fig. 5.

The CS-TCS relationship has been characterized by the cycle space theorem in 2.2.
The CS-UK, UK-BK, and TCS-BK relationships are discussed in 5.1-5.3, respec-
tively. The proof of the table basis theorem is derived from the above four relationships
in 5.4.

5.1. CS versus UK.
LEMMA 5.1. Every direction-blindly labeled basis f ofCS(7-[) is also linearly indepen-

dent in UK(7").
Proof. Let f’ be the unlabeled version of f. An integer matrix for f and a cor-

responding Z2 matrix for f’ are constructed as follows. The vectors of f are regarded
as integer vectors whose components are +1, 0, or -1. Let N be the integer matrix
consisting of the vectors of f as rows. Similarly, the vectors of f’ are regarded as Z
vectors. Let N’ be the Z2 matrix consisting of the vectors of 2’ as rows. Note that
N N’ (mod 2).

Let k be the number of vectors in f. Because f is a basis of CS(7-/), N’ contains
a kk submatrix J such that det J = 0 (mod 2). Let J be the submatrix of N corre-
sponding to J’. Then J J’ (mod 2) and det J det J’ 0 (mod 2). Therefore,
det J is a nonzero integer and f is linearly independent in UK(T). [q

LEMMA 5.2. CS(7"[) has some direction-blindly labeled basis f such that every vector

of UK(T) is a linear combination ofvectors in f.
Proof. f is constructed as follows. Arbitrarily choose a spanning tree in each con-

nected component of 7-/. Let el,. , ek be the nontree edges of 7-/. For each e, let B(e)
be the cycle formed by e and the tree path between the endpoints of ei. Let f be the
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set of all B(ei). By Fact 2.1, [2 is a basis of CS(7-[). Now direction-blindly label f with
each ei labeled +1 in B(ei).

To finish the proof, it suffices to verify that every vector a E UK(7") is a linear com-
kbination of vectors in f. Let ci be the component of c at ei. Let/3 c i= ci.B(ei).

To prove that c is a linear combination ofvectors in f, it suffices to show/3 0 as follows.
Observe that ei appears in B(ei) but not in the other fundamental cycles. Furthermore,
in the right-hand side of the above equality, the components of a and ci.B(ei) at ei can-
cel each other. Thus, the component of/3 at each ei is 0. Next, by Lemma 3.3, the cycles
B(ei) are all in UK(T). Hence,/3 is also in UK(T). Therefore,/3 has the following
two properties: (1) the components of/3 at the nontree edges are all 0, and (2) for each
vertex x E 7-/, the sum of the components of/3 at the edges incident to x is also 0. These
two properties together imply that the components of/3 are all 0. Consequently,/3 0

kand c -=l ci.B(ei). D
THEOREM 5.3. CS() and UK(T) have the same dimension. Furthermore, every

direction-blindly labeled basis ofCS() is a basis of UK(T).
Proof. By Lemma 3.3, a direction-blindly labeled basis of CS(7-[) is a subset of

UK(T). Therefore, Lemmas 5.1 and 5.2 together imply the dimension equality. The
dimension equality and Lemma 5.1, in turn, imply the basis embedding. This finishes
the proof. D

5.2. UK versus BK.
LEMMA 5.4. Every traversably labeled basis of TCS(i) i linearly independent in

BK(T). Consequently, dim TCS(7-[) <_ dim BK(T).
Proof. The same as the proof of Lemma 5.1.
Note that the proof of Lemma 5.2 does not seem to extend to TCS(7-[) and 1314(7")

because it is difficult to find a basis for TCS(7-[) consisting of traversable cycles as well-
structured as fundamental cycles.

THEOREM 5.5. Ifevery connected component of is strongly connected, then BK(T)
UK(T).
Proof. Because BK(T) is a subspace of UK(T), it suffices to show dim UK(T)

dim BK(T) as follows. First, dim UK(T) dim CS(7-l) by Theorem 5.3. Second,
dim CS() dim TCS(’kl) by Theorem 2.5. Third, dimTCS() <_ dim BK(T) by
Lemma 5.4. Thus, dim UK(T) _< dim BK(T).

THEOREM 5.6. Let X be the set of edges in 7-[ that are not in its strongly connected
components. Let T’ be the same table as T except that the cells corresponding to the edges
in X are also published. Then BK(T) UK(T’).

Proof. First, from Theorem 3.2, BK(T) BK(T’). Next, because the suppressed
graph of W is X, by Theorem 5.5, BK(7") UK(7"). Therefore, BK(7")
UK(7").

5.3. TCS versus BK.
THEOREM 5.7. Every direction-blindly labeled basis of TCS(7-[) is also a basis of

BK(T).
Proof. Let X be the set of edges in -/that are not in its strongly connected compo-

nents. Let T be the same table as T, except that the cells corresponding to the edges
in X are also published. First, from Theorem 2.6, every direction-blindly labeled basis
of TCS(’N) is also a direction-blindly labeled basis of CS( X). Second, because the
suppressed graph of W is 7-/- X, by Theorem 5.3, every direction-blindly labeled basis
of CS( X) is a basis of UK(T). Third, from Theorem 5.6, every basis of UK(T)
is also a basis of BK(T). Thus, the theorem is true. U
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5.4. CS versus BK.
THEOREM 4.1 (The Strongly Connected Table Basis Theorem). Let T be a table. Let

7-[ be the suppressed graph of 7". Let 7-[1, 7-[k be the strongly connected components of
k7-[. Let fi be a direction-blindly labeled basis ofCS(7-[i). Then t_Ji=lfi is a basis ofBK(T).

Proof. Let X be the set of edges in 7 that are not in its strongly connected compo-
nents. Because the graphs i are the connected components of X, the set tAi=1f
is a direction-blindly labeled basis of CS(7-[ X). Then, by Theorem 2.6, tA/=lfi is a

fi is a basisdirection-blindly labeled basis of TCS(7-[). Finally, from Theorem 5.7, t_Ji=1
of BK(7"). This finishes the proof of the theorem. q

6. Discussion. Sometimes it is very useful to consider the notion that a linear com-
bination of suppressed cells is called an invariant if and only if it has the same value at
all bounded feasible assignments whose cell values are all integers. The integrality con-
straint in this notion does not change the nature of the linear invariant test problem.
The set of linear constraints induced by a table is totally unimodular [32]. Therefore,
given a table and a linear combination of suppressed cells, if the original assignment to
the suppressed cells consists only of integers, then the maximum and minimum values
of the given combination can be achieved at bounded feasible assignments with integer
cell values. Consequently, if the original assignment to the suppressed cells consists only
of integers, then the two notions of a linear invariant are equivalent.
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Abstract. Flow in planar graphs has been extensively studied, and very efficient algorithms have been
developed to compute max-flows, min-cuts, and circulations. Intimate connections between solutions to the
planar circulation problem and with "consistent" potential functions in the dual graph are shown. It is also
shown that the set of integral circulations in a planar graph very naturally forms a distributive lattice whose
maximum corresponds to the shortest path tree in the dual graph. Further characterized is the lattice in terms
of unidirectional cycles with respect to a particular face called the root face. It is shown how to compactly
encode the entire lattice and it is also shown that the set of solutions to the min-cost flow problem forms a
sublattice in the presented lattice.
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1. Introduction. Maximum flow has been one of the most well-studied problems in
the area of algorithms (both in the fields of computer science and operations research)
over the last 40 years. It has applications in solving efficiently a large set of problems,
e.g., many VLSI problems, transportation problems, and communication networks.

Flow in planar graphs has been extensively studied, and very efficient algorithms
have been developed to compute max-flows, min-cuts, and circulations. There is a wealth
of ideas in solving these problems efficiently for this class of graphs [FF], [H], [HJ], [IS],
[J], [JV], [MN], [R], [KN]. (The algorithms vary for different versions of the same basic
flow problem.) Very efficient parallel and sequential algorithms can also be developed
by exploiting the planar structure of the graph.

Recently, Miller and Naor [MN] have noted that the most general formulation ofthe
maximum flow problem in planar graphs must allow for the existence of many sources
and sinks. Unlike the case of arbitrary graphs, where sources and sinks can be merged,
for planar networks there is no obvious reduction of the multiple source/sink problem
to a single source/sink problem. Miller and Naor further showed that the case where the
demands of the sources and sinks are fixed is equivalent to a circulation problem (with
lower bounds on edge capacities). They also gave an efficient algorithm for computing
a circulation.

Our objective is to study the structure of the set of integral solutions to the circulation
problem for planar graphs. We review the relation between solutions to the planar circu-
lation problem and consistent potential functions in the dual graph and show that there
is a one-to-one correspondence between them. We then show that the set of circulations
in a planar graph very naturally forms a distributive lattice (under an appropriate defi-
nition of meet and join operations for the lattice). We further characterize the lattice in
terms of unidirectional cycles with respect to a particular face called the root face. We
show that the top (bottom) element of the lattice is the circulation in which there are no
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clockwise (counterclockwise) residual cycles around the root face. It turns out that the
flow functions computed by [H], [HJ], [J], and [MN] correspond to the top element of
the circulation lattice. (This is essentially a matter ofnotation; ifwe reverse the direction
of the dual edges, their algorithms will be computing the bottom element in the lattice.)
It is interesting to note that, if a planar graph also contains vertex capacities, i.e., there
is a limit on the amount of flow that is allowed to go through a vertex, then the set of
feasible circulations does not form a lattice (see 3.4).

The lattice representing all feasible circulations is clearly of exponential size, since
there are exponentially many solutions to the circulation problem. We provide a compact
encoding of the entire lattice by providing a directed acyclic graph (dag) such that the
predecessor-closed subsets of this partial order correspond to elements in the lattice.
Although this dag may be large, its size depends on the maximum edge-capacitymwe
can represent it succinctly, in polynomial size. This compact encoding of the partial
order provides, in turn, a compact encoding of the lattice elements.

The minimum cost circulation problem is that of obtaining a circulation of minimum
cost in a network whose edges have both capacities and costs per unit of flow. The prob-
lem is equivalent to the transshipment problem and has wide applicability to a variety of
optimization problems [AMO]. One of the motivations for the research reported here is
to investigate new approaches to solving the minimum cost circulation problem in planar
networks more efficiently than in arbitrary graphs. For planar networks, we interpret the
cost function as a function on the lattice, and we show that it is a modular function. It
follows that the set of solutions to the minimum cost circulation problem forms a sub-
lattice. We show that this sublattice consists of the feasible circulations for a network
derived from the original network. This allows us to provide a succinct representation
for the set of minimum cost circulations as well. Minimizing a modular function over a
lattice is a well-known problem in operations research and can be solved by computing
the minimum cut (max-flow) in a network obtained from the dag corresponding to the
circulation lattice. However, this approach does not directly yield a new polynomial-
time min-cost circulation algorithm, since the dag is so large. At the end of this paper,
we briefly discuss two possible approaches to obtaining such an algorithm.

Other examples of problems whose solution set has similar structure are the stable
marriage problem and the minimum cut problem. Picard and Queyranne [PQ] have
shown that the set of all minimum cuts forms a distributive lattice where the join and
meet operations are defined as intersection and union, respectively. The structure of
the solution set of the stable marriage problem has been extensively investigated in the
book by Gusfield and Irving [GI]. They show that the set of all stable marriages also
forms a distributive lattice and show that a compact encoding of the entire solution set
is possible. They provide many applications of the lattice structure, e.g., computing an
egalitarian stable marriage solution.

2. Preliminaries and terminology. We begin by defining the circulation problem.
Consider a directed graph G, with each edge e having an integral lower and upper bound
on its capacity, denoted respectively by (e) and u(e) ([t?, u]). When we speak of the
capacity of an edge without specifying whether it is a lower or upper capacity, we mean
its upper capacity.

We are required to find a flow function f E Z that is feasible in that the follow-
ing two conditions are satisfied:

Capacity constraints. For all e E e(e) _< f(e) <_ u(e) (the flow on each edge is
between the lower and upper bounds on its capacity);
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Conservation constraints. For all v V" 2eein(v) f(e) Yeout(.) f(e). (The flow
into each node equals the flow out of the node.)

The circulation problem is that of finding a feasible flow function (such a flow func-
tion may not even exist). In the maximum flow problem, two distinguished vertices are
added to the graph, a source and a sink, and the aim is to maximize the amount of flow
entering the sink. Note that a flow problem in which the flow value is prespecified can
be reduced to a circulation problem.

We will henceforth be restricting our attention to planar graphs. Let G (V, E) be a
directed embedded planar graph. The graph partitions the plane into connected regions
called faces. For each edge e E, let D(e) be the corresponding dual edge connecting
the two faces bordering e. Let D(G) (F, D(E)) be the dual graph of G, where F is
the set of faces of G and D(E) {D(e)le E E}. The dual graph is planar, too, but may
contain self loops and multiple edges. We refer to graph G as theprimal graph.

There is a one-to-one correspondence between primal and dual edges; the direction
of a primal edge e induces a direction on D(e). We use a right-hand rule: If the right-
hand’s thumb points in the direction of e, then the index finger points in the direction of
D(e) (with the palm facing downward). We refer to dual edges as capacitated as well,
where the capacity of edge D(e) is equal to that of edge e (see Fig. 1).

Nodes of the dual graph

Nodes of the primal graph

FIG. 1. Construction ofdirected dual graph.

We have the following equivalence rules that relate the orientation of an edge e

(v w), the sign of its flow f(e), and its lower and upper capacity bounds:
1. The edge v w with flow f(e) is equivalent to the edge w v with flow -f(e);
2. The edge v w with capacities [g, u] is equivalent to the edge w v with

capacities I-u,
3. The edge v w with capacities [, u] is equivalent to two antiparallel edges:

v w of capacities [0, u] and w v with capacities [0,-];
4. Let el and e2 be two parallel edges that are oriented in the same direction with

capacities [gl, u] and [g2, u2], respectively. The two edges can be replaced by
one edge with capacity [g + g, u + u] and flow f(el) + f(e).

The residual graph is defined with respect to a given circulation. Let e (v - w)
be an edge with capacities [g, u] and flow f. In the residual graph, e is replaced by two
darts, v w with capacities [0, u f] and w --* v with capacities [0, f g]. A directed
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cycle is said to be residual with respect to the given circulation if every edge in the cycle
has positive upper capacity in the residual graph.

Miller and Naor [MN] have shown that, for planar graphs, the maximum flow prob-
lem should be formulated with respect to many sources and sinks. They show how to
reduce this problem to a circulation problem with lower bounds on the edges if the de-
mands of the sources and sinks are given. This is done by returning the flow back from
the sinks to the sources via a spanning tree.

An important tool for computing flow functions in planar graphs is the notion of a
potential function p F Z in the dual graph. This function was first introduced by
Hassin [H], and its usage was later elaborated by [HJ], [J], and [MN]. Let e be an edge in
the graph G and let D(e) (g, h) be its corresponding edge in the dual graph such that
D(e) is directed from g to h. The potential difference over e is defined to be p(h) -p(g).
The following proposition, proved in [HI and [J], can be easily verified.

PROPOSITION 2.1. Let (7 cl,..., ck be a cycle in the dual graph and let fl, fk
kbe thepotential differences over the cycle edges. Then -= f O.

It follows from the proposition that the sum of the potential differences over all the
edges adjacent to a primal vertex is zero.

A potential function is defined to be consistent if the potential difference over each
edge is between the upper and lower bounds on the capacity (i.e., e < p(h) p(g) < u).
Such a potential function induces a circulation in the graph by defining the flow on an
edge as the potential difference over it. Clearly, the flow on the edge satisfies the capacity
constraints; by using the previous proposition, it is easy to see that the flow conservation
constraints are also satisfied. Once we fix the potential of some particular face as zero,
all the other potentials can be normalized with respect to this face. We will assume that
all consistent potential functions are normalized, and we call the face whose potential is
set to zero the rootface. We will assume that the planar embedding is such that the root
face is the infinite face.

How is a consistent potential function computed? Let us consider the dual graph
where each edge D(e) with capacity [e, u] is split by rule 3 above, into two antiparallel
edges, where one edge has capacity u, and the other capacity -L Miller and Naor [MN]
show that, if a solution to a circulation problem exists, then there cannot be negative
cycles in the dual graph. Hence, a natural way for computing a consistent potential
function would be the following: Choose an arbitrary face as the root face; the potential
of face h is defined to be the length of the shortest path in the dual graph from the root
face to h. It follows from properties of shortest paths that the resulting potential function
is indeed consistent. We will refer to this potential function as the shortestpath potential
function.

It is easy to see that there is a one-to-one correspondence between consistent (and
normalized) potential functions and circulations. Given a legal circulation C’, a corre-
sponding potential function can be constructed. To do so, the capacity of every edge
is replaced by its actual flow in (7. That is, if the flow on edge e is of value f(e), then
edge D(e) is replaced by two parallel edges in opposite directions, where one edge has
capacity f(e), and the other has capacity zero. The potential of face h is the length of the
shortest path in the dual graph from the root face to h. It is easy to see that this potential
function induces circulation C’.

We henceforth view a potential function as a vector where the entries correspond to
the potentials of the faces, and the potential of the rootface (an arbitrary but fixed face)
is always equal to zero. Since there is a one-to-one correspondence between circulations
and potential vectors, we will use both terms to refer to a circulation. We also assume
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that all potential values are integral, as we are interested only in integral solutions to the
circulation problem.

3. The lattice structure. Our aim in this section is to investigate the structure of the
set of legal circulations in G. We will show that this set forms a distributive lattice and
also explore its structure. Given two consistent vectors
if, for all components i, P1 (i) >_ P2(i). We say that circulation (71 dominates 2, if, for
their corresponding potential vectors P1 and P2, P1 _> P2. We use the term to refer to
the set of all consistent potential vectors. It is easy to see that 79 is a partial order under
the dominance relation (also written as (79, _)).

We now show that the partial order (79, _--<) is, in fact, a distributive lattice. A distribu-
tive lattice is a partial order in which the following hold:

1. Each pair of elements has a greatest lower bound (g.l.b.), or meet, denoted by
a A b, so that a A b _-< a, a A b

_
b, and there is no element c such that c

_
a, c

_
b

and a A b -< c;
2. Each pair of elements has a least upper bound (1.u.b.), orjoin, denoted by a V b,

so that a a V b, b -’_’A_ a V b, and there is no element c such that a

_
c, b - c and

c - aVb;
3. The distributive laws hold, namely, a V (b A c) (a V b) A (a V c) and a A (b V c)

(a A b) V (a A c).
We show that (79, ) is a distributive lattice by presenting appropriate definitions for

meet and join.
Given two circulations C1 and C2 (represented as P1 and P2), we define the meet

as the circulation induced by the potential vector Pm min(P1, P2). Clearly, the face
at zero potential in both circulations stays at zero potential. Every face g is assigned a
potential equal to min(P1 (g), P2(g)), where P(g) is the potential of g in C. Similarly,
the join is defined as P max(P1, P2).

The following theorem shows that Pm and Pj are consistent potential vectors, as-
suming that P1 and P2 are consistent.

THEOREM 3.1. Thepartial order (T’, ) is a distributive lattice, with the meet andjoin
defined appropriately.

Proof. We first show that the meet and join are consistent potential assignments.
Let g and h be faces in the dual graph bordering primal edge e. The potential across e
is pl (h) pl (g) and p2(h) p2(g), respectively, in each circulation. If pl (h) <_ p2(h)
and pl (g) <_ p2(g), then the meet is clearly consistent. (Similarly, if p2 is the smaller
potential for both g and h.) If pl(h) _< p2(h) and p2(g) _< pl(g), then it follows that
/? _< pl(h)- p2(g) < u (since p(h)- p(g) _> , and p2(h)- p2(g) < u). The last case
is when p2(h) < pl(h) and p (g) < p2(g), and it follows that < p2(h) p (g) < u
(since p2(h) p2(g) >_ and pl (h) pl (g) < u). Hence Pm is a consistent potential
assignment.

The proof that Pj is a consistent potential assignment is almost identical. It is also
easy to see that they are the g.l.b, and 1.u.b., respectively. This establishes that (79, _) is
a lattice.

Let a, b, and c be any integers. Then min(a, max(b, c)) max(min(a, b), min(a, c))
and max(a, min(b, c)) min(max(a, b), max(a, c)). Hence, the distributive laws hold
for the lattice 7

It is easy to see that a lattice has a unique minimum and maximum, Pb and Pt, re-
ferred to as bottom and top, respectively. We now provide a simple characterization for
them. Let us denote by P the shortest path potential vector, in which the potential of
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a face is exactly its distance from the root face in the dual graph. The following lemma
shows that P corresponds precisely to the top of the lattice.

LEMMA 3.2. Thepotential vector Pt is equal to P.
Proof. The shortest path problem can be cast as a linear program, with a variable zh

for each face h, in which the objective is to maximize -,h Zh, subject to mr 0, where r
is the root face and subject to inequalities zg < zh - z,(e) for each edge e h - t of the
dual graph. Any vector z satisfying these constraints is a circulation. The top element
of the lattice clearly maximizes the objective function over all lattice elements. [3

The following lemma, which characterizes the bottom of the lattice, follows by sym-
metry.

LEMMA 3.3. Let a potential vector P be computed as follows: The potential of.face h
in P is the length ofthe shortestpath from h to r, the rootface, multiplied by -1. Then the
vector P is equal to Pb.

3.1. Eliminating lower bounds. The existence of the lattice provides us with a sim-
ple way of getting rid of lower bounds on edges. To do so, we define a new lattice T" by
normalizing the vectors in 79 with respect to Pb, the bottom element of the lattice. Each
vector P E T’ is replaced by a new vector P’, where P’ P Pb, and subtraction is per-
formed componentwise. This is the same as computing the residual graph with respect
to Pb.

LEMMA 3.4. Let G’ be the residual graph ofG with respect to the circulation Pb. Then
(1) the lower bounds on the capacity ofthe edges in G’ are zero, and (2) the lattice offeasible
circulations in G’ is isomorphic to that in G.

Proof. By the additivity property of flow, each circulation P E 79 can be written
as the sum of two circulations, Pb and some other circulation Q. Hence, the lemma
follows. E]

3.2. Unidirectional cycles and the lattice. In this section, we establish a connection
between the lattice and unidirectional cycles. Recall that we assumed the planar em-
bedding was such that the infinite face is the root face. Each simple cycle divides the
sphere into two nonempty disjoint sets of faces, called regions. The region containing
the root face is designated the exterior region; the other region is interior. In a traversal
of a directed cycle, all faces that border the cycle on its right are in the same region, the
cycles right-hand re#on.

DEFINITION 3.5. A directed cycle is clockwise ifthe cycles right-hand re#on is inteor.
Otherwise, the cycle is counterclockwise.

Let us adopt the following convention that follows from the right-hand rule defined
in 2. Pushing positive flow through a directed cycle 7 is equivalent to increasing the
potentials of the faces in C"s right-hand region.

A circulation is said to be maximal in the clockwise direction ("clockwise maximal,"
for short) if there are no clockwise residual cycles with respect to the circulation. "Max-
imal in the counterclockwise direction" is defined similarly.

We begin by characterizing the top and bottom of the lattice.
THEOREM 3.6. A circulation is clockwise maximal ifand only if it corresponds to Pt.

A circulation is counterclockwise maximal ifand only if it corresponds to Pb.
Proof. We consider the first statement; the second follows by symmetry. First, we

show that Pt is clockwise maximal. Let F be any clockwise cycle; we show that F is not
residual with respect to Pt because some edge of F has zero residual capacity.

By Lemma 3.2, Pt is the shortest path vector. Let T be the shortest path tree in the
dual graph, rooted at the root face. Since T spans all faces, there must be some face h
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in the interior of F whose parent # in T is in the exterior of F. Then P(h) P(g) + b,
where b is the capacity of the edge D(e) g --, h in the dual graph. Thus b is also the
capacity of the edge e E F in the primal graph. However, the flow f(e) defined by P is
P(h) P(g) b, so the residual capacity is zero.

Conversely, suppose that P is a circulation with respect to which there exists a clock-
wise residual cycle F. Since F is clockwise, the interior does not contain the root face.
Since F is residual, we can therefore increase the potentials of all faces in the interior by
some positive amount without violating the constraints. Hence P is not the top element
of the lattice. ]

It is tempting to believe that the dominance relation in the lattice can be stated in
terms of saturating clockwise cycles. That is, if P < P2, then circulation P can be
obtained from P by saturating clockwise cycles. Unfortunately, the following coun-
terexample shows that this is not true. Let c and c be clockwise cycles such that Cl
is contained in the interior of c2. We construct two circulations P and P2 such that
P < P. To construct P, take Pb and push one unit of flow in the cycle c in the clock-
wise direction. To construct P2, take Pb and push one unit of flow in the cycle c2 in the
clockwise direction. Obviously, P < P2, but the only way to obtain circulation P2 from
P is to push a unit of flow in the cycle c2 in the clockwise direction and, in the cycle c,
in the counterclockwise direction.

However, in the next section, we will show that every circulation can be obtained
from Pb by pushing flow through a set of clockwise cycles.

3.3. The Region-GrowingAlgorithm. In this section, we give a generic algorithm for
obtaining any circulation P, from Pb the bottom circulation of the lattice, by saturating
only clockwise cycles. We assume that circulation P is given as input to the algorithm.
This algorithm will be used to prove that the difference between Pb (or Pt) and any other
circulation is a unidirectional set of cycles. The algorithm can also be used to obtain the
top or bottom elements ofthe lattice from any given circulation. In 5.2we briefly discuss
a possible approach to computing a minimum cost circulation based on the idea of the
Region-Growing Algorithm.

The Region-Growing Algorithm.
1. LetQ - Pb
2. Let R be the set of faces on which Q and P agree; A -- mini(P(/) Q(i)li
F-R}

3. For all faces f F- R: Q(f) - Q(f) + A
4. If Q - P, then Goto Step 2.

The correctness of the algorithm is trivial, and clearly the algorithm can be modified
to use the top of the lattice as the initial value of Q. We now prove that the algorithm
has an interesting property.

LEMMA 3.7. The region R remains connected dudng all stages ofthe algorithm.
Proof. By the construction of Lemma 3.4, we can assume without loss of generality

that all capacity lower bounds in G are zero and that Pb is the all-zeros circulation. Let
f be the assignment of flows to edges defined by the circulation P. Let G’ be the graph
obtained from G by setting upper bounds as follows:

u’ (e) I f(e) iff(e)>0,

0 otherwise.
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It is easy to check that P is the shortest path potential vector for G’. Thus the potential P
assigns to a face f is the distance off from the root face in a graphwith nonnegative edge-
lengths. Now consider the Region-GrowingAlgorithm. Becausewe started with the zero
circulation, at any point t in the algorithm, R consists of all faces whose potentials in P
are no more than some value, say v. That is, R consists of faces whose distance from
the root is no more than v. Clearly, R is therefore connected. [3

The last lemma provides us with the following view of the Region-Growing Algo-
rithm. Initially, R only contains theroot face. At each step: Push a certain amount of
flow (A) on the boundary ofR in the clockwise direction; annex to R the faces bordering
it whose potential has reached the desired value.

For example, to obtain Pt from any circulation P, we will run the algorithm "back-
ward." Initially, R only contains the root face. At each step, the boundary of R is satu-
rated, and the faces bordering saturated edges are annexed to R. (A saturated edge e is
an edge, whose flow has either reached its upper bound or its lower bound, and no more
flow can be added to it in the clockwise direction.)

It is easy to see that for an efficient implementation of this algorithm, all we need is a
shortest-path tree in the residual dual graph. This tree can be computed in O(nx/log n)
by Frederickson’s algorithm IF], where n is the number of faces in the graph.

3.4. Vertex capacities. An interesting version of planar flow is the case where ver-
tices as well as edges have capacity constraints [KN]. Vertex capacities may arise in
various contexts such as computing vertex disjoint paths in graphs [KS] and in various
network situations when the vertices denote switches and have an upper bound on their
capacities. For the case of general graphs, this problem can be reduced to the version
with only edges having capacity constraints by a simple idea of "splitting" vertices into
two and forcing all the flow to pass through a "bottleneck" edge in-between. In planar
graphs, this reduction may destroy the planarity of the graph and thus cannot be used.

The following example shows that the set of feasible circulations with vertex capacity
constraints does not form a lattice when circulations are represented by potential vectors.
This may explain in part why it is harder to design efficient algorithms for this case.

Let G (V, E) be a planar graph with five vertices where vl, v2, va, v4 form a di-
rected anticlockwise cycle and v is connected to all other vertices as follows: The edges
from v and va are directed toward vs, and the edges from v5 to v and v4 are directed
away from v. The capacity of vertex v5 is c, and the capacity of each edge is 4c.

We choose the following two feasible circulations. In circulation C, the flow on
edges v, v and vs, v2 is c, and the flow on edges va, v5 and v, v4 is zero. In circulation
Cz, the flow on edges v, v and v, v is zero and the flow on edges va, v and vs, v4 is c.
(The flow on the edges on the cycle Vl, v, va, v4 is not important in both C1 and C.)

It is easy to see that either the meet or the join of C and Cz will generate the cir-
culation in which the flow on edges v, v5 and v, vz is c and the flow on edges va, v5
and vs, v4 is also c. Clearly, this circulation is infeasible (due to the capacity at v5 being
violated).

4. The partial order. There is a partial order associated with every distributive lat-
tice. We will investigate the partial order that is associated with the lattice P. Our expo-
sition will follow Gusfield and Irving [GI, Chap. 2] and Gr/itzer [G, Chap. 2].

Let P[f i] denote the set of all circulations such that the potential of face f is
equal to i. Obviously, P[f i] induces a sublattice of P. We call a lattice element
irreducible if, for some face f and potential value i, it is the bottom element of P[f i].
Let 1(79 denote the set of all irreducible elements of the lattice. We define the partial
order (I(P), _) as the partial order on I(P) where the dominance relation is inherited
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from 79. Clearly, 1(79) has a unique minimum and maximum since it contains both Pb
and Pt.

For a partial order R, a subset S is said to be closed in R if, for every s E S, the
predecessors of s are also in S. The following theorem is proved in [G, Thm. 9, p. 72]
and [GI, Thm. 2.2.1].

THEOREM 4.1. Define a mappingfrom the closed subsets of I(T’) into 7:’ by S - VS.
Then this mapping is one-to-one and onto. Moreover, if closed subsets S and S’ of 1(7:’)
correspond to circulations P and P’, respectively, then P dominates P’ ifand only ifS c_ S’.

It is clear that I(P) may have exponential size if the capacities are exponential. How-
ever, we will see that a different partial order can be constructed such that Theorem 4.2
still holds, yet this partial order has a more regular structure, which enables us to repre-
sent it succinctly.

The elements P1 and P2 are called consecutive elements in the lattice 79 if P2 covers
P1; i.e., there is no element Q such that P1 < Q < P2. Suppose that elements P1 and
are consecutive and that P < Pz. The minimal difference between P and Pz is defined
to be the pair (f, i), where f is the face on which P and P2 differ and i is the potential
of f in P. (Obviously, the potential of face f in P2 is i + 1.) We denote by 79 the set of
all minimal differences in 79

Note that we can assume without loss of generality that consecutive elements differ
in only one face, since we can assume that there are no edges in the graph whose lower
bound on the capacity is equal to the upper bound. One way of seeing this follows from
3.1, where lower bounds are eliminated, and then such edges have zero capacity and
can be removed from the graph.

LEMMA 4.2. Suppose that the potential offace f in Pb and Pt is p and q, respectively.
Then, for all i, p < i < q, there exist consistentpotential vectors in which face f haspoten-
tial i.

Proof. The proof follows from the Region-Growing Algorithm. Run the algorithm
so as to obtain the top element of the lattice. For some k, at the end of step k 1,
Q(f) < i, yet at the end of step k, Q(f) > i. By decreasing A appropriately at step k,
Q(f) i, and the potential vector obtained is consistent.

The last lemma implies that, for consecutive elements P1 and P2 where P < P, the
potential of face f in Pg. is bigger than its potential in P by precisely one unit. Hence, we
can denote a minimal difference by (f, i); i.e., the potential of face f is increased from
toi+ 1.

A maximal chain in a lattice is a chain of consecutive elements that starts at Pb and
ends at Pt. An interesting property of distributive lattices is that each maximal chain
contains all the minimal differences. The minimal differences appear on each maximal
chain in some order, and each minimal difference appears exactly once.

We can now define the partial order (K(P), __). Let D1, D2 E 79; then D1 < Dz if
and only if Vx precedes D on every maximal chain in 79. The motivation for defining
this partial order follows from Theorem 19 of [G, p. 75], which states that every distribu-
tive lattice is isomorphic to a ring of sets. A ring of sets is a distributive lattice where
the elements are subsets defined over a base set and the join and meet operations are
respectively defined as intersection and union. Let 7 denote the ring of sets isomorphic
to 79. Then, the closed subsets of the partial order (K(P)) are, in fact, in one-to-one
correspondence with the elements of 7. This leads us to the next theorem, whose proof
follows from [GI, Thm. 2.4.4] and which relates the partial orders 1(79) and K(P).

THEOREM 4.3. There is a one-to-one correspondence between the closed subsets of
I(Y’) and K(T’).
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We are now ready to simplify the partial order K(T’) and define a dag T(T’)
(D, E), which has a succinct description. The vertex set of T(P) is again D, the set
of minimal differences. The edge set of T(P) is defined as follows:

For face f that takes potential values between p and q, there is a directed chain
(f,p) (f,p+ 1), (f,q- 1) (such a chain is called an f-chain);
For adjacent faces f and g that take potential values between px and ql, and
p2 and q2, respectively, and the edge from f to g has capacity b. There is a
"ladder" between the f-chain and the g-chain: (f, pl) (g,p+b), (f, px+1) --+

(g, Px +b+ 1),..., (f,x) - (g,x + b),where x min{ql 1,q2 -b- 1}.
The next theorem relates the closed subsets of the dag T(P) and the elements of

79 The intuitive reason for its correctness follows from the fact that the shortest path
information can be completely recovered from the constraints on adjacent faces.

THEOREM 4.4. There is a one-to-one correspondence between the closed subsets of
T(P) and the elements of79.

Proof. Let S be any closed subset of T(P). Let f be any face and denote the lower
and upper bounds on its potential values by p and q. Since S is a dosed subset, the
intersection between the f-chain and S is a subchain starting at (f, p) and ending at
(f, xy), where xy _< q 1. The potential vector corresponding to S is defined as follows:
for each face f, assign its potential to be xy. To see that this is a consistent potential
vector, let f and g be any two adjacent faces where the capacity of the edge from f to
g is b. If xa xy > b, then S cannot be a closed subset, since (g, x) e S where as
(f, xg- b) S.

The correspondence in the other direction is proved very similarly. Given a consis-
tent potential vector where face f has potential xf, the closed subset S is constructed as
follows: For each f-chain, the subchain from (f, p) to (f, xf 1) belongs to S. Again,
for any adjacent faces f and g, since Xg Xf b, S is a dosed subset.

We now consider the simple example in Fig. 2(a). The face fl is chosen to be the root
face. The bottom element of the lattice corresponds to the smallest possible potential
vector, which is (0, 1, -4) (these are the potentials of the faces fl, f2, f3, respectively. We
can now modify the graph by eliminating lower bounds on the edge capacities (by con-
structing the residual graph with respect to Pb). We now get the graph in Fig. 2(b). We
construct its dual graph in Fig. 2(c). This is the graph for which we would like to encode
all feasible potential vectors. The range ofpotentials for both f2 and f3 can easily be seen
to be 0... 2. We thus construct the two chains (fi, 0), (fi, 1) (i 2, 3) (see Fig. 3). The
ladder edges are added from (fa, j) to (fe, j) (j 0, 1). This gives us T(P), whose closed
subsets encode all the feasible solutions. Clearly, there are six closed subsets of this dag,
i.e., , {A), {A, B}, {A, C}, {A, B, C}, {A, B, C, D}. Each closed subset corresponds to
a set of minimal differences, which we can add to Pb to generate an integer circulation.
These closed subsets are in one-to-one correspondence with the set of circulations of the
graph, namely, (0, 1, -4), (0, 1, -3), (0, 2, -3), (0, 1, -2), (0, 2, -2), (0, 3, -2). These cir-
culations are obtained by adding the minimal differences to the potential vector Pb (bot-
tom of the lattice). It is easy to see that the shortest path potential vector corresponds
to the top of the lattice.

In the stable marriage problem, it was shown that every partial order can be associ-
ated with some instance of the problem [GI]. An interesting question is whether there
exists a subset of the set of dags that has some "nice" characterization such that there
exists a planar circulation instance that can be associated with each dag in the subset.
Unfortunately, it seems that dags corresponding to planar circulation instances have
very specialized structure: (i) There is a one-to-one correspondence between faces in
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[2, 5]

(c)
FIG. 2. Figure to illustrate example: (a) graph and its dual graph; (b) residual graph with respect to Pb; (c)

dualgraphfrom residual graph.

(f, 1)
D c

A

FIG. 3. Figure to illustrate dag T(P).

the planar graph and subsets of vertices in the dag that induce an acyclic tournament,
either directly or by implication (the f-chains); (ii) There is a special structure connect-
ing these subsets (the "ladders") that must correspond to capacities in the circulation
instance.

5. Minimum cost flow. In the minimum cost circulation problem, each edge has, in
addition to its capacity, an associated cost c(e) (sometimes written as c when the edge
is clear from the context). The costs on the edges are assumed to be antisymmetric and
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may be positive as well as negative. The aim is to compute a feasible circulation such
that the cost is minimized, where the cost is defined as

f(e)c(e).
e.E

In a planar graph, the cost of a circulation can be expressed as a function of the
potentials of the faces andface costs. The cost of a face t is defined as follows. Traverse
the boundary of the face clockwise, since the graph is directed some edges are traversed
in the forward direction and some in the reverse direction; see below:

eEforward(g) eEreverse(g)

The cost of the circulation is ],e f(e)c(e) and is the same as ]geF p(g)c(g).
Let f be a function defined on a lattice Z and let a, b E/. The function f is called

modular if

f(a) + f(b) f(a V b) + f(a A b).

The next proposition is immediate.
PROPOSITION 5.1. The costfunction ofa planar circulation is modular
We now show that the solutions to the minimum cost circulation problem form a

sublattice. Let f denote the cost function in a circulation and let P1, P2 E 79 be any two
minimum cost circulations. Since f(P) + f(P2) f(P V P2) + f(P1/x P2), the cost of
f(P1 V P2) and f(P A P2) must be minimum as well.

5.1. Representing the minimum cost solutions. Having shown that the minimum
cost circulations of G form a sublattice, we now describe how to construct a network
G’ whose feasible circulations are exactly the minimum cost circulations of G. Hence, it
follows that the machinery discussed in 4 for representing the set of feasible circulations
can also be applied to represent the set of minimum cost circulations; i.e., a partial order
whose closed subsets correspond to the minimum cost circulations can be constructed.

For any network G (not just for a planar network), once we have a single mini-
mum cost circulation C’, we can represent all minimum cost circulations as C + {C’
C’ is a circulation in G’}, where G’ is a network derived from G and C’. This represen-
tation is analogous to the representation of all solutions to a linear system or differential
equation as a single solution, plus the set of solutions to the homogeneous equations.

To compute G’, we first derive reduced edge-costs from the original costs c in the
residual graph of G with respect to (7. Reduced edge-costs are all nonnegative and have
the property that the cost of any cycle in Gc is the same whether we use original costs
or reduced costs. In particular, any cycle in Gc that has zero-cost with respect to the
original costs also has zero-cost with respect to the reduced costs and hence contains
only edges that have zero reduced cost. Let G’ be the subgraph of Gc consisting of
edges with zero reduced cost.

LEMMA 5.2. The set ofmin-cost circulations in G is {C + C’ C’ a circulation in G’}.
Proof. Let C’ be any circulation in G’. Since G’ is a subgraph of Go, C’ consists

of a collection of cycles of flow in Gc such that C + C’ is a circulation in G. Since G’
contains only edges with zero-reduced cost, every cycle in (7 has zero cost. Hence the
cost of C / C’ is the same as that of C’ and is hence minimum.

Conversely, let C’ be any min-cost circulation in G. Then C’1 C’, being the dif-
ference between two circulations, is itself a circulation in Gc and is hence composed of
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cycles of flow. If any such cycle offlow had negative cost, it could be added to (7 to reduce
C’s cost, so there are no negative cycles. Similarly, there are no positive-cost cycles, else
they could be subtracted from Ct to reduce its cost. Thus the difference C (7 consists
of a collection of zero-cost cycles of flow. By the remarks above, each such cycle consists
of edges with zero reduced cost, so C C is a circulation in G’. q

For completeness, we describe one standard construction for computing reduced
costs. Since C is min-cost, every cycle in Gc has nonnegative cost [FF]. Obtain an
auxiliary graph from Gc by adding a node s and zero-cost edges from s to every original
node. Next, in the auxiliary graph compute shortest path distances d(v) of each node v
from the added node s, using an algorithm, e.g., Floyd-Warshall, that depends only on
the nonexistence of negative cycles.

Now, for each edge e zv in Gc, we define the reduced cost (e) c(e)+d(z)-d(v).
By Bellman’s equations, d(v) < c(e) + d(z), so each reduced edge-cost is nonnegative.
Furthermore, it is easy to check that the cost of any cycle in C,c is the same whether we
use original edge-costs or reduced edge-costs, since the d(v)’s cancel out as we traverse
the cycle.

5.2. Directions for future research. An outstanding open question is whether a bet-
ter algorithm for computing minimum cost circulations in planar graphs can be found.
In what follows, we will outline two possible approaches for this problem.

Minimizing a modular function defined on a lattice is a well-known problem in oper-
ations research. We briefly review its solution. (See., e.g., [GI, pp. 130-133], [Ir], [To] for
more details and proofs.) Let the cost of everyvertex in the dag T(79) be equal to the cost
of the corresponding face in the original graph. It is easy to see that the minimum cost
circulation problem can be restated as the problem of finding the predecessor-closed set
of minimum cost in T(79), where the cost of a closed set is defined to be the sum of the
costs of its members. The problem of computing the minimum cost closed set can be
reduced to computing the minimum cut in the following graph, denoted by T:

Connect all positive cost vertices to a source and all negative cost vertices to a
sink;
The capacity assigned to edges adjacent to the source or sink is equal to the
absolute value of the cost of the vertices to which they are adjacent;
All other edges have infinite capacity.

Solving this problem directly, by computing a maximum flow, would take too long, be-
cause the graph T is too big. However, some algorithm based on maximum flow would
be interesting for the following reason. Most algorithms for computing the minimum
cost circulation have the following form: They start from an initial circulation and gen-
erate circulations of smaller cost until a minimum cost circulation is obtained. In the
dag T(T’), a one-to-one correspondence can be established between its closed sets (or
the circulations in 79) and the cuts separating the source from the sink in the graph T.
Thus, all these algorithms can be viewed as algorithms that implicitly compute the mini-
mum cut in T. On the contrary, an algorithm that computes the minimum cut in T via a
maximum flow can be considered a dual algorithm to all other minimum cost circulation
algorithms. The question therefore arises: Can the special structure of T be exploited
to find the maximum flow much more quickly, say by considering only intermediate so-
lutions (feasible flows) of a certain form ?

A different approach to computing a minimum cost circulation follows from the
Region-Growing Algorithm. What happens when this algorithm is applied to the min-
imum cost circulation problem? At each step of the algorithm, we must first decide
whether to push some amount of flow in the clockwise direction and then decide which
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faces to annex to R. These decisions will depend on the cost of the boundary of R in the
clockwise direction. The easy case is when the cost is negative: Then the boundary is
saturated, and the faces that border on saturated edges are annexed to R. The difficulty
arises when the boundary has positive cost. Then there is no gain in pushing more flow
on the boundary in the clockwise direction. From the existence of the Region-Growing
Algorithm, we know that there is at least one face f that borders R and can be annexed
to it; i.e., the potential of f has reached its value in some optimal solution. Does there
exist a simple criterion for determining which face that is?

Another intriguing research question concerns dynamic computation of feasible or
minimum cost circulations in planar networks. Suppose that we are given a circulation
and assume that the capacities are changed on edges of a single face. It follows from the
correspondence between circulations and shortest paths that it is easy to derive a new
circulation from an old one in O(nx/log n) time [F] by using the notion of reduced cost.
What can be said about the analogous problem for minimum cost flow?

Acknowledgments. We would like to thank Tomas Feder and Dan Gusfield for help-
ful discussions.
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Abstract. Motivated by the elementary fact that the sum of the diagonals of a quadrilateral is less than its
perimeter the following question was raised: Do the three largest sides exceed the diagonals? More generally,
given n arbitrary segments in the plane, can one select n + 1 other segments whose endpoints are among
the endpoints of the iven segments and whose total length is at least as large as the total length of the given
segments? Not only will the existence of these segments be shown, but also a fast O(n log n) algorithm to
select them will be iven. or quadrilaterals, two stronger inequalities will also be proved.

Key words, inequalities, computational geometry

AMS(MOS) subject classifications. 51M16. 51M04, 51M25, 68U05, 26D99

1. Introduction.

1.1. A new inequality for quadrilaterals. It is well known that the sum of the diago-
nals of a quadrilateral is not greater than its perimeter. This consequence of the triangle
inequality was first proved thousands of years ago, and it also can be found in the works
of many well-known scholars, among them Hadamard [H], Borel [B], and Gr6vy [G]. It
might come as a surprise that a much stronger statement can be made.

THEOREM 1.1. The sum ofthe diagonals ofa quadrilateral is not greater than the sum
ofits three largest sides.

With more effort, we will prove the following two stronger results.
THEOREM 1.2. The sum ofthe diagonals ofa quadrilateral is not greater than the sum

ofits two largest sides and its smallest side.
THEOREM 1.3. The sum ofthe diagonals ofa quadrilateral is not greater than the sum

of its largest side, the side opposite to it, and 2x/ 2 .83 times the average of the other
two sides.

If we only assume the triangle inequality, then these theorems do not necessarily
hold; we must assume the Euclidean metric (see Remark 3.2).

1.2. The general result. Theorem 1.1 can be reformulated in the following way.
Given two segments AC, BD in the plane, we can select three different segments from
the four others determined by the points A, B, C, D with the total length at least IACI /
BDI. This leads to another more general question. Given n arbitrary segments in the
plane, can we select n / 1 other segments, whose endpoints are among the n segments’
endpoints and whose total length is at least as large as the original n segments’? We can
prove the following theorem.

THEOREM 1.4. Given n > 2 arbitrary segments in theplane, with not necessarily distinct
labeled endpoints, these labeled endpoints define () n new segments. From these new
segments, we can select n + 1 segments distinctfrom each other and whose total length is at
least as large as the total length of the given n segments. Here two segments are said to be
distinct if the labels oftheir endpoints are not the same. Equality holds ifand only if n 2
and the two segments coincide.

The main idea of the proof of Theorem 1.4 is the following selection algorithm. Let
us mention that this algorithm takes time O(n log n), although the number of possible
segments is () n.
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SELECTION ALGORITHM. Suppose that n > 3. Let A1BI be the longest ofthe n seg-
ments. Label the others in order oftheirangles with AB. Let k > 2 be the smallest k such
that AxBx < x/-AkBk. Select the longest side ofAiAiBBifor i 2,3,... ,k- 1, the two
longest sides ofAAkB1B, and the longest side ofAiAi+BiB+ for i k, k + 1,..., n
(index adthrnetic mod n). Ifthere is no such k, then it is enough to select n segments. (By a
side we mean a segment differentfrom AiBi

2. Proofs.

2.1. Proof ofTheorem 1.1. Label the sides a, b, c, d in order around the quadrilat-
eral, where a is the largest, and the diagonals are e and f (Fig. 1).

C

A a B
FIG. 1. Notation. The largest side is a

If a < e or a < f, then b + c < f, and c + d < f proves the theorem. (Here we
might have selected the "larger of the remaining sides.")

If a < e and a < f, then the quadrilateral is convex, and

(1) 0 < (e a)(f a).

Ptolemy’s theorem [BDJMV, Thm. 15.4] states that, for any quadrilateral, ef < ac + bd.
From b < a,

(2) ef < ac + ad.

Combining (1) and (2), a(e + f) < a(a + c + d). So

(3) e+ f < a+c+d.

2.2. ProofofTheorem 1.2. We use the notation of the previous proof; a denotes the
largest side again. By symmetry, we can suppose that d < b.

When inequality (1) holds, then the previous proof proves Theorem 1.2.
Therefore, by symmetry, we must only prove Theorem 1.2 when f > a > e, and a is

the largest side. We can also suppose that d is the smallest side, otherwise b + c > f, a > e
proves Theorem 1.2.

1Translate the segments so that the midpoints will be the same as the midpoint of A1B1. Go around and
label the endpoints by A, A2, Aa,... An,BBg.,..., Bn in order.
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We have e > b, otherwise b > e, a + d > f proves Theorem 1.2.
Denote by the line perpendicular from (7 to DB. Let C’ be the intersection of

line with the 60-angle arc around A of radius AB with endpoint B. Since e > b, this
intersection exists (see Fig. 2). Denote by b’, c’, and e’ the lengths of BC’, C’D, and
AC’, respectively.

A a B
FIG. 2. Line has to intersect the arc when e > b.

So e’ a. Therefore 0 (e’ a)(f a). Since a > b’, we can prove similarly to
the proof of Theorem 1.2 that

(4) e’ + f < a + c’ + d.

Consider the two hyperbolas, both with loci A and D, passing through C and C’, respec-
tively. We see that

(5) c’ e’ < c- e.

Combining (4) and (5), e + f < a + c + d.

2.3. Proof of Theorem 1.3.
LEMMA 2.1. Ifthe angle and the lengths ofthe diagonals are given, then the sum ofthe

largest side, the side opposite to it, and 2x/ 2 , .83 times the average of the other two
sides is minimal when the quadrilateral is a parallelogram.

Proof. Label the vectors of the sides of the quadrilateral by a AB, b B-B-,
c CD, and d - (a is not necessarily the longest side). Translate e and

f BD, the diagonals of the quadrilateral, to the diagonals of a parallelogram. Denote
by a’, b’, c’, and d’ the sides of the parallelogram, i.e., the vectors of the images of a, b,
c, and d, respectively. Therefore

la’l + I,=’1 I’-,=’1 le- fl la- el _< I1 + I’=1.
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Similarly, Ib’l + Id’l < Ib[ + Idl. We can suppose that we labeled the sides of the quadri-
lateral in such a way that a’ is the longest side of the parallelogram. So

Ib’lla’l + Ic’l + 2)< lal + Icl + 2)
2 2

which is not more than the sum of the largest side, the side opposite to it, and 2x/- 2
times the average of the other two sides of the quadrilateral. Lemma 2.1 is proved, fl

So it is enough to prove Theorem 1.3 for a parallelogram. Label its vertices by A,
B, C, and D, the midpoints of AC and AB by O and F, respectively.

D

A A’ F B’ B
FIG. 3

C

Let AB > BC (see Fig. 3). It would suffice to show that

(6) (2/- 2)OF / AB > AO + OB.

We will minimize the difference of the two sides in this inequality by moving A and B
closer to F. If A’ and B lie on the segments AF and FB, respectively, then

(2x/ 2)OF+AB AO OB= (2/ 2)OF+A’Bt+(AA’- AO)+(BB’- OB)
> (2x- 2)OF+A’B’- A’O- OS’.

Since the angle ZAOB is not acute, it is enough to prove inequality (6) when ZAOB
is a right angle. In this case, the length of AB is two times the length of OF. If we fix
the length of AB (and thus the length of OF), then AO + OB is maximal when AB is
perpendicular to OF. In this case, (2x/ 2)OF + AB AO + OB. So inequality (6)
holds.

2.4. Proof of Theorem 1.4. If n 2, we have the two diagonals of a quadrilateral.
So assume that n > 3.

We will prove that the total length of the segments selected by the Selection Algo-
rithm is larger than the total length of the original n segments. Let us use the notation
of the Selection Algorithm.

For 2 <_ < k, AB is not longer than the longest side of AIABIBi, where by a side
we mean a segment different from AjBj. This follows from AB > /-AiBi, since, in
this case, A andB cannot both be in the interior ofthe intersection ofthe circles around
Ax and B with radii AiBi. So we can suppose that k 2, i.e., that ABI < x/A2B2.

We can prove similarly to the proof of Lemma 2.1 that, if the angle and the lengths
of AB and ABj are given, then the largest side of AABB and also the sum of its
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two largest sides is minimal if AiAjBiBj is a parallelogram. So we can suppose that the
segments ABi have the same midpoint 0.

Ifwe dilated Ai+Bi+ to A+B[+ from O, where

OAi+l < OAi+l OBi+ OA1,

then A+IB+I would have increased at least as much as the increase of the longest
side of ABAi+IB+I plus the increase of the longest side of A+IB+IA+2Bi+2. This
simply follows from the triangle inequality (see Fig. 4).

A

Ai+2

FIG. 4. Dilate Ai+l Bi+l to the length ofAiBt.

Since we select the longest side of AiAi+lBiBi+l for i 2, 3,..., n, we can suppose
that each segment except A2B2 is dilated to the length OrAl

The following lemma will be extremely useful in the rest of the proof.
LEMMA 2.2. If AiBi and Ai+Bi+ with the same length are fixed and Ai+lBi+l is

rotated between them around 0 and is not longer than the previous two, then the sum of
the largest sides ofAiAi+1BiBi+1 and Ai+1A+zBi+1Bi+ is minimal at thefollowing two
positions ofAi+lBi+l

(i) Ai+lBi+l is on the line AiBi or on Ai+2Bi+ in the case of/AiOAi+z < 90,
(ii) Ai+lBi+l isperpendicular to AiBi or Ai+Bi+z in the case of/AiOAi+2 >_ 90.
Proof. First, suppose that ZAiOAi+I < 90 and/AiOAi+ <_ 90. By symme-

try, we can suppose /AOA+x >_ /AOA+. If we rotate A+B+ around O to

A+IBi+ such that/AOA+I < /AiOAi+1 <_ 90, then the sum of the largest sides
of AiBiAi+lBi+l and Ai+lBi+lAi+Bi+ becomes smaller (see Fig. 5). To prove this,
label by "A+ the intersection of the ray OA+ and the circle around Ai+IBB+z, by
B[ and B[’ the intersections of Bi+2A+I and "B+zAi+ with the circle arc from B+z to
B such that

ZB+2BB{ ZBi+2B Bi 1/2ZBi+2Ai+lBi.
So

B B" " " Bi > Bi+2Ai+l+Ai+lBiBi+zAi+l +Ai+lBi Bi+zB > i+2 Bi+2Ai+l +Ai+l
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A

ooO

Bi+:
Bi+l

B

FIG. 5. Rotate Ai+IBi+ to decrease the sum.

Therefore, when/AiOA+2 < 90, then (i) holds, and, when/AiOAi+2 > 90,
then we can suppose that/AOA+ > 90 or ZA+OA+2 > 90. By symmetry, we
can suppose the latter case (see Fig. 6). If we rotate A+IB+I around O, then A+IB
and A+A+ become smaller as A+I gets closer to A+9..

So the sum of the longest sides is minimal when A+B+ is perpendicular to A+2
B+2; i.e., (ii) holds. ]

Let us continue to determine the conditions under which the sum of the selected
n + 1 segments is minimal.

Case 1. A3 is not nearer to A than to B.
Label by e and f the perpendiculars to AB1 and A3B3 at O, respectively.
If A2B2 is in the nonobtuse angle of A1B1 and f (see Fig. 7(a)), (or of A3B3 and e

(see Fig. 7(b))), then the two longest sides of A1A2B1B2 and the longest side of A2A3
B2B3 are minimal if A2B2 is coincident with f (with e). So we can suppose that A2B2
lies on either e or f or between them.

Hence, the sum of the two longest sides of A1A2B1B2 and the longest side of A2A3
B2B3 is equal to A1B2 + B1A2 + A2B3 (see Fig. 8(a)). AIB2 is minimal if A2B2 is on
e, and, by (ii) in Lemma 2.2, B1A2 + A2B3 is minimal if A2B2 is on e or on f. So we can
suppose that A2B2 is on e.
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FIG. 6. When the angle Ai+lOAi+2 >_ 90.

i+2

A2 = : :’)Z_- i
........

.41-"

"".

A1

(a) (b)

FIG. 7. The sum is minimal when (a) A2B2 is on f, and (b) A2B2 is on e.

The sum of the longest sides of A2A3B2B3 and A3A4B3B4 is equal to B4A3 h-
A3B2 (B4A3 +AaB) + (AaB2 AaB), whereB is on the ray OB and OB OA3
(see Fig. 8(b)). Both part of this sum are minimal if Az is on the line AeBe (the first
part from (i) in the Lemma 2.2, the second part from A3B A3B > -B2B
A3B AzBz, where A3 is on the line AzB and OA OAz). So we can suppose
that AzBz is eollinear with A2Bz and therefore with e.

Thus Case 1 falls under Case 2.
Case 2. Aa is not nearer to B1 than to A1 (see Fig. 9(a)).
Hence, the sum of the two longest sides ofAAeB/32 and the longest side of AzAa

/32B3 is equal to A/32 +/3A2 + A2B3. A1/32 is minimal if A2B2 is collinear with A3/33,
and, by (i) in Lemma 2.2,/3A2 + A2Ba is minimal if Az/3z is collinear with A3B3 or
with AIB. So we can suppose that A2/32 is collinearwith A3B3 (see Fig. 9(b)).
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(a) (b)

FIG. 8. The sum is minimal when (a) AzBg. is on e, and (b) AaBa is on e.

A3

A2
--_ B1A1 -... _.. A1

(a) (b)

B1

FIG. 9. (a) We can rotate A2B2 onto line A3B3. (b) When n > 6, we can use induction on n

If n 3, then the sum of the two longest sides of AA2BB2 and the longest side of
AaABaB is minimal when AB is perpendicular to the straight line AaABBa. So
we get Fig. ll(b).

If n > 4, label the sectors a and/3 shown in Fig. 9(b). We can suppose that there is at
most one segment in sector a; otherwise, by (i) in Lemma 2.2, we could suppose that AaB4
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is coincident with A3Ba, so we could use induction on n. Similarly, we can suppose that
there is at most one segment is in sector . So it is enough toprove the resultfor 4 < n < 5.

If n 5, then AaB4 is in c, AsB5 is/3, and none of them are c fq/3. By (ii) in Lemma
2.2, we can suppose that A4B4 is on e, and, after this, by (i) in Lemma 2.2, we can suppose
that AsB5 is coincident with A4B4. So it is enough toprove the resultfor n 4.

If n 4, then, by (ii) in Lemma 2.2, we can suppose that A4B4 is perpendicular to
A1B1 (see Fig. 10).

A

FIG. 10. The sum is a concavefunction of,,

Let us examine the sum ofthe five chosen segmentswhen the straight line A3A2B2B3
rotates around O such that the angle of it and AIB increases from 0 to 90. Denote
this angle by 7. Among the lengths of the five chosen segments, only the lengths of
AB2, A2B, and A4Ba are changing. The length of these segments is a concave func-
tion of7. The sum ofconcave functions is a concave function. So the sum ofthe segments
is a concave function of 7- So the minimum can be attained only when 7 O or 7 90.
If 7 0, we get Fig. 11(a). If 7 90, then AaBa is coincident with A4B4, so, by
deleting one of them, we get the case where n 3.

Simple calculation will complete the proof. What remained to be examined are the
cases of Figs. 11(a) and 11(b). Fix the length of OA to be 1. Denote the length of OA2
by a. We have a > 1//’, since AIB1 < v/-A2B2. In the case ofFig, ll(a), the sum ofthe
chosen five segments is 3a + 3 + 2x/, which is larger than 2a + 6, which is the sum of the
original four segments. The minimum of their difference is 1/x/-- 3+2v/ > 0.4. In the
case of Fig. ll(b), the sum of the chosen four segments is 2v/a + 1 + 1 + a + x/, which
is larger than 2a + 4, which is the sum of the original three segments. By differentiating
the difference of these sums, we get that the minimum of this difference is at a 1/x/-,
when it is larger than 0.14.

3. Remarks.
Remark 3.1. Theorems 1.2 and 1.3 are strict in the sense that there is a quadrilateral

where the sum of the diagonals is larger than the sum of its largest side, the side opposite
to it, and the smaller of the two remaining sides.
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A3

A1 A2

A4

B1

(a)

A1

A3

(b)

B1

FIG. 11

For example, take a quadrilateral inscribed to a circle whose a and b sizes have the
same length and the angle between them is less than 60. By Ptolemy’s theorem, ef
ac+bd a(c+d). Combining thiswith O > (e-a)(f -a), we get a(e+ f) > a(a+c+d),
soe + f > a +c+d.

Remark 3.2. If we only assume the triangle inequality, then Theorem 1.1 does not
hold.

For example, take the geometry on the surface of a sphere. Let us choose A, B, C,
and D to be distinct points on a great circle such that both of the straight lines AC and
BD pass through the center of the sphere. So the sum of the diagonals of the spherical
quadrilateral ABCD is equal to its perimeter; so it is more than the sum of its three
largest sides.

[H]
[B]
[G]
[BDJMV]
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REPLICATING TESSELLATIONS*
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Abstract. A theory of replicating tessellation of R is developed that simultaneously generalizes radix
representation of integers and hexagonal addressing in computer science. The tiling aggregates tesselate Eu-
clidean space so that the (m + 1)st aggregate is, in turn, tiled by translates of the ruth aggregate, for each m in
exactly the same way. This induces a discrete hierarchical addressing systsem on R’. Necessary and sufficient
conditions for the existence of replicating tessellations are given, and an efficient algorithm is provided to de-
termine whether or not a replicating tessellation is induced. It is shown that the generalized balanced ternary
is replicating in all dimensions. Each replicating tessellation yields an associated self-replicating tiling with the
following properties: (1) a single tile T tesselates R periodically and (2) there is a linear map A, such that
A(T) is tiled by translates of T. The boundary of T is often a fractal curve.

Key words, tiling, self-replicating, radix representation
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1. Introduction. The standard set notation X + Y {z + y z E X, y E Y}
will be used. For a set T c Rn denote by Tx z + T the translate of T to point z.
Throughout this paper, A denotes an n-dimensional lattice in l’. A set T tiles a set R
by translation by lattice A if R [-JxsA T and the intersection of the interiors of distinct
tiles T and Tu is empty. Such a tiling is calledperiodic.

In this paper, A A A will be an endomorphism of A, often given by a nonsingular
n x n matrix. Given A, a finite subset S c A, containing 0, is said to induce a replicating
tessellation or simply a rep-tiling of A if (1)

m

S ’A(S)
i--O

tiles A by translation by the sublattice A’+I(A) for each m > 0, and (2) every point of
A is contained in S, for some m. The pair (A, S) will be called a replicating tilingpair or
simply rep-tilingpair. This definition of rep-tiling is related to the rep-k tiles of Golomb
[11], Dekking [5], Bandt [1], and others as described later in this introduction.

The definition of rep-tiling can be restated in terms ofthe Voronoi cells ofthe lattice.
Recall that a lattice A determines a tessellation by polytopal Voronoi cells where the
Voronoi cell of the lattice point z is defined by {y ’ Ig z[ < lY zl for all z A}.
Let V, denote the union of the Voronoi cells corresponding to the lattice points of
The definition of rep-tiling is equivalent to (1) V, tiles by translation by the sublattice
A’+1 (A), for each m > 0, and (2) every point of l’ lies in V, for some m. The set
S, (or the corresponding V,) is called the m-aggregate of the pair (A, S). If S induces
a replicating tessellation, then the (m + 1)-aggregate is tiled by IS[ copies of the m-
aggregate for each m > 0. More precisely, So S and S,,+1 is the disjoint union

zA,+(S)

for all m > 0. Hence, we have the term "replicating."

edu
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Given A A A and S, afinite address of a lattice point z E A is a finite sequence
ra Aiso sl. s, such that z -i=0 si where s E S. The m-aggregate is then the set of

lattice points whose address has at most (m + 1) digits.
PROPOSITION 1. Given endomorphism A A A, the set S c A induces a rep-tiling

ofA ifand only ifevery lattice point in A has a unique finite address.
Proof. Condition (2) in the definition of a rep-tiling is equivalent to every lattice

point having a finite address. Given condition (2), condition (1) in the definition is
equivalent to the finite address being unique. This is proved as part of Proposition 2
in 2.

Before proceeding with the theory, consider the following three examples. The first
has applications to computer arithmetic and the representation of numbers by symbol
strings [20], [21]. The third has applications to data addressing in computer vision and
remote sensing [6], [18], [25].

Example 1 (Radix representation in Z). The lattice A is the one-dimensional integer
lattice Z, and A is multiplication by an integer b. By Proposition 1, a finite subset S of
Z induces a rep-tiling of Z if every integer z has a unique base b radix representation

mz -i=0 shi, where si S. With S {0, 1,..., b 1} and b > 2, the Fundamental
Theorem of Arithmetic states that every nonnegative integer (but no negative integer)
has such a unique radix representation. The m-aggregate, in this case, is the set of inte-
gers {0, 1,..., b’ 1}, and, clearly, each aggregate is tiled by b copies of the previous
aggregate. With b < -2, every integer has a unique radix representation. With b 3 and
S {-1, 0, 1}, the radix representation is called balanced ternary. Every integer has a
unique representation in the balanced ternary system. Although S {-1, 0, 4} is also
a complete set of residues modulo 3, the number -2 has no base 3 radix representation
with coefficients in the set S {-1, 0, 4}. Unique representation, in a more general
setting, is a main topic of this paper.

Knuth [20] gives numerous reference to alternative positional number systems dat-
ing back to Cauchy, who noted that negative digits make it unnecessary for a person to
memorize the multiplication table past 5 5. For a given positive integer base b, Odlyzko
[22] gives necessary and sufficient conditions for a set S of positive real numbers to have
the property that every real number can be represented in the form 4- -=-v sb- s
S. The unique representation of integers is investigated by Matula [21].

Example 2 (Radix representation in Z[i]). Gilbert [7]-[9] extends radix representa-
tion to algebraic numbers. For example in the Gaussian integers Z[i] {a + bi a, b
Z}, let -1 + i. Every Gaussian integer has a unique radix representation of the
form Y’i0 si, where si S {0, 1 }. (This will be proved in 7.) In the terminology
of this paper, if A is complex multiplication by fl, then S {0, 1} induces a rep-tiling
of the square lattice in the plane. The first aggregate is the union of two translates of
the zero aggregate; the second aggregate is the union of two translates of the first aggre-
gate; in general the (i + 1)st aggregate is the union of two translates of the ith aggregate.
Using Voronoi cells to represent the lattice points, Fig. 1 illustrates how the aggregates
fit together like jigsaw pieces. By contrast, with the value/ 1 + i replacing -1 + i, a
rep-tiling is not induced because the Gaussian integer has no radix representation with
coefficients in S.

The base/ arithmetic in the Gaussian integers resembles usual arithmetic except in
the carry digits. For example, 1 + 1 0011 because fl -1 + i satisfies the polynomial
z + z 2, i.e., 2 z +. So 1 + I results in carrying 011 to the next three places to

1Katai and Szabo [16] show that for base -k + i, where k is a positive integer, every Gaussian integer
has a unique radix representation with coefficients in
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FIG. 1. Radix representaion base 1 + i. Copies ofthe first seven aggregates are indicated.

the right. The ring structure of radix representation in algebraic number fields is further
discussed in 7.

Example 3 (Hexagonal tiling). This example is a two-dimensional analogue of the
balanced ternary of the first example. The lattice A is the hexagonal lattice in the plane
shown in Fig. 2, and the endomorphism A is given by the matrix

which is a composition of an expasnsion by a factor of x/ and an arctan(x/-/2) rotation.
The set S, consisting of the origin and the six points located at the sixth roots of unity,
induces a replicating tessellation. The 0-aggregate consists of the seven cells in Fig. 3(a).
The set of cells in Fig. 3(b) is a first aggregate and is the union of seven translates of
the zero aggregate. The second aggregate in Fig. 3(c) is, in turn, the union of seven
translates of the first aggregate. In general, the (i / 1)st aggregate is the union of seven
translates of the ith aggregate. The entire plane can be tessellated by translated copies
of the ith aggregate for any i in such a way that aggregates in the tessellation are nested
in the manner described above. Moreover, every hexagon lies in some aggregate. In the
unique finite address sos1.., s,, of a cell, the digit si indicates the relative position of
that particular cell in the ith aggregate level. Replicating hexagonal tiling is generalized
to higher dimensions in 7. From a computer science point ofview, hexagonal addressing
is an efficient addressing system that allows for addition and multiplication of addresses
based on simple sum, product, and carry tables [6], [18]. In fact, one firm has developed
a planar database management system based on hexagons (Gibson and Lucas [6]).

We consider two main questions.
Question 1. Given A A A and a finite set of lattice points S, does S induce a

rep-tiling of A?
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FIG. 2. Hexagonal lattice.

Fie,. 3. Zero, first, and second aggregates.
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Question 2. Given A A - A, does there exist some finite subset S of A, such that
S induces a rep-tiling of A?

Necessary conditions for (A, S) to be a rep-tiling pair are that S be a fundamental
domain for A (Proposition 2); in particular IS det AI. Also necessary is that A be a
linear expansive map (Proposition 4), which means that the modulus of each eigenvalue
of A is greater than 1. If A is linear expansive but (A, S) is not a rep-tiling pair, then, in
general, not every lattice point has a finite address. However, every lattice point z does
have an infinite repeating address that converges, in a certain sense, to z. This is proved
in 5, where the A-adic integers are defined in analogy to the classical number theoretic
p-adic integers; the A-adics are applied in 6. Section 6 contains three theorems giving
various necessary and sufficient conditions for S to induce a rep-tiling, thus providing
answers to Question 1. An efficient algorthm to determine whether (A, S) is a rep-tiling
pair is based on one of these theorems. A fourth theorem in 6 states that, for a large
class of matrices A, those with sufficiently large singular values (at least two in dimension
2), the set S of lattice points in the Voronoi region of a certain sublattice of A serves
as a fundamental domain such that S induces a rep-tiling. This provides an answer to
Question 2. The existence of an efficient algorithm, given A A - A, to decide whether
or not there exists a finite set S that induces a replicating tessellation, is open.

A periodic tiling of R’ by translation of a single tile T by the lattice A is called self-
replicating if there exists a linear expansive map A A - A, such that for each z E A,

,s’(:)

for some set S(x) c A. This self-replicating property originated with Golomb [11] who
defined a figure to be rep-k if k congruent figures tile a similar figure. For example, a
triangle is rep-k for k a perfect square. In this paper, tiling is restricted to lattice tiling,
but similarity is generalized to allow any linear expansive map A. Giles [10] discusses the
construction of rep-k figures whose boundary has Hausdorff dimension between 1 and 2,
including the rep-7 Gosper "flowsnake" and the rep-16 Mandelbrot "square snowflake."
The work of Dekking [4], [5], Bandt [1], Kenyon [17], and Gr6chenig and Madyeh [12]
all deal with the self-replicating property and use a construction similar in principle to
Theorem 1. The notion of a self-replicating tiling of R’ is due to Kenyon [17], although
the definition in [17] does not require that the tiling by translations of T be periodic, i.e.,
a lattice tiling. Kenyon shows that, on the line, the tiling is forced to be periodic, but not
necessarily periodic in dimensions greater than one.

The main point here is that each rep-tiling pair (A, S) induces a self-replicating pe-
riodic tiling. The construction is as follows. Let

m

E. A-’(S).
i=1

Note that the E, are nested and let

rn--1

and T := T(A,S) E,

where E denotes the closure of E.
THEOREM 1. If (A, S) is a rep-tilingpairfor A, then
(1) T T(A, S) is compact and is the closure ofits interior.
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(2) T tiles Rn periodically by translation by the lattice A.
(3) The tiling is self-replicating.
The above construction of self-replicating tessellations is applied to the second and

third examples in Figs. 4 and 5. Note that the tile in Fig. 4 is rep-2; the union of the two
tiles (viewed at an angle 7r/4) is similar to the original tile. Also, the tile in Fig. 5 is rep-7;
the union ofthe seven tiles is similar to the original tile. The proofofTheorem 1, given in
4 ofthis paper, is shorter and simpler than the proofof a similar theorem by Kenyon 17,
Thm. 11], but the hypotheses in [17] are slightly less restrictive. Nevertheless, essentially
very periodic self-replicating tiling can be obtained by the construction above (Theorem
2).

FIG. 4. Self-replicating tessellation by tile T(A, J), where A

lattice and S consists ofthe origin and the sixth roots ofunity.

__,a__2 I acts on the hexagonal

FIG. 5. Self-replicating tessellation by tile T(A, S) where A is multiplication by -1 q- acting on the square
lattice and S consists ofthe origin and the point (1, 0).

Section 7 of this paper examines the algebra, as well as the geometry, of replicat-
ing tessellations. A construction is given in which the lattice has a ring structure that
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allows for both addition and multiplication of finite addresses. This construction gen-
eralizes radix representation where the base is an algebraic integer and the hexagonal
tessellation used in image processing. It is shown that one important example, the gen-
eralized balanced ternary, provides replicating tessellations in all dimensions. Subjects
not treated in this paper, but of related interest, include L codes and ambiguity [3], [14],
[23].

2. Fundamental domain. The notation AX A(X) will be used hereafter. For
a lattice A, both A and AA are abelian groups under addition. Define a fundamental
domain S to be a set of coset representatives of the quotient A/AA. Indeed, if V is
the union of the Voronoi cells corresponding to the points of such a set S, then V is
a fundamental domain (Dirichlet domain) for the group of isometries of S’ that are
translations by vectors in A(A). If S is a fundamental domain, then [15]

ISI detAI.
In Example 1 of the Introduction, A (b) and A/AA Z/bZ. So a fundamental domain
S, in this case, is a complete set of residues modulo Ibl and ISI Ibl. In Example 3 of
the Introduction, ISI det(A) 7, corresponding to the seven lattice points in the
0-aggregate.

PROPOSITION 2. Let A A A be an endomorphism.
(1) If S induces a rep-tiling of A, then S must be a fundamental domain.
(2) If S is a fundamental domain, then (i) S, ,im=o Ai(S) files A by translation by

the sublattice Am+l(A) forall m >_ O, and (ii)thefinite address ofa latticepoint, ifit exists,
is unique.

Proof. Condition (1) in the definition of rep-tiling, with m 0, is equivalent to S be-
ing a fundamental domain. To show (2), assume S is a fundamental domain and, by way
of contradiction, assume the existence of lattice point with two distinct finite addresses.
Thus -im=0 Ais m=0 Aiti for some si, t E S and, without loss of generality, so to.
But this implies that so t0(modAA), a contradiction. To show that Sn -=0 A(S)
tiles A by translation, note that {Sx z E AA} tiles A by translates of S. Iterate to
obtain successive tilings

A=S+AA

S + A(S + AA) S + AS + AZA Sz + AZA

(S + AS +... + A’S) + A’+IA =Sm + Am+A.

According to Proposition 2, if S is a fundamental domain then the finite address of
a lattice point, if it exists, is unique. It is a consequence of topics in 5 that every lattice
point has a unique infinite address, which coincides with the finite address in the case
that all digits after a certain position are zero.

3. Equivalent tessellations. Matrix transformations A" A A and B" F F of
lattices A and F, respectively, are said to be equivalent if there exists an invertible matrix
Q, such that B QAQ- and F QA. Proposition 3 essentially states that questions
about replicating tessellations are invariant under equivalence.

PROPOSITION 3. Assume that A A -. A and B F -. F are equivalent via matrix Q.
(1) S is a fundamental domainfor A ifand only ifQS is a fundamental domain ]’or B.
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(2) So 81... 8m is thefinite address ofz E A ifand only ifQso Qsl Qs, is thefinite
address ofQz F.

(3) S induces a rep-tiling ofA ifand only ifQS induces a rep-tiling of F.
Proof. Concerning (1), there is a partition A S + AA if and only if there is a

m Asiifpartition F QA QS / QAA QS / BF. Concerning (2), x ,i=o
and only if Qx ,i=o QAisi ,=o Bi(Qsi) Statement (3) follows from state-
ment (2).

Remark. Since equivalence is essentially a change of basis for the matrix A, there
exist equivalent matrices in several canonical forms. By changing to a basis of the lattice
A itself, an equivalent integer matrix B Z’ Z’ is obtained. Hence, from the point
of view of replicating tessellations, there is no loss of generality in assuming that A is
an integral matrix acting on the cubic lattice Z’. In particular, the characteristic and
minimal polynomials for A have integral coefficients. Similarly, we can obtain equivalent
matrices in Jordan canonical form or rational canonical form. As an example, consider
the matrix A associated with the hexagonal tiling in the Introduction. Then

B= J= R=
-1 3 0 2 +w2 1 5

are equivalent integral, Jordan, and rational forms, where wl and w2 are the complex
third roots of unity and the lattice for R is Z2. The lattice for the Jordan canonical form
is actually a two-dimensional real lattice in C2.

Recall that a linear expansive map A is one for which each eigenvalue is greater
than 1.

PROPOSITION 4. If A, S) is a rep-tilingpair, then A must be a linear expansive map.
Proof. Assume that A has an eigenvalue of modulus e < 1. By the remark above,

the n n matrix A may be assumed in Jordan canonical form. Assume J is an m m
Jordan block of A of the form el + N corresponding to eigenvalue e, where N is the
nilpotent matrix consisting of all O’s except l’s just below the diagonal. (Without loss
of generality, assume that J is the topmost block of A.) Let T be the projection of the
fundamental domain S on the first m coordinates. For t T, an easy calculation shows
that each entry in the matrix jk is O(kmk). Since Itl < C for all t e T and some bound
C, then also IJktl O(k’ek) and 1i--0 Jhl < -,o O(ime) < c for some constant
c. Hence, the component consisting of the first m coordinates of any finite address is
bounded. However, there exists lattice points where this component is arbitarily large.

Next, assume that A has an eigenvalue ,0 of modulus 1. By the remark above, A
may be assumed to be an integer matrix. Let p(x) Z[x] be a factor of the characteristic
polynomial, irreducible over Z, with root A0. Assume that p(x) has a root , with modulus
not equal to 1. If < 1, then we are done by the paragraph above, so assume > 1,

There exists a Galois automorphism of Q[x] fixing Q elementwise, such that (,0) ,.
Now (,0)(,0) I implies I( 0)1 < 1. Again, an eigenvalue has modulus less than 1,
a contradiction. Therefore, all roots ofp(x) have modulus 1. However, Polya and Szeg5
[24, p. 145] prove the following result due to Kronecker [19]: If p(x) is an irreducible
monic polynomial with integer coefficients such that all roots lie on the unit circle, then
the roots of p(x) are roots of unity. This implies that A has eigenvalue 1 for some
positive integer j. Because A is an integer matrix, the corresponding eigenvector x can
be taken to have integer coordinates. If sost... s is the finite address of x, then the
finite address of x Ax is 00... 0SlS2... s, where the initial segment has j 0’s. Now
x has two finite addresses, which contradicts the assumption that the finite address is
unique.
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The condition that A be expansive is necessary for (A, S) to be a rep-tiling pair, but
it is not sufficient. There are matrices A satisfying the eigenvalue condition that admit
no fundamental domain S for which S induces a rep-tiling. In dimension 1, for example,
A (2) is such a matrix. (This is the only example in dimension 1.) Examples in all
dimensions are given in the comments after Corollary 1 of Theorem 3 in 6. Neverthe-
less, Proposition 4 is sharp in the sense that, for any e > 0, there exists a matrix A, and a
fundamental domain S,, such that A, has an eigenvalue of modulus a where la 11 < ,
and such that (A,, S) is a rep-tiling pair. The generalized balanced ternary is proved, in
the remark at the end of 7, to be such an example.

4. Self-replicating tilings. The proof of Theorem 1 appears in this section, as well
as the proof of the converse, Theorem 2.

THEOREM 1. If (A, S) is a rep-tilingpairfor A and T T(A, S), then
(1) T is compact and is the closure ofits interior;
(2) T tiles ]R’ periodically by translation by the lattice A; and
(3) the tiling is self-replicating.
Proof. Since, by Proposition 4, all the eigenvalues ofA- are less than 1, the set E, is

bounded, the bound independent of m; therefore, T is compact. Consider statement (2)
of Theorem 1. Condition (1) in the definition of a rep-tiling pair (A, S) guarantees that
Em tiles A-’(A) by translation by A. Therefore, E tiles I,J= A-’(A) by translation by
A. The facts that

__
A-m(A) is dense in IR and E is bounded imply IR’ IUsA T.

To show that the intersection of the interiors of distinct tiles is empty, it suffices to prove
that #(T Tu) 0, where # is Lebesgue measure. By condition (2) in the definition of
a rep-tiling pair, there is an integer m such that z, y S,,. From the definition of E it
follows that A+t(E) [.Jos Eo, which implies that A+(T) [-Joes, To. Now
(det A)’+I/z(T) Iz(A’+(T)) lz(Uwes Tw) < -oes #(Tw) (detA)m+#(T)
implies that #(Uoes. To) -oes. #(To). This, in turn, implies that Iz(T rq Tu) O.
Concerning statement (3) in the theorem it follows as above, with m 1, that A(T)
Uwes Tw. Then A(Tz) Uoesa, Tw.

Consider statement (1) in the theorem. To prove that T is the closure of its interior,
it suffices to show that each point x e E in an interior point of T. Let F denote the
interior of a point set F. Assume that 0 e T. Since there is a nonnegative integer rn
such that x Em, we have z "= A’x Am(E,) Sm- C A. Therefore, x e TO

if and only if z e (A’T) if and only if 0 e (-z + A’T). Since z 4- E c_ A’E, we
have T c_ -z + AmT. Therefore, if 0 e T, then x e T. Recall that T is compact
and that ]1{’ Ueh T. Hence, to show 0 e T, it suffices to prove that 0 T for all
x e A- {0}. Assume, by way of contradiction, that 0 e T for some x e Sk- Sk-
for some fixed k > 1. Let Lm {AmSm + A’-ts,_ +... + so s{ e S, s, = 0}.
We claim that lim,__,oo minyeL. lYl oo. To see this, note that for any R > 0 there
exists an integer m, such that um=0 L includes all points of A within a sphere of radius
R. Since finite addresses are unique, the points of Lm+l lie outside the sphere. Next,
choose B such that lYl < B for all y e T and choose m0 such that lYl > 2B for all
y E Lm, m > m0. Let a suppeR. IAxl/lxl and e B/am-k. From the choice of
x, there is a y E E, such that Izl < , where z x + y. Now Am-kz L,.o + E
implies that IAm-kzl > 2B B B, which in turn implies that Izl > B/,m-k , a
contradiction. [q

The periodic, self-replicating tiling by a single tile T(A, S) given by Theorem 1 is
said to be induced by the rep-tile pair (A, S). The next result states that essentially every
periodic self-replicating tiling is induced by a rep-tiling pair.
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THEOREM 2. Consider a periodic, self-replicating tiling by a single tile T. If (1) T is
compact and is the closure ofits interior, and (2) the origin is contained in the interior ofT,
then the tiling is induced by a rep-tilingpair.

Proof. Let A and A be the linear expansive map and the lattice, respectively, asso-
ciated with the periodic, self-replicating tiling. Let S be the finite subset of A, such that
A(T) I.Js T. We claim A(A) c_ A. To see this, let z be any point of A and note
that I.Joes() To A(T) Ax + A(T) Ax + oes To Jweax+s To. Because
this equality involves only finitely many compact tiles, Ax + S S(x). In particular,
Ax e S(x) c A.

We next prove that (A, S) is a rep-tiling pair. To show that S is a fundamental domain
for A, consider the Lebesgue measure on both sides of the equation A(T) (-Jes T.
This gives ISI det(A). Since S has the correct number of elements, it suffices to show
that no two elements of S are congruent mod(AA). Assume, by way of contradiction,
that s s’ + Ax for some x A {0}. Then s lies in the interior of T and hence in
the interior of A(T). Also, s’ lies in the interior of T,, and hence s lies in the interior of
Ax/A(T) A(T). However, the intersection of the interiors ofT andT is empty, and
hence, the same is true for A(T) and A(T), a contradiction. By Proposition 2, condition
(1) in the definition of a rep-tiling pair is satisfied.

Iterating A(T) (-Jes T, we obtain A"(T) (.Jes._ T. Because 0 lies on
the interior of T, for any lattice point z there is an integer m such that T c A (T)
(-Joes,_ To. This implies that z S,_, proving condition (2) in the definition of a
rep-tiling pair.

It remains to prove that T T(A, S). By the formula in the paragraph above,
S,-1 c A’(T), which implies E, A-’(S,_) c T for all m > 0. This, in turn,
implies T(A, S) c_ T. Since T(A, S) tiles ’ by translation by A, the interior points of T
satisfy TO c_ T(A, S). Therefore T TO c_ T(A, S).

Theorem 2 is false without the assumption that 0 is contained in the interior of some
tile T. For example, the tiling of/ by translates of the unit interval T [0, 1] is not
induced by a rep-tile pair. This tiling is indeed induced by the pair (A, S) where A (3)
and S {0, 1, 2}, but (A, S) is not a rep-tiling pair because the negative integers have no
base 3 radix representation with digit set S, i.e., -1 belongs to no aggregate. However,
the tiling of1 by translates ofT [- 1/2.1/2] is induced by the rep-tile pair (A, S) where A
(3) and S {-1, 0, 1}. It is an open question whether every periodic, self-replicating
tiling is induced, up to a translation, by a rep-tiling pair.

5. A-adic integers. It is assumed here that S is a fundamental domain for the matrix
A A A and that A is expansive. This implies, in particular, that det AI is an integer
greater than or equal to 2.

LEMMA 1. IfA is a linear expansive map, then

A’A {0}.
i=0

Proof. If all eigenvalues have modulus greater than 1, then examination of the Jor-
dan canonical form shows that A’x for all nonzero x.

For x A, let t, (x) denote the greatest integer t,, such that x AA. By Lemma
1, t, is finite except when x 0, in which case we set ,(0) . Then

1

det AI(
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has the property that [z[ 0 if and only if z 0 and thus defines a norm on A, and
d(z, y) [z y[ defines a metric we call the A-adic metric. Two lattice points are close
in the corresponding topology if their difference lies in A’A for large m. If A (p)
is a one-dimensional matrix, then this reduces to the classical p-adic metric where two
integers are close if their difference is divisible by a large power of p. The completion
of A with respect to the A-adic metric will be called the A-adic integers and denoted
A. (Alternatively, the A-adic integers can be defined as an inverse limit of the system
({A/AkA}, {fjk}), where fjk A/AkA A/AJA, j < k is defined by fjkk j,
where x xkmodAA.) Note that A c_ . If S is any set of coset representatives
for A/AA, then, just as for the case of the ordinary p-adic integers, there is a unique
canonical representation of each A-adic integer in the form -0 Asi, where s E S,
which will be abbreviated so sl s2... and called the A-adic address. The partial sums in
this canonical form converge to the A-adic integer in the A-adic metric.

A simple recursive algorithm to determine the A-adic address sosl s2... of a lattice
point is obtained by iteration using the partition A {S + x x AA}, from the
assumption that S is a fundamental domain. This process is analogous to finding the
base b digits in the radix representation of a given integer.

ALGORITHM A. The ith entry s, i 0, 1,..., in the A-adic address of a lattice point
x0 E A is the unique element of S, such that

s _= xi (mod AA),
where

x+ A-(x- s).

The A-adic address sos.., of a lattice point is called finite if s 0 for all i suf-
ficiently large. The A-adic address of every lattice point is finite if and only if (A, S) is
a rep-tiling pair. For A (3) and S (-1, 0, 4}, which is in the first example of the
Introduction, Algorithm A yields A-adic addresses:

1=(4)(-1)=4+(-1)3,
-2 444

Since -2 has no finite address, S does not induce a replicating tessellation on Z. For the
matrix

with

2 1 ) Z2 Z2A=
-1 3

the A-adic address of is
1
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Again, this shows that S does not induce a replicating tessellation of Z2.
If a lattice point z has an A-adic address with repeating string si/l.., si+q, we say

that x has a repeating address. Although a lattice point may not have a finite A-adic
address, the next result shows that every lattice point has a repeating A-adic address.

LEMMA 2. The A-adic address ofanypoint in A is repeating.
Proof. According to Algorithm A, whenz takes on a value a second time the address

repeats. Hence it is sufficient to show that the sequence {z} is bounded. Iterating the
formula in the algorithm gives x, A-’z ’i=0 A-’+isi If 1/c is the eigenvalue
of A with the least modulus, then c is the eigenvalue of A-1 with the greatest modulus.
Choose a real number a such that i > a > Ic]. A calculation using the Jordan canonical
form suffices to show that all entries of the matrix (1/aA-1), tend to 0 as m - . This
implies that ]A-"zl < amlzl for m sufficiently large. Hence, there is a constant c such
that ]A-’z] < calz], where c is independent of m. This implies, for any m, a bound

Note that the proof above gives an upperbound on the number of iterations in Algo-
rithmA necessary to determine whether or not a given lattice point z has a finite address.
For example, in dimension 1 with A (b) the bound is Izl + max{Isl s S}/(Ibl- 1),

6. Necessary and sufficient conditions for replicating tessellations. This section
contains several necessary and sufficient conditions for the existence of replicating tes-
sellations, thus providing some answers to the two main questions posed in the Intro-
duction. Again it is assumed throughout that S is a fundamental domain for A and that
A is expansive. Note that the matrix (I A") is nonsingular for any positive integer m.
Otherwise, I would be an eigenvalue of A", and hence A would have an eigenvalue of
modulus 1.

THEOREM 3. Given A:A -+ A, the following statements are equivalent:
(1) S induces a rep-tiling of&
(2) (I A"+I)-ISm contains no nonzero lattice pointfor m 0, 1,
(3) (I- Am+l)-IS contains only latticepoints with finite addressfor m 0, 1,
Proof. (3) (1) Assume S does not induce a replicating tessellation on A. Accord-

ing to Lemma 2 some lattice point y has a repeating address where the repetition is not
zeros. If there is an initial segment y0 of length q before the address begins repreating,
then y y0 E AqA and z A-q(y y0) E A consists of that portion of y that repeats
from the beginning. Let so, sl,..., s, be the repeating digits in the address of z. Then
(I A’+l)z -=o As, and therefore z (I- Am+l)-lSm, where z does not have
finite address.

(2) (3) Clearly, if (I- A"+x)-xS, contains a lattice point without finite address,
then it contains a nonzero lattice point.

(2) = (1) Finally, assume that (1 Am+l)-lqm contains a nonzero lattice point z.
Then (I A’+l)z -0 Ais with s S. The lattice point g whose infinite address
consists of the digits so, sl,..., s, repeated satisfies the same equation (I A"+l)y
,=o Aisi Since I A"+1 is nonsingular, z y has a repeating (not finite) address,
and therefore, S does not induce a rep-tiling of A. ]

Theorem 3 implies, in particular, that if (A, S) is a rep-tiling pair, then S cannot
contain any nonzero element of (I- A)A. In dimension 1, if A (b), then S can contain
no integer divisible by b- 1, a result given in [21]. For example, with S {-2, 0, 2}
there exist integers with no finite base 3 radix representation. Moreover, we have the
following result.

COROLLARY 1. Given A A A, ifdet(I A) +l, then A admits nofundarnental
domain S such that S induces a rep-tiling of&
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Proof. If det(I- A) +1, then (I- A)A A. Therefore, S must contain a nonzero
element of (I- A)A.

Examples of such matrices acting on the cubic lattice that admit no fundamental
domain include all matrices of the form

0 -m)1 m
and 21 + H,

where m is an integer and H is strictly upper trianglular.
Theorem 4, based on Theorem 3, states that only lattice points within a bounded

region need be tested for the existence of a finite address. This leads to an efficient
algorithm to determine, given A A A and a fundamental domain S, whether or not
S induces a replicating tessellation of A.

LEMMA 3. The sets (1 A"+x)-S., m 0, 1,... are contained in some ball
centered at the origin whose radius is independent ofm.

Proof. Let H A-1 and let H Q-I-Q, where is the Jordan canonical form
of H and Q is an appropriate nonsingular matrix. Suppose that c is a constant, such
that HQS is contained in a "box" B(c) {(Yl, Y2,..., Y) lull < c, i 1, 2,..., n}.
Furthermore, let C (1/(1 -a))n, where a is the modulus of the largest eigenvalue of
H. Note that a < 1, since it is assumed that the moduli of all eigenvalues ofA are greater
than one. Each entry in- approaches 0 as m --. oc. Hence, for m large enough, say
m > m0, we have B(C) c_ (-m+ I)B(2C). For m < m0, there is a constant K, such
that (H"+1 I)-l(B(c) + B(c) +... + mB(c)) C_ B(K). Let B’ be the larger of
the two boxes/3(2(7) and/3(14) and let/3 Q-1B,. In the statement of the lemma,
take any ball containing B.

Now (1 A’+I)-S, c_ B if and only if Sm C_ (I A’+)B. Multiplying by H"
gives the sufficient condition B(c) + -B(c) +... + -’B(c) c_ (-H-+ I)B’. This is
true by definition for m < m0. For m > m0, it suffices to examine the situation on each
Jordan block of H of the form d a1 + N, where a is an eigenvalue of H and N is
the nilpotent component of the Jordan block. An upper bound on the modulus of any
coordinate of B(c) + dB(c) +... + d’B(c) is

<- =C.-a 1-a

Therefore, we have B(c) + -B(c) +... + "-H-roB(c) C B(C) C (-m+l I)B(2C) C

(-H-+ I)B.
THEOREM 4. There exists a ball B centered at the origin, with radius depending only on

A and S, such that (A, S) is a rep-tilingpair ifand only ifeach latticepoint in B has a finite
address.

Proof. If (A, S) is a rep-tiling pair, then every lattice point in B has a finite address
because every lattice point does. The converse follows from Theorem 3 and
Lemma 3.

For particular cases, it is possible to give an explicit value for the radius of the ball
B. An efficient algorithm to determining whether or not (A, S) is a rep-tiling pair is
obtained by applying Algorithm A to each of the finite number of lattice points in/3.
Then (A, S) is a rep-tiling pair if and only if each of these A-adic addresses is finite. Two
examples are considered.
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Similarities. Consider the case where A bU, where U is an isometry and the real
number b is greater than 1 in absolute value. Call such a matrix a similarity. The tech-
niques of Theorem 4 yield the following version.

COROLLARY 2. Given a similarity A A ---, A, a set S induces a rep-tiling ofA ifand
only if every lattice point in the ball ofradius max(Isl s S}/(Ibl 1) centered at the
origin has a finite address.

Applying this result to the one-dimensional case gives the following corollary, which
is proved by other means in [21].

COROLLARY 3. Every integer has a unique base b radix representation with digit set S
ifand only ifevery integer in the interval

Ibl 1 Ibl 1

has such a representation.
Diagonalizable matrices. If matrix A is diagonalizable, for example, if the minimal

polynomial of A is irreducible over the integers, then the following result is obtained by
the methods of Theorem 4. Let Q be a nonsingular matrix and D a diagonal matrix such
that D QAQ-1. By a box is meant a set of the form {(zt, z2,..., z,) Izl <_ c, i
1, 2,..., n} for some constants ci. Let Bcs be the smallest box containing QS.

COROLLARY 4. With notation as above, for the diagonalizable matrix A, the set S
induces a rep-tiling ofA ifand only ifeach lattice point in Q- (BQs) has a finite address.

Example. Consider the matrix

acting on the square lattice Z2. A fundamental domain S has cardinality det(A) 23; let
S be the set of 23 circled latticed points in Fig. 6(a). Calculation shows that Q-l(Bcs)
is the rectangle indicated in the figure. It is routine to check that all lattice points within
this rectangle are in the first aggregate (having, in fact, finite addresses of length at most
two). By Corollary 4, this constitutes a proof that S induces an aggregate tessellation of
Z:"

Theorem 5 essentially states that if, in adding two elements of S there is only one
carry digit in the finite address of the sum, then S induces a replicating tessellation. More
specifically, the sum and difference of any two vectors in the fundamental domain lie in
the first aggregate.

THEOREM 5. Given A A ---, A and a fundamental domain S, if
(1) some aggregate contains a basisfor the lattice A and
(2) S +/- 6? c_ S + A(S),

then S induces a rep-tiling of&
Proof. By Proposition 2 it is sufficient to show that every lattice point has a finite

address. Since some aggregate S contains a basis, every element of A is the sum of
a finite number of elements with finite address of the form +Sos... s,, possibly with
summands repeated many times. The proof is by induction on the number k of sum-
mands. It is clearly true for k 0. Assume that every lattice point that is the sum of
k 1 terms has a finite address and let z be the sum of k elements of S. By induction,
the sum of the first k 1 of these k terms has the form z sos Sq, where s E S. Let
y tot t, be the kth term, where t E +S. Since S 4- S c_ S+ AS, addition of z and
y is performed on the respective addresses from the left, where the number of carries to
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(a) (b) (c)

FIG. 6. Fundamental domainsfor matrix A in the lattice

the next digit to the right (e.g., place + 1) is one less than the number of summands at
place i. It is not hard to deduce that the number of carries never exceeds m / 1, and at
place max(m, q) + i the number of carries does not exceed m i + 1. Hence, all digits
after place max(m, q) + m + 1 are zero. [3

For an n-dimensional lattice A, let G be the group of isometries of’ generated by
the n translations, taking the origin to each of n basis vectors of A. A Dirichlet domain
is a subset F c ’, such that ’ is the disjoint union of the images of F under G. It
is well known that there is a Dirichlet domain VA whose closure is the Voronoi region
of the lattice A. Call this Dirichlet domain VA the Voronoi domain of A. The radius of
the largest ball centered at the origin and contained in the Voronoi region is called the
packing radius of A, and the radius of the smallest ball centered at the origin containing
the Voronoi region is called the covering radius of A. Note that the packing radius is half
the length of a minimum norm vector in A.

Theorem 6 states that, for a large class of matrices A A A, there exists some
fundamental domain S such that S induces a rep-tiling of A. In fact, a number of distinct
viable fundamental domains can be obtained as the sets of lattice points contained in
Voronoi domains of certain sublattices of A.

LEMMA 4. A tq VAA is a fundamental domain for A A A.
Proof. Let D A N VAA. By definition, {VAA + Ax x E A} is a partition of

’. Hence {D x AA} is a partition of A. This is equivalent to saying that D is a
fundamental domain for A" A A.

LEMMA 5. Given A A A, let D A N VAA. Assume that
(1) the set ofminimum norm vectors in AA contains a basisfor AA, and
(2) all singular values ofA are greater than 3R/r, where r is the packing radius and R

is the covering radius ofAA.
Then D induces a rep-tiling of A. In the one- and two-dimensional cases, the bound

3R/r can be improved to 2.

Proof. The proof uses Theorem 5 by showing that (1) D contains a basis for A, and
(2) D 4- D C_ D + AD. To prove (1) we show that if vl,..., v, constitute a basis of
minimum norm vectors of AA, then A-vx,..., A-v, is a basis for A contained in D.
The condition on the singular values of A implies that IA-zl < r/3RIzl < 1/21zl for all
z E 1’*. Therefore, IA-vl < 1/21vl < r, which implies that A-ivi D for all i.
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Concerning the second condition, if x E D 4- D, then Ixl < 2R. By Lemma 4, we
know that D is a fundamental domain for A, and hence, x s + Ay, where s E D
and y A. It now suffices to show that y D. But y A-I(x- s)implies lul <
r/aR(Ixl+lsl) <_ r/3R(2R+R) r. Therefore, y D. The improvement in dimensions
1 and 2 is obtained by showing directly that IAyl <_ 2r, and hence lyl < r if all singular
values of A are greater than 2. D

A similarity of the form bU, where U is an isometry and b > 3ff- (b > 2 in dimen-
sions 1 and 2), satisfies the hypotheses ofLemma 5 ifthe lattice A itselfhas a basis ofmini-
mumnormvectors. ApplyingLemma 5 in dimension 1 gives: if Ibl > 2, then every integer
has a unique base b radix representation with digits in D {-/Ibl 1/2J,..., llbl/J }.
This is also proved in [21]. As another example, let D consist of the 9 lattice points with
coordinates 0 or +1. Applying Lemma 5 to

0 -3 ) Z ZA’--
3 0

implies that D induces a rep-tiling of Z2.
The first assumption in Lemma 5, concerning the minimum norm vectors, may very

well fail in general. To remedy this situation, merely transform AA to a lattice A0 known
to be generated by the minimum norm vectors.

THEOREM 6. Given A A - A, let Q be any nonsingular matrix such that lattice
A0 Q(AA) is generated by its minimum norm vectors. If all singular values of QAQ-1
are greater than 3R/r, where r is thepacking radius and R is the covering radius ofA0, then
D A fq Q-1VAo induces a rep-tiling of A. In the one- and two-dimensional cases, the
bound 3R/r can be improved to 2.

Proof. Let. Ao QAQ-1. By definition, A A A and A0 QA QA are
equivalent. By Proposition 3 of 3, (A, D) is a rep-tiling pair for A if and only if (A0, QD)
is a rep-tiling pair for QA. But QD QA fq VAo QA fq VQAA QA fq VAoQA. The
theorem now follows directly from Lemma 5 applied to A0.

Note that, in Theorem 6, if B is the matrix whose columns are a basis for A0, then
we can take

Q BA-1,
D A fq AB-1VAo,

in which case QAQ-1 BAB-1.
COROLLARY 5. Given n n matrix A A ---, A, let C be the Voronoi domain of the

cubic lattice (the closure ofC is a unit cube centered at the origin) and let D A fq AC. If
all singular values ofA are greater than 3x/- then D induces a replicating tessellation of A.
In the one- and two-dimensional cases, the bound 3v/-d can be improved to 2.

Proof. Let A0 be the cubic lattice so that B is the identity matrix. Then R/r
Q A-1, QAQ-1 A, and D A Q-1VAo A tO AC. The corollary now follows
directly from Theorem 6.

Corollary 5 can be applied directly to the square lattice in 2 to obtain the follow-
ing result concerning radix representation in the Gaussian integers. If/3 is a Gaussian
integer, not equal to 2 or 1 4- i, then there exists a fundamental domain D such that
every Gaussian integer has a unique radix representation of the form -m__0 si, where
s E D. Here D is a square Voronoi region centered at the origin.
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A reasonable choice for A0 in Theorem 6, besides the cubic lattice used in Corollary
5, is one having a small ratio R/r. One such lattice in all dimensions n is A, the dual to
the root lattice A, (generated by the roots of certain Lie algebra). A basis for A in IR’
is any n of the n + i vertices of an n-simplex centered at the origin. A particular choice
for these n + 1 vertices b0, bl,..., b, is

where ci (((n i)(n + 1))/(n i + 1)n)1/2. Note that the bi are unit vectors. Let V,
denote the Voronoi domain of the lattice A. The closure of Vz and Va are a regular
hexagon and truncated octahedron, respectively. In general, the n-dimensional Voronoi
region is an n-dimensional permutahedron, congruent to a polytope with (n + 1)! ver-
tices obtained by taking all permutations of the coordinates of the point (-n/2, (-n +
2)/2, (-n + 4)/2,..., (n 2)/2, n/2) in If(’+1 [2]. It is known [2] that the packing radius
of this lattice is 1/2 and the covering radius is 1/2 v/(n + 2)/3. So, in applying Theorem 6,
take

D A fq AB-(V,),
QAQ- BAB-,
3n/r V/3( / 2),

where B is the matrix whose columns are the basis vectors bi.
Example. The matrix

discussed earlier in this section satisfies the hypotheses of Corollary 5 and also the hy-
potheses of Theorem 6 when A0 A. Applying each of these results, two fundamental
domainsD and D2 are obtained, each ofwhich induces a rep-tiling of Zz. These funda-
mental domains are indicated by circled dots in Figs. 6(b) and 6(c). Note that all three
fundamental domains in Fig. 6 are slightly different.

In dimensions 1 and 2, Theorem 6 is best possible in the following sense. Consider
the matrix 2I whose unique singular value is exactly 2. According to the remarks follow-
ing Corollary 1 of Theorem 3, this matrix admits no fundamental domain S such that S
induces a rep-tiling of Z’.

7. An algebraic construction. In this section, tessellations with a ring structure are
constructed, allowing for multiplication, as well as addition, of lattice points. This con-
struction generalizes radix representation, where the base is an algebraic integer, and
the hexagonal tessellation used in image processing.

To construct the lattice, consider a monic polynomial f(x) xn -a,_x- +.
a0 E Z[x]. In the quotient ring A, Z[x]/(f), let c x+(f). Then A, has the structure
of a free abelian group Aj, with basis (1, c, a2,..., cd-l). Af can be realized (in many
ways) as a lattice in ]R’ by embedding the n basis elements as n linearly independent
vectors in R’. For example, the basis vectors can be identified with the standard unit
vectors along the coordinate axes of IR’. According to Proposition 3, questions about
aggregate tessellation are independent of how Af is realized. Now AI is the basic lattice
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of our construction. Addition and multiplication of lattice points is just addition and
multiplication in the ring Ay Z[z]/(f).

In the special case that f(z) is irreducible over Z, then, as rings, AI Z[z]/(f)
Z[c], where c is any root of f(x) in an appropropriate extension field of the rationals.
For example, if f(z) zz + 1, then the lattice AI is the ring of Gaussian integers
with basis (1, i) and can be realized as the square lattice in the complex plane. If f(z)
z2 / z + 1, then the lattice Aj, can be realized as the hexagonal lattice in the complex
plane with basis (1,-1/2 + x/-/2i). More generally, if f(z) is any monic quadratic with
complex roots c,, then Aj, Z[c] {a + bc a, b Z} can be considered a lattice
in the complex plane. In this case, the addition and multiplication in the lattice Z[c] is
the ordinary addition and multiplication of complex numbers.

To obtain a replicating tessellation, let fl be any element of the lattice Aj, and define
the linear transformation

Af’AA

A(x)

If S is a finite set of lattice points, then the address sos sm denotes the lattice point

m m

i=0 i=0

where si E S. In otherwords, (An, S) is a rep-tiling pair for Aj ifand only ifeach element
of Aj, has a unique radix representation base with coefficients in S. Proposition 2
applies directly to this situation.

COROLLARY 6. If every element of Ay has a unique base finite address with coeffi-
cients in S, then S is a complete set of residues ofA modulo 3Aj, and IsI is the absolute
value ofthe constant term in the characteristic polynomial ofAn.

Proof. de(Aa)l is the constant term in the characteristic polynomial of

AI.
Consider two special cases of the above construction.
Radix representation of algebraic numbers. Let fl be an algebraic integer and S a

finite set of elements in Z[fl]. The relevant question is: Does every element of Z[/] have
m

8 S? xn xn-1a unique radix representation ’i=0 i, where si e If f(x) + a,-i +
+ a0 Z[z] is the minimal monic polynomial for/, then Aj, Z[/] and with respect

to the basis (1, ,...,-)

(0 0 0 -ao ’
1 0 0 --al

0 1 0

\ 0 0 1 -an- )

acts on the cubic lattice Z’. Now every element ofZ[] has a unique radix representation
base if and only if S induces a rep-tiling of Z’. By part 1 of Corollary 6 the cardinality
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of a fundamental domain S is IN()I, where N() (-1)’a0. N() is the norm of fl
and can alternatively be defined as the product of all conjugates of .

Gilbert [8] asks about the case where S {0, 1,..., N() 1}. Consider the ex-
ample/ -1 + i and S {0, 1}; then Z[] Z[i], and this is exactly Example 2 of
the Introduction concerning the Gaussian integers. Corollary 2 of Theorem 4 applies to
this situation. Multiplication by the complex number is a similarity (the composition
of a 7r/4 rotation and a stretching by a factor of x/-), and hence, to determine whether
or not every element of Z[] has a base finite address, it is sufficient to check that each
element in the ball of radius max{181 s S}/ll i in the complex plane has a finite
address. There are exactly 21 Gaussian integers within a ball of radius 1/f- 1. Testing
with Algorithm A shows that all 21 have finite addresses (for example, -1 10111 and
-2 i 110010111). Therefore, every Gaussian integer has a unique base/3 finite ad-
dress. For/3 satisfying a quadratic polynomial z +ca:+d, Gilbert states [8] that every ele-
ment of Z[/3] has a unique radix representation with coefficients in S {0, 1,..., Idl 1 }
if and only if d > 2 and -1 < c <_ d.

Generalized balanced ternary. The following example simultaneously generalizes
the balanced ternary representation of integers in the first example of the Introduc-
tion and the two-dimensional hexagonal tessellation of the third example. Let f()
x’ + z’- +... + 1 and denote by A, Z[x]/(f) the corresponding n-dimensional
lattice. As previously mentioned, A and A can be realized as the integer and hexagon
lattices in dimensions 1 and 2, respectively. Let w x + (f) denote the image of x in
the quotient ring A, and note that w’+ 1 in A,. Let 2 . With respect to the

12 t.on--1)basis(1,w,

r 2 0 0 0 1 ’
-1 2 0 0 1

0 -I 2 0 1

0 0 0 2 1

\ 0 0 0 1 3/
Define Sn {co + elW + e2w

2 +"" + enw ei E {0, 1}}. Note that 2’+1 1
because 1 + w + + wn 0 and also det(A) 2+1 1. Therefore, S, has the
appropriate number of elements to serve as a fundamental domain for A. For n 1,
we have

AI =,

S {-1,0, 1},
An (3),

which leads to the balanced ternary representation of the integers. For n 2, with
respect to the standard basis, we have

A the hexagonal lattice,
5 2_i=5
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5’ {0, 1, w,..., w5 w is a 6th root of unity},

An= /g

_
2 2

which leads to the hexagonal rep-tiling of the third example in the Introduction.
COROLLAgY 7. The generalized balanced ternary pair (A, S,) yields a rep-tiling of

An.
The proof of Corollary 7 will follow from some properties of the addition and mul-

tiplication of addresses in the generalized balanced ternary. An element s e0 +
e,, + e2,,2 + + e,w’ e S, can be encoded by a corresponding binary string b
e,e,_l e0. Note that, as in ordinary integer notation, the order of the digits is re-
versed. In the generalized balanced ternary, addition and multiplication can be carried
out by simple and fast bit string routines. Define three operations on such binary strings
as follows. First, b b’ is circular base 2 addition; a carry from the ith column goes to
the (i + 1)st column mod(n + 1). Note that the column numbers increase to the left.
This first operation is equivalent to ordinary addition mod(2’+ 1). For example,
1011 @ 1110 1010. Second, b El b’ is base 2 addition with no carries. For example,
1011 El 1010 0001. Third, T(s) is the shift one position to the right mod(n + 1). For
example, T(1011) 1101. Using the facts that w’+ 1 and 2 w + 3 it can be
routinely checked that if s, s’ e S,, then in A, we have

s + s’ so + s/,

where

bso bs @ b,,

b T[b Et b, El (b8 @ bs,)].

(The latter expression for bl yields a 1 or 0 at those positions where a carry in b b,,
has or has not, respectively, occurred.) Addition of addresses is accomplished by using
the carry rule above (sum so; carry sl). Addition corresponds to vector addition
in R’. Multiplication also uses the rule for addition and 0.0 0.1 1 0 0 and
1.1 1. For example with n 2, let x (110) + (010) and y (101) + (110). Then
x + y (100) + (001)fl + (ll0)fl2 and xy (010) + (100)/ + (001)fl2. (We have used
the fact that 111 000.)

Proof of Corollary 7. Note (1) S contains a basis 1, w,..., wn- for the lattice A,.
Also, the comments above concerning bit string operations imply that and (2) S -4- S
S + S. The corollary then follows immediately from Theorem 4.

Remark. The .eigenvalues of An for the generalized balanced ternary are {2 w
w is an (n+ 1)st root of unity, w # 1}. Therefore, as n c, the minimum modulus of
an eigenvalue tends to 1, but (A/3, S,) is a rep-tiling pair for all n. This gives the example
mentioned at the end of 3.

Appealing geometric properties of the generalized balanced ternary tessellation can
be obtained by embedding the generator vectors 1, w,..., w’ for the lattice An at the
points b0, b, that generate the dual root lattice A as descibed in the previous section.
Then the Voronoi regions in dimensions 2 and 3, as previously mentioned, are regular
hexagons and truncated octahedra, respectively.

Acknowledgments. The author thanks both referees for their valuable suggestions,
in particular, for drawing our attention to recent references and for the proof of the last
part of Proposition 4.
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FAST PARALLEL RECOGNITION OF ULTRAMETRICS
AND TREE METRICS*

ELIAS DAHLHAUSf

Abstract. A fast parallel algorithm for the recognition ofultrametrics is presented. Its time-processor product
is of the same order as the time bound of the known sequential algorithm of Culberson and Rudnicki [Inform.
Process. Lett., 30 (1990), pp. 215-220 (compare also SIAM J. Disc. Math., 3 (1990), pp. 1-6 and Quart.
Appl. Math., 26 1968 ), pp. 607-609 ]. By the same way, tree metrics also can be recognized.

Key words, ultrametric, tree metric, parallel algorithms

Introduction. An ultrametric is a metric d on a set f of objects, where, for all i, j,
k e f, the following extension of the triangle inequality is valid:

d(i, j) _-< max { d( i, k), d(j, k) ).
A tree metric is the distance function on a tree restricted to a subset of the vertices of the
tree. This is equivalent to the statement that, for all i,j, k, l of the domain ofthe metric,
the following inequality is valid [6]:

d(i, j) + d(k, 1) _-< max { d( i, k) + d(j, 1), d( i, l) + d(j, k)}.
Note that from this inequality the triangle inequality and the symmetry follows.

Tree metrics are highly interesting in the view of evolutionary problems--for ex-
ample, in biology and archeology. There is an extensive literature on the topic of tree
metrics 3 ], 5 ], 6 ], 9 ], 15 ], 16 ], 18 ], 19 ]. Each ultrametric is also a tree metric.
Ultrametrics have their use in hierarchical classifications (see [12 ]).

Here we present a fast parallel algorithm to recognize ultrametrics and tree metrics.
The time bound is logarithmic, and the processor bound is O(nZ/log n), where n is the
number of objects. The main part is the parallel recognition of ultrametrics. To prove
the same time and processor bound of the recognition of tree metrics, we consider the
reduction of a tree metric to an ultrametric, as in [2 ]. We see that this reduction can be
done in constant time and a processor bound of n 2, and therefore also in logarithmic
time and a processor bound of n z/lOg n.

The time-processor product of O(rt 2) is optimal. Sequential algorithms of a time
bound ofO(n2) for the recognition oftree metrics are known (see 4 ], 8 ). Ultrametrics
can be recognized in sequential O(n 2 log n) time [2 ].

Section 2 introduces the fundamental notation and concepts. Section 3 presents the
announced parallel algorithm to recognize an ultrametric. Section 4 discusses the parallel
recognition of tree metrics and also the construction of the corresponding tree.

1. Notation and fundamental definitions.
1.1. Notions from metrics. A distance function is a binary, symmetric, positively

real-valued function d on a domain t. Moreover, we assume that, for x e t, the equation
d(x, x) 0 is valid. A metric is a distance function satisfying the triangle inequality.

Here we assume that t is a finite domain. Moreover, we let 2 be a set of the form
{ n }. The distance function d is implemented as an n n matrix.
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A distance function d is called an ultrametric if and only if the following extended
triangle inequality is valid:

d(i, j) _-< max { d( i, k), d(j, k) }.
To introduce a tree metric, we first introduce the notion of a tree. By a tree T, we

mean a cycle-free connected graph consisting of a vertex set Vr and an edge set Er. By
a rooted tree, we mean a directed graph, whose underlying undirected graph is a tree,
with the additional property that there is a vertex r, called the root, such that each vertex
x has a directed path to r. For a rooted tree T (Vr, Er) with root r and each x e
Vr\ { r}, the parent Par (x) ofx is the y, such that (x, y) e ET. x is also called a child
of y. Vertices without children are called leaves, y Vr is called an ancestor ofx Vr if
and only if there is a directed path (possibly oflength 0) from x to y in T. x is also called
a descendent of y if y is an ancestor of x. The set of descendents of in T including is
denoted by Tt. We identify Tt and its induced subtree. For x, y Vr, the least common
ancestor ofx and y, denoted by LCA (x, y), is the common ancestor z ofx and y, such
that no child of z is an ancestor of x and y. For a distance function d on f, a tree T’
with vertex set is called a minimum spanning tree for d if and only if T’ is a tree with
vertex set ft such that xyis edge of T’d(x, y) is minimal. A distance function d with
domain ft is called a tree metric if and only if there is a tree T and a labeling l of the
edges of T with positive real numbers, such that

1. ft is a subset of the vertex set Vr of T, and
2. For each and j eft, the distance d(i, j) is the sum klk2eP(i,j) l(klk2) of the

labelings of the edges on the unique path P(i, j) from to j in T.
Tree metrics are exactly those metrics that satisfy the followingfour-point inequality

[61:

d(i, j) + d(k, l) =< max { d( i, k) + d(j, l), d( i, l) + d(j, k)}.
We continue with a tree characterization of ultrametrics. A dendrogram is a rooted

tree Ttogether with a positively real-valued labeling h ofthe vertices with a heightfunction,
which means h (v) < h(w) if w is an ancestor of v.

PROPOSITION (see, for example, [12]). A distancefunction d on ft is an ultrametric

ifand only ifthere is a dendrogram (T, h) such that
1. ft is the set ofleaves of T, and
2. For all u, v 2, the distance d( u, v) is the labeling h(LCA(u, v)) ofthe least

common ancestor LCA u, v) ofu and v with respect to T.

1.2. Notions from complexity theory. The computation model is the concurrent
read exclusive write parallel random access machine (CREW-PRAM) [11 ]. Since we
only compare numbers and add at most three numbers of the given matrix, we may
measure arithmetic operations by one time and one processor unit. The logarithmic cost
ofthe processor number would grow only by the factor ofthe length ofthe largest number,
and the logarithmic cost of the time would grow only by a factor of the logarithm of the
length of the maximal appearing number of the input.

2. Parallel recognition of ultrametrics. The main result ofthis section is the following
theorem.

THEOREM 1. Ultrametrics can be recognized in O(log n) parallel time using
O(n:/log n) processors. Moreover, its corresponding dendrogram can also be computed
in a processor bound ofO(n:/log n) and a time bound ofO(log n).

Proof. Let d be a distance function on the domain ft { n }. The problem
is to check whether d is an ultrametric. For the case where d is an ultrametric, a dendrogram
T, h) for d will be constructed.
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Our strategy is as follows. We construct a tree T’, which is a minimum spanning
tree in the case where d is an ultrametric. We see that this tree T’ can be constructed in
logarithmic time and an optimal processor time product. We use this tree T’ for an
efficient parallel ultrametric recognition algorithm. For the case where d is an ultrametric,
this tree T’ has additional properties that be used to construct the dendrogram T, h).

T’ is the tree defined by the following parent function P (that means T’ consists of
the edges (t, P(t)) with e ft\ { n } ), which is constructed by the following algorithm:

1. For each x f, let H(x) { y > x d(x, y) is minimal )
2. For each x 2\ n }, let P(x) maxyn(x) y.
Using Brent’s scheduling technique, we can compute miny>x d(x, y) in a time

bound of log n and a processor bound of n2/log n. Therefore H(x), P(x), and T’ can
be constructed in O(log n) time using O(n2/log n) processors.

We note that this algorithm is a simplified version of a minimum spanning tree
algorithm for the special case where the distance function is an ultrametric. The progress
is that we need only O(log n) time in the simplified version, while the general minimum
spanning tree computation needs O(log2 n) time (on a CREW-PRAM) (see, for example,
[1],[141).

To test whether d is an ultrametric, we introduce the following relation -<: We say
x "< y if and only if d(x, P(x)) <- d(y, P(y)) or x 4: n (and therefore P(x) is defined)
and y n (and therefore P(y) is not defined).

Note that -< is transitive, and, for each x 4: y, x -< y or y -< x. Note that -< is not
an ordering. For x -< y such that P(x) 4: y, we test whether d(x, y) d(P(x), y). This
can be tested in constant time using O(t/z) processors.

PROPOSITION 1. 1. Thefollowing statements are equivalent:
a d is an ultrametric,

(b) For all x , y such that P(x) 4: y and x 4: y, the equality d(x, y) d(P(x), y)
is valid.

2. If T’ is known, then it can be checked in constant time using 0(/7 2) processors
whether statement b is satisfied.

Proof. The three following lemmas are significant for the proof of both directions
of the first part of Proposition 1.

LEMMA 1. Suppose that d satisfies one of the conditions a or (b) ofProposi-
tion 1. Then, for each x 2 for which P(x) and P(P(x)) are defined, the inequality
d(x, P(x)) < d(P(x), P(P(x))) is valid.

Proof. Suppose that (a) is satisfied (that means d is an ultrametric). Clearly, x <
P(x) < P(P(x)). Since P(x) is the greatest y H(x) and therefore the greatest y with
d(x, y) d(x, P(x)), d(x, P(P(x))) > d(x, P(x)). Since d is an ultrametric,

d(x, P(P(x))) <-_ max { d(x, P(x)), d(P(x), P(P(x)))

and therefore

d(x, P(x)) < d(x, P(P(x))) <-_ d(P(x), P(P(x))).

Suppose that d satisfies (b). Assume that d(x, P(x)) >-_ d(P(x), P(P(x))). Then
P(x) -< x. By l(b), d(x, P(x)) d(x, P(P(x))). Since P(x) < P(P(x)), P(x) is not
the <-largest y such that d(x, y) d(x, P(x)). This is a contradiction to the definition
of P(x) as the largest y > x with minimal distance.

LEMMA 2. Ifx "< y and x 4: y, then d(x, P(x)) <- d(x, y).
Proof. Suppose that x < y. Then d(x, P(x)) <- d(x, y) because P(x) is some z > x

such that d(x, z) is minimal.
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Suppose that y < x. d(x, P(x)) <= d(y, P(y)) because x -< y. The inequality
d(y, P(y)) <= d(x, y) because P(y) is a z > y such that d(y, z) is minimal. Therefore
d(x, P(x) <= d(x, y).

LEMMA 3 (see [2]). Suppose that (x, y) ft is a pair such that d(x, y) is minimal.
Then d is an ultrametric if and only iffor all v 2\ { x, y }, d(x, v) d(y, v) and d
restricted to f\ { x } is an ultrametric.

For the proof of both directions of the first part of Proposition 1, we consider any
enumeration (xl,..., Xn) of ft such that, for 1,..., n 1, xi -< x; /

Define i { Xi Xn }.
In thefollowing corollaries, we assume that a) or (b ofProposition are satisfied.

Then, by Lemma 1, we have the following corollary.
COROLLARY 1. For y fi \ { n }, P(y) fi.
Since xi 2i, also P(xi i. Since xi and P(xi are not equal, P(x)

Therefore, by Lemma 3, we have the following corollary.
COROIIAR 2. d restricted to i is an ultrametric ifand only ifd restricted to i +

is an ultrametric and, for all y 2i+ \ { P(xi }, d(xi y) d(P(xi y)).
We continue with the proof of Proposition 1.
Suppose that d satisfies (b). We show that d restricted to i is an ultrametric, for

every 1,..., n, by backward induction on i. Clearly, d restricted to fn is an ultrametric.
We assume now that d restricted to i + is an ultrametric. By the assumption that (b)
is true, for each X =/= Xn and each y with Xi " y with y { xi, P(xi } and therefore for
each y i+ 1\ { e(xi }, we have d(xi, y) d(P(xi ), y). By Corollary 2, d restricted to
i is an ultrametric. Since d is nothing else than d restricted to ft ft, d is an ultrametric,
and therefore (a) is satisfied.

Suppose that d satisfies (a). Let x and y be any elements of ft such that x -< y,
x 4: y and P(x) 4: y. To prove l(b), we must prove d(x, y) d(P(x), y). We find an
enumeration (xl,..., xn) such that xi "< xi + , for n with the additional
property that x appears before y. Let x xi and y x. Clearly, y 6 fti + 1. Since (a) is
satisfied, d is an ultrametric, and therefore also d restricted to fti is an ultrametric. There-
fore, by Corollary 2, d(x, y) d(xi, y) d(P(xi), y) d(P(x), y).

Herewith, the first part of Proposition has been proved. The second part of Prop-
osition is obvious. Therefore, Proposition is proved.

COROLLARY. Ultrametrics can be recognized in O(log n) CREW-time using
O(n-/log n) processors.

It remains to construct the dendrogram for a given ultrametric d. We use the
tree T’.

PROPOSITION 2. Suppose that d is an ultrametric. Then T’ is, in fact, a minimum
spanning tree.

Proof. Let i be defined as in the proofofProposition 1. We know that T’ restricted
to i is still a tree. Moreover, we know that (xi, P(xi )) is a pair of elements in i with
minimal distance. By backward induction on i, we show that T’ restricted to i is a
minimum spanning tree for d restricted to fti.

Suppose that n. Then we are done.
Assume that T’ restricted to f+l is a minimum spanning tree for d restricted to

i+l. Suppose that T" is a minimum spanning tree for d restricted to fi. Our aim is to
show that the distance sum of the edges of T’ restricted to i is at most the distance sum
of the edges of T". First, we construct a tree T"’ that has X P(xi as an edge. Let xiz be
that edge of T" incident with x, which is on the unique path from Xi to P(X in T". T’"
arises from T" by replacing xiz by xi P(xi). Clearly, T’" is a tree and d(xi P(xi ))
d(xi, z). Therefore the sum of distances of the edges of T’" is bounded by the sum of
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distances of the edges of T". Now we can replace all edges xi y with y P(xi by P(xi y),
and the resulting graph T4) remains a tree. Moreover, d(xi, y) d(P(x ), y), because
d is an ultrametric. Therefore the sum of distances of the edges of T(4) is the same as the
sum of distances of T’". T(4) consists of an edge xi P(xi) and a spanning tree of fti +i.
That means xi P(xi and T’ restricted to fti+l form a spanning tree with the property
that the sum of distances of edges is at most the sum of distances of edges of T". That
means T’ restricted to fti has a sum ofedge distances that is bounded by the sum ofedge
distances of T". Therefore, since we assume that T" is a minimum spanning tree for d
restricted to fi, T’ restricted to i is a minimum spanning tree for d restricted to i.

Since for each i, T’ restricted to fti is a minimum spanning tree for d restricted to
i, T’ is a minimum spanning tree for d. [2]

Next, we show that each ultrametric can be reconstructed from any minimum span-
ning tree.

LEMMA 4. Suppose that d is an ultrametric on and T is a minimum spanning
treefor d. Then,for any pair x, y 2, d(x, y) is the maximum distance d(x’, y’) ofan
edge x’y’ on the unique path from x to y in T.

Proof. Suppose that (x xl, xk y) is the unique path from x to y in T.
Then, by induction on j, d(x, xj) <= max { d(xi, xi+ 1)1i j }. Therefore
d(x, y) <= max {d(xi,xi+,)li= 1, ...,k- 1}.

Suppose that d(x, y) < max d(xi, xi + 1,..., k }. Then we consider tree
T1, which arises from T by erasing the edge xi xi +1 with the distance max { d(xi, x +1)1

1, k } and adding the edge xy. Clearly, this tree has a smaller sum of distances
of the edges. This is a contradiction to the assumption that T is a minimum spanning
tree. []

The next statement explains how d can be reconstructed from d restricted to the
edge set of T’.

LEMMA 5. 1. Let y be an ancestor ofx in T’ and y 4 x. Let x’ be the child ofy,
which is an ancestor ofx in T’. Then d(x, y) d(x’, y).

2. Let x, y ft and suppose that x is not an ancestor or descendent ofy in T’. Let
z be the least common ancestor ofx and y in T’, let x’ be the child ofz on the path from
x to z, and let y’ be the child ofz, which is an ancestor ofy in T’.

Then d(x, y) max d(x’, z), d(y’, z)}.
Proof. Suppose that (x x, xk z) is the unique path from x to the least

common ancestor z of x and y in T’ and that (y y Yt z) is the unique path
from y to z in T’. Note that x+ P(x and Yi+ P(Y ). Therefore, for 1,...,
k 2, d(xi, Xi+ I) < d(xi+ 1, Xi+ 2). By the same reason, d(yi, yi+

for 1, 2. Therefore x_x is an edge on the unique path from x x to
z xk in T’ of maximal distance, and yt_ yt is an edge on the unique path from y y
to z yz of maximal distance.

If y is an ancestor ofx, then z y and x_ xk x’y is the edge on the unique path
from x to y with maximal distance. By Lemma 4, this d(x, y) and d(x’, y)
d(xk_ , x) coincide, and statement of the lemma has been proved.

To prove statement 2, we need only observe that one ofthe edges x_x and Yt- Yt
is an edge uv on the unique path from x to y in T’ such that d( u, v) is maximal. Using
Lemma 4, the second statement of the lemma follows immediately.

Now we are able to construct the dendrogram D (T, h) of (f, d). We compute
it by the following algorithm:

1. For each x 2, let C(x) be the set of children of x with respect to T’, say

Cx) {y ey) x}.
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2. For each x f, sort C(x) by d(y, x);
for y, y2 C(x), let y Y2 if and only if d(y, x) d(y2, x), (or set yl y_ if
and only ifP(y) P(Y2) and d(yl, P(y)) d(y2, P(y2)));
for each x f, let [x] be the -=-equivalence class to which x belongs.

3. The vertex set of T consists of all ---equivalence classes and all elements of f:

VT f tO ( [x] X ft and P(x) is defined ).
4. For each u 2, the height h(u) of u is 0;

for each -=-equivalence class [x], the height h([x]) is set d(x, P(x)).
5. Directed edge set of T is defined by the following parent function Par:

If u 2, then Par (u) is [x], where x is chosen from the set { u } tO C(u) such
that h([x]) d(x, P(x)) is minimum (We consider all T’-edges, such that u
is incident. From these T’-edges, we select one of minimal distance and let
Par (u) be the equivalence class to which the source of the selected edge be-
longs).
If u [x] and x C(y) such that d(x, y) is maximal, then Par (Ix]) [y];
otherwise if d(x, y) is not maximal, let Par ([x]) be the [z] such that z C(y)
(P(z) P(x)), d(z, y) > d(x, y), and d(z, y) is minimal under these conditions.

First, we note that the definitions of h([x]) and of Par ([x]) depend only on the
equivalence class but not on the special x. This follows directly from the definition
of=.

We illustrate the behavior of this algorithm by the following example. To do so, we
consider the minimum spanning tree in Fig. 1. Then the corresponding dendrogram is
as in Fig. 2.

The construction algorithm for Par can be executed in O(log n) time and
O(n) processors: The dominating step is the sorting procedure that can be executed in
O(log n) time and O(n) processors [7]. The equivalence classes [x] are represented by
the pair (min [xl, max [xl), where rnin [x] is the smallest v [x] and max [x] is the
largest v Ix] with respect to the sorting of the sets C(y), which contain x.

Then Par ([x]) and h([x]) can be computed in constant time using n processors,
for all x simultaneously. We can set Par ([x]) := z], where z is the immediate successor
ofmax [x] with respect to the sorted list of C(y). If max [x] is maximal in C(y), we set
Par ([x]) [y]. Obviously, this can be executed in constant time. If u f, then we can
compute Par (u) obviously in constant time. It remains to check that we really computed
a dendrogram. For this purpose, we need the following result.

LEMMA 6. Itl T the equivalence class y with the representative y is an ancestor of
x 2 ifand only if either x P(y) or P(y) is an ancestor ofx in T’ and d(y, P(y)) >=
d(x’, P(y)), where x’ is the unique child ofP(y), which is an ancestor ofx in T’.

X8

3 4

X6 X7

1 2 2 3

Xl X2 X3 X4 X5

FIG. 1. The minimum spanning tree T’for an uhrametric d, edges ofT are labeled by their distances.
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h( /}
Xl X6 2 X8 X3 7 X4 X5

)=1

FIG. 2. The dendrogram T, h) resuhingfrom T’ and d.

Proof. : Note that [y] is an ancestor ofx in T if and only if [y] arises from x by
iterated application of the parent function Par. We prove this direction by induction on
the application of Par to x. Since [y] cannot be x, Par must be applied at least once to
obtain [y].

We first assume that [y] Par (x) (i.e., [y] arises from x by one application
of Par).

First, we assume that [y] is a subset of C(x). Then x P(y).
If [y] is not a subset of C(x) then x has no children, [x] [y], and therefore

P(x) P(y). x is the child x’ of P(y) P(x), which is an ancestor of x. Therefore
d(y, P(y)) d(x, P(y) d(x’, P(y)), and therefore d(x’, P(y)) <= d(y, P(y)).

Assume that we proved the -direction for [y] Par (x).
To prove the induction step, we must prove that [y’] Par ([y]) satisfies the con-

ditions as claimed. There are two cases.
First case. P(y) P(y’).
If x P(y), then trivially also x P(y’). We may assume that x 4: P(y). Then

trivially P(y’) is an ancestor of x. Moreover, the unique child of P(y’), which is an
ancestor ofx in T’, remains x’. By construction of Par, d(y, P(y’)) < d(y’, P(y’)), and
therefore also d(x’, P(y’)) < d(y’, P(y’)).

Second case. P(y) 4: P(y’).
In that case, Par ([y]) [P(y)], i.e., P(y) y’. Moreover, P(y) is the unique child

x" of P(y’) P(P(y)), which is an ancestor of x in T’. Since P(y) y’, we also have
d(P(y), P(y’)) d(y’, P(y’)). Therefore y’ satisfies the conditions as claimed in .
: It is easily checked that, for P(x) P(y), the equivalence class [y] is an ancestor

of [x] in T if and only if d(x, P(x)) <- d(y, P(y)). From this, we also can follow that
[P(x)] is an ancestor of[x] in T, and therefore for each ancestor y ofx in T’, [y] also
is an ancestor of[x] in T.

Suppose that P(y) is an ancestor of x in T’. If x P(y), then trivially x is an
ancestor of [y] in T. Otherwise, let x’ be the unique child of P(y), which is an ancestor
ofx in T’. Then [x’] is an ancestor of[x] in T and therefore also an ancestor ofx in T.
Then, however, [y] also is an ancestor of [x’] and therefore of x in T if d(x’, P(y)) <=
d(y, P(y) ). vl

From the last lemma, we can follow immediately with the following one.
LEMMA 7. Let x and y be in f. Let z be the least common ancestor ofx and y in

T’. Let x’ be the child ofz, which is an ancestor ofx in T’ ifz 4: x, and y’ be the child
ofz, which is an ancestor ofy in T’ ifz 4: y. Ifd(x’, z) <= d(y’, z) or x z and y 4: z,
then the least common ancestor ofx and y in T is [y’] (the ---equivalence class to which
y’ belongs).
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Combining Lemmas 5 and 7, and the fact that h([y’]) d(y’, P(y’)), we obtain
the following proposition.

P,O’OSITION 3. (T, h) is the dendrogram of 2, d).
Remember that the earlier algorithm to construct the dendrogram (T, h) needs

O(log n) time and O(n) processors if T’ is known. Since T’ can be computed in
O(log n) time using O(n2/log n) processors, we obtain the following result.

PROPOSITION 4. The dendrogram (T, h) is constructible in O(log n) time using
O n 2 / log n) processors.

This proves Theorem 1. [3

3. Recognizing tree metrics. The problem we deal with in this section is the fol-
lowing: Given a distance function d on 2. The problem is to decide whether d is a tree
metric and if d is a tree metric, and to construct an edge-labeled tree Twith edge labeling
h, which represents the tree metric d, i.e., a tree T and a real-valued function h with ET
as its domain such that

1. ft Vr, and
2. For x, y ft, d(x, y) is the sum of the labelings h(e) of all edges e on the unique

path from x to y in T.
We reduce the recognition problem of tree metrics to the recognition problem of

ultrametrics [2], and we reduce the construction of an edge-labeled tree belonging to a
tree metric to the construction of a dendrogram of an ultrametric.

We pick up an r 6 ft and choose some c > 2 maxx,, d(x, y). We define a new
distance function 6 on ft\ { r} with 6(x, y) c d(x, r) d(y, r) + d(x, y) if x 4: y
and 6(x, y) 0 if x y.

Bandelt [2] proved the following.
PROPOSITION 5. Let d and 6 be defined as above. Then d is a tree metric if and

only if6 is an ultrametric.
Therefore, to recognize tree metrics, we need only do the following:
1. Compute c 3 max { d(x, y) lx, y ft}.
2. Select some r f and compute for all x, y f\ { r },

6(x, y) c- d(x, r) d(y, r) + d(x, y).

3. Cheek whether 6 is an ultrametrie.
The first step can be done in O(log n) time using O(na/log n) processors. The

second step can be done in constant time using O(n) processors and therefore in
O(log n) time using O(nZ/log n) processors. The third step can be done in O(log n)
time using O(nZ/log n) processors. Therefore we get the following theorem.

THEOREM 2. Tree metrics can be recognized in O(log n) time using O(n-/log n)
processors.

It remains to construct the underlying tree of a tree metric.
1. We construct the dendrogram T, h) for the ultrametric 6 as defined above. We

define a tree Ta consisting of the vertices and edges of T, the additional vertex
r, and an additional edge e, which joins the root r’ of T with r. For each non-
root vertex x of T, let par (x) be the parent of x with respect to T and let
par (r’) r (par defines a parent function for Ta).

2. For each nonleaf vertex x of T, let ha(x) h(x). Define ha(r) c. For each
leaf x f\ { r}, let ha(x) c 2d(x, r).

3. We set d’(x, par (x)) (ha(par (x)) ha(x))
It is easily checked that all these steps can be done in O(log n) time using O(n)

processors ifthe minimum spanning tree for 6 constructed in the ultrametric recognition
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algorithm for 6 is known. It remains to prove that Td, d’) is an underlying edge labeled
tree for the tree metric d.

Let x, y e ft. Let (x x, Xk y) be the unique path from x to y in Td.
We must prove that d(x, y) kiJl d’(xi, xi+ ). First, we suppose that y r. Then

xi + par (xi). It is easily checked that
k-1 k-1

d’(xi, Xi + Z (hd(Xi + ha(xi ))/2
i---1 i=1

(by definition of d’ xi X +

(note that Xk r and x x)

(ha(xk) ha(x))/2

(ha(r) ha(x))

(c- (c- 2d(x, r))/2

(note that hd(r) c and hd(x) c- 2d(x, r))

(1) d(x, r) d(x, y).

Suppose now that x and y are different from r. Then we find a least common
ancestor x of x and y in Td, which is also the least common ancestor of x and
y in T. Let (xl Zl zp r) be the unique path from xt to r in Td. Then,

d’(xi Xi- +since Z ]d’(xi, Xi+l)-[- jP’I d’(zj, Zj+l) d(x r)and E/k t+

,.2 d’(z, z+ 1) d(y, r), we can derive the following equalities:

k l-1 k

E d’(xi, Xi+ E d’(xi, Xi+ + E d’(xi, Xi-
i=1 i=1 i=l+1

l-1 p-1 l+1

E d’(xi,xi+l) -1- Z d’(z, zj+,) + , d’(xi, xi-1)
i=1 j=l i=k

p-1 p-1

+ , d’(zj, zj+ 1) 2 Z d’(z, z+ 1)
j=l j=l

(we add and subtract 2 P-1= d’(z, zj+ ))
p-1

d(x, r) + d(y, r) 2 , d’(z, z+ 1) (*)
j=l

(the unique path from x to r is (Xl, X ZI, Zp r), and, by ), d(x, r)
p-IEZ_I d’(xi, Xi+l) + Ej=l d’(z, z+)’, analogously, d(y, r) El+lki d’(xi, Xi-l)

,.2_ d’(z, zj+ 1))
p-1

(,) d(x, r) + d(y, r) 2 , (ha(z+ 1) hd(z))/2
j=l

d(x, r) + d(y, r) hd(zp) + hd(zl) d(x, r) + d(y, r) ha(r) + hd(xl)

(note that z xl and zp r)

d(x, r) + d(y, r) c + h(Xl)

d(x, r) + d(y, r) c + 6(x, y) (**)
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(h is the height function of i and xt is the least common ancestor ofx and y in T);

(**) d(x, r) + d(y, r) c + c- d(x, r) d(y, r) + d(x, y)

(note that 6(x, y) c- d(x, r) d(y, r) + d(x, y))

d(x,y).

Therefore Ta, d’) is an underlying edge labeled tree for the tree metric d. We can
conclude the following result.

THEOREM 3. Tree metrics can be recognized in O(log n) time using O(n2/log n)
processors. Moreover, its corresponding tree structure can be computed by the same time
and processor bound.

4. Conclusion. This paper discussed ultrametrics and tree metrics. In general, the
given distance function is not an ultrametric. The general problem of hierarchical clus-
tering is to find some ultrametric approximation and the corresponding dendrogram for
a given distance function.

There are several hierarchical clustering heuristics (see, for example, [13 ]). The
remaining problem is to parallelize those heuristics. Still, it is only possible to parallelize
the so-called Single Linkage heuristics 10]. It remains an open problem to parallelize
other hierarchical clustering heuristics.
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MONOTONE OPTIMAL MULTIPARTITIONS USING SCHUR
CONVEXITY WITH RESPECT TO PARTIAL ORDERS*
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Abstract. In a (t, n, m)-multipartitioning problem, lists of nm ordered numbers are partitioned into n
sets, where each set contains m numbers from each list. The goal is to maximize some objective function that
depends on the sum ofthe elements in each set and is called the partitionfunction. The authors use the recently
developed theory of majorization and Schur convexity with respect to partially ordered sets to study optimal
multipartitions for the above problem. In particular, they apply the results to construct a class ofcounterexamples
to a recent conjecture ofDu and Hwang, which asserts that (classic) Schur convex functions can be characterized
as the partition functions for l, n, m)-multipartitioning problems having monotone optimal solutions.

Key words, partitions, monotonicity, optimal partitions, Schur convexity, partial order
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1. Introduction. For a vector x e R and k l, n, let Xtkl be the kth largest
coordinate of x. We say that a vector a R majorizes a vector b e R n, written a >> b,
if

k k

(1.1) , a[i] >= , b[i] for all k 1,..., n
i=1 i=1

and
n

(1.2) ] ati] bti].
i=1 i=1

A function g:R -- R is called Schur convex if

(1.3) g(a) >- g(b) for all a, b R satisfying a >> b.

The richness and usefulness of the theory associated with majorization and Schur
convexity is well documented; see Marshall and Olkin [1979 ]. In particular, it is an
important tool for studying optimization problems and establishing inequalities for sto-
chastic systems. One example for the use of this theory concerns the problem of optimal
assembly ofparts of different types into modules that compose a coherent system, where
the goal is to maximize the system reliability. A survey ofthis problem when the modules
are series modules, i.e., a module works if and only if all of its parts work, can be found
in Hwang and Rothblum [1993a]. An assembly is called monotone if the modules can
be labeled such that < j implies that for each type, each part in module is not worse
than any part of module j. Schur convexity has been used to establish optimality of
monotone assemblies when the reliability function is symmetric and each module has
the same number of parts of each type. This special case of the assembly problem has
been abstracted into so-called (t, n, rn)-multipartitioning problems in which lists of nm
ordered numbers are to be partitioned into n sets where each set contains rn numbers
from each list. The goal in these problems is to maximize an objective that depends on
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the sum of the elements in each set and is called the partition function. A monotone
assembly corresponds to a monotone multipartition in which < j implies that

1.4) for each list, every number in set is ordered above any number in set j.

In the current paper, we use the theory of majorization and Schur convexity with respect
to partial orders developed recently by Hwang and Rothblum [1993b to study multi-
partitioning problems having optimal multipartitions for which (1.4) is exhibited for
certain pairs of indices and j, where precedes j in an underlying partial order.

The (t, m, n)-multipartitioning problem is of particular interest because a question
was raised of whether the optimality of monotone multipartitions characterizes Schur
convexity (ofthe partition function). The question has been answered in the affirmative
for >= 2 by Hollander, Proschan, and Sethuraman [1977 and also by Du and Hwang
[1990 ]. It is conjectured in the latter reference that the answer to the above question is
also affirmative when 1. In the current paper, we give a class of counterexamples to
this conjecture by constructing problems having monotone optimal multipartitions but
whose partition functions are not Schur convex. We establish optimality of monotone
multipartitions for these examples by using the results about optimal multipartitions
described at the end of the above paragraph.

The organization of the paper is as follows. We summarize definitions and results
from Hwang and Rothblum 1993b about majorization and Schur convexity with respect
to partial orders. We then formally introduce the multipartitioning problems in 3 and
establish the results about monotonicity properties ofoptimal multipartitions in 4. The
counterexamples to the conjecture of Du and Hwang [1990 are constructed in 5, and
some conclusions are discussed in 6.

2. Majorization and Schur convexity with respect to partial orders. Throughout
this paper, let n be a fixed positive integer and let be a given partial order on the
integers { n } that is consistent with the linear order > on the integers; i.e., is
a transitive, asymmetric relation on ( 1,..., n } and ifj i, then j > i. We call the
domination relation and we say that j dominates ifj i. When j i, we sometimes
write j. Also, we say that j directly dominates i, written j

_
i, ifj dominates and

there exists no integer k that dominates and is dominated by j.
A subset K of { 1, n } is called closed under , abbreviated -closed, if K

contains all integers that are dominated by any integer that is in K. As we assume that
the partial order is consistent with the linear order >, for every integer k 1,..., n,
the set { 1,..., k ) is -closed. Furthermore, these sets are the only -closed sets if and
only if the partial order is the linear order >.

Let a and b be vectors in Rn. We say that a majorizes b with respect to the partial
order , written a >> b, if

(2.1) , ak >= bk for each subset K of { 1,..., n } that is -closed
kK kK

and
n n

(2.2) a= b.
k=l k=l

Of course, -majorization is a transitive relation on R n. Also, as the sets { 1,..., k } for
k 1, n are -closed, -majorization implies >-majorization.

A vector x e R n is called decreasing ifx >= x2 >= >= xn, and the set ofall decreasing
vectors in R will be denoted by R. The decreasing rearrangement of a vector x R n,
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denoted x, is defined as the unique vector in R obtained from x by rearranging its
coordinates, i.e., for k n, (x)k xtk, where xt is the kth largest coordinate
ofx. We observe that the standard definition ofmajorization (given in the Introduction
can be expressed by >-majorization on R; i.e., a e R n majorizes b e R if and only if

a >> > b.
The following lemma, given in Hwang and Rothblum [1993b, Lem. 2.2 ], shows

that certain perturbations of an arbitrary vector result in majorizing vectors.
LEMMA 2.1. Suppose that a is a vector in R and i, j e { 1,..., n }, where j i.

Then, for every scalar 3’ >- O, a + "y(ei- ej) >> a.
We say that a subset S of R" is -pairwise connected if, for every a and b in S

satisfying a >> b, there exist vectors u b, u uq a in S, positive real numbers
-y -yq and integers i( ),..., i(q) and j( ),... ,j(q) in {1,..., n} such that, for

q,

(2.3) j(t) i(t)

and

(2.4) ut= bl
t-I 31- 3,t[ei(t) eJ(t)];

in particular, Lemma 2.1 shows that (2.4) implies that u >> ut- We say that S is
weakly -pairwise connected if in the above definition for each 1,..., q, j(t) dom-
inates (rather than directly dominates) i(t). Of course, -pairwise connectedness implies
weak -pairwise connectedness, but the reverse implication need not hold; see an example
in Hwang and Rothblum 1993b ].

Hwang 1979, Thm. 3.2 proved that Rn is weakly -pairwise connected. His original
proof relied on the nonemptiness ofthe core of a convex game. Simpler proofs ofHwang’s
result that rely on the max-flow min-cut theorem and on a standard characterization of
feasible transportation problems were given, respectively, in Lih [1982] and Rothblum
[1993]. We note that both Hwang’s and Lih’s proofs actually show the stronger result
that R is -pairwise connected; see Hwang and Rothblum [1993b, Prop. 2.4]. The
following generalization of this variant of Hwang’s result was established in Hwang and
Rothblum 1993b, Thm. 2.5 ].

THEOREM 2.2 Let S be a convex, open subset ofR. Then S is pairwise -connected.
The next theorem, established in Hwang and Rothblum 1993b, Thm. 2.6 ], is needed

for our development. We will need another definition to formally state the result. We
say that j {1 n } completely dominates { 1, n }, written j i, if,
for every p { 1,..., and q e { j,..., n }, q p. Of course, complete domination
is a partial order on { n }; i.e., it is transitive and asymmetric. Also, complete
domination and (regular) domination coincide when the partial order is the linear
order >.

THZO,ZM 2.3. Let a R’ and i, j {1 n }, where j i. Then, for every
scalar 3’ >= O,

(2.5) [a + 7(ei- e)]+ >>= a.

Let S be a subset ofR. A function h:S -- R is called Schur convex on S with respect
to the partial order , abbreviated -Schur convex on S, if

(2.6) h (a) >_- h (b) for all a, b S satisfying a >> b.

As -majorization implies >-majorization, >-Schur convexity on a subset S of R" im-
plies -Schur convexity on that subset. However, there are functions that are -Schur
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convex for a particular partial order o, while they are not >-Schur convex; see Example
Bin 5.

When the partial order is the linear order > and S Rn, the above definition
of -Schur convexity does not specialize to the standard definition of Schur convexity
given in the Introduction, as we do not assume that the underlying function is symmetric
and we do not require that (2.6) holds when the coordinates of the vectors a and b are
rearranged. However, a symmetric function g:R --}. R satisfies the standard definition
of Schur convexity if and only if its restriction to R is >-Schur convex. Furthermore,
given a function h’R R, let hA’R -- R be defined for x R by hA(x) h(x).
Then hA is the unique real-valued symmetric function on R" that coincides with h on

R (see Marshall and Olkin [1979, p. 92]), and h is >-Schur convex if and only if hA

satisfies the standard definition of Schur convexity.
It is observed in the above paragraph that we can study symmetric functions on R"

(whether or not Schur convex) by considering arbitrary functions ofR. When considering
Schur-convex functions, this approach bypasses the need to refer to the decreasing rear-
rangement x+ of a given vector x. Furthermore, the approach has another advantage.
Given a symmetric function g"R -- R, differentiability of the restriction of g to R is
a weaker condition than differentiability of g on all of R (though continuity of the
restriction ofg to R is equivalent to continuity of g on all of Rn). Indeed, a character-
ization of >-Schur convexity via differentiability that yields an extension of the Schur-
Ostrowski characterization of differentiable Schur-convex functions was obtained in
Hwang and Rothblum 1993b ].

Let S be a subset ofR. As usual, we say that S is convex if, for every a and b in S
and scalar 0 <= a <- 1, a) a + ab S. The interior of a subset S ofR will be denoted
int (S), in particular, int (R) {x R"’xl > x2"" > x, }.

The following result provides local characterizations of Schur convexity with re-
spect to partial orders. It was established in Hwang and Rothblum [1993b, Thm. 3.2,
Lem. 3.1 ].

THEOREM 2.4. Let S be a subset ofR n and let h S -- R. Then
(a) IfS is weakly -pairwise connected, thefunction h is -Schur convex on S if

and only if, for all x S and i, j { n ) satisfyingj

(2.7) h[x + 3,(e eJ)] is increasing in 3’ on { 3, >= 0:x + 3,(e e) S)
(b) IfS is -pairwise connected, the function h is -Schur convex on S if and

only if(2.7) holds for all x S and i, j { 1, n } where j i; and
(c) IfS is open and convex and thefunction h is continuously differentiable on S,

then h is -Schur convex on S ifand only if
(2.8) hxi (x) >= hxj(X) for all x S and i, j { n } satisfyingj i;

d IfS is a convex set having dimension n and h is continuous, then h is -Schur
convex on S ifand only ifh is -Schur convex on int (S).

The following corollary specializes Theorem 2.4 to the case where S R. Its formal
proof is given in Hwang and Rothblum [1993b, Cor. 3.5 ].

COROLLARY 2.5. Let h" R R be a continuousfunction. Then
(a) Thefollowing are equivalent:

a h is -Schur convex on R’(a2) h is o-Schur convex on int (R),
(a3)for allx int (R) and i,j { n}, wherej i, h[x + 3,(ei- e)]

is increasing in 3, when 0 =< 3, < mini { xi- xi, x x+ ), and
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(a4)for allx int (R) and i,j { 1,..., n}, wherej i, h[x + 3"(ei- eJ)]
is increasing in 3" when 0 -< 3’ < mini { xi- xi, xj xj + }

(b) Ifthefunction h is continuously differentiable on the int (R), then h is -Schur
convex on R’ ifand only if
(2.9) hx(X) >= hxj(X) for all x int (R) and i,j { 1,..., n} satisfyingj i.

We note that condition (2.9) is equivalent to the (apparently more demanding)
variant where j is replaced by j i.

Lemma 3.A.2 of Marshall and Olkin [1979, p. 55] and the discussion in Arnold
1987 state that in the case where the partial order is the linear order >, the equivalence
of parts (a and (a4) in Corollary 2.5 holds without any assumptions about continuity
of the function h. However, an example provided in Hwang and Rothblum [1993b]
shows that this assertion is false (though it is known that R is weakly >-pairwise con-
nected). Also, an application of Corollary 2.5 to symmetric functions on R provides
an extension of the Schur-Ostrowski characterization of Schur convexity without the
requirement that the function is differentiable on all of R n; see Hwang and Rothblum
1993b, Cor. 3.6 ].

3. Formulation of the multipartitioning problem. One application of the classical
theory on majorization and Schur convexity concerns the development of a framework
for establishing optimality of monotone multipartitions, e.g., Derman, Lieberman, and
Ross [1972], Du and Hwang [1990], E1-Neweihi, Proschan, and Sethuraman [1987],
Malon [1990], Hwang and Rothblum [1993a], and references therein.

We next give a formal formulation of multipartitioning problems. These problems
are classified by a triplet (t, n, m) of positive integers, and we refer to a (t, n, m)-
multipartitioningproblem. The data for such a problem consists of a symmetric function
g: R n -- R and lists of nm real numbers

(3.1) {a’k= 1,...,nm}, u= 1,...,t,

where

(3.2)

In particular, the function g is called the partition function of the problem. Throughout
the remainder of this paper, we assume that t, m, and n are given positive integers and
we consider (t, n, m)-multipartitioning problems with data given as above.

A multipartition for our (t, n, m)-multipartitioning problem is a family of sets r

{aui: u and 1,..., n} such that

(3.3) {rui:i= 1,...,n}isapartitionof{1,...,nm} foreaehu= 1,...,t

and

(3.4) the number of elements inauiism for eachu= 1,...,tandi= 1,...,n.

In this case, we define the vector associated with a, denoted a, by

(3.5) a-- u k aul k au2 k aun

Also, the objective associated with a, is then defined by R(r) g(a). We call a multi-
partition r optimal if R() >_- R(a’) for all multipartitions a’.
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FIG.

Example A. Let n 4 and let the partial order be given by Fig. 1, where arrows
are used to represent direct domination in the obvious way. Also, consider the 1, 4, 2)-
multipartitioning problem with data given by

and whose associated (symmetric) function g is defined for x e R by

ifx >>= (18, 10, 9, 6),
g(x)

0 otherwise.

We observe that the multipartition r* with { 1, 2 }, r 12 { 3, 7 }, r 3 { 4, 6 },
tr*a4= {5,8}hasa =(18, 10, 9, 6) and R(a*) g(a )= 1; hence it is optimal.

Our definition of multipartitions focuses on the partitioning of the indices rather
than the associated real numbers. This is particularly convenient when the numbers have
ties. Also, this definition is independent of the data, and the sets of multipartitions for
all (t, n, m)-multipartitioning problems coincide.

Multipartitioning problems have been studied in the literature of optimally assem-
bling parts of different types into a system consisting of n symmetric modules with the
objective of maximizing reliability. When each module consists of m parts of each type,
we have a (t, n, m)-multipartitioning problem. Starting with the original paper ofDerman,
Lieberman, and Ross [1972], several papers that establish the existence of monotone
optimal assemblies rely on the theory ofmajorization and Schur convexity. Here, mono-
tone means that one module gets the best m parts of each type, another gets the second
best parts of each type, and so on. We now extend these results to the partial order case.

For a subset K of { n }, we use the notation K to denote the complement of
Kwithin {1,..., n}, i.e., Kc-- {1,..., n} \K. A subset Kof{1,..., n} is calleda -cut if, for every e K and j e Kc, j i. As the partial order is consistent with the
linear order >, it follows that a nonempty -cut K must have the form { KI },
where KI is the cardinality of K. Of course, not every set of this form is a -cut.
Recalling the definition of complete domination in 2, we further note that, ifK is a -cut, then each j e Kc completely dominates each e K.

Let K be a subset of { 1, n }. Given a multipartition a and u e { 1, }, we
define au/ to be the set Uj /auj. We say that a is monotone with respect to K, or briefly
that a is K-monotone, if, for all u 1, t,

(3.6) k e au/ and p auiC then k < p.
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We observe that (3.6) is equivalent to the assertion that

uI= {1,...,mlKI) for everyu= ,t.

In the context of assembling parts into the modules of a system, K-monotonicity can be
interpreted as the assertion that any part that is assigned to a module that corresponds
to the index set K is better than any part that is assigned to a module that is not indexed
by K. We say that a vector a e R is decreasing with respect to K, or briefly that a is K-
decreasing, if

(3.7) ai >= aj for every 6 K and j Kc.
Of course, if a is a multipartition that is K-monotone, then a is K-decreasing. Also,
a R is decreasing if and only if a is K-decreasing for every set K having the form
{1,..., s} with s {1,..., n}; in particular, if a R, then a is K-decreasing for
every -cut K.

A one-to-one function 7r: { 1, n } - { 1, n } is called a permutation of
{ n }. Given a permutation 7r and a multipartition o, we define a to be the
multipartition with

(3.8) ffui ffur(i) for each u 1, and 1, n.

In particular, we then have that

(3.9) (a’’)i , a , , a (a),(i) for 1,..., n.
k ai 12 k aug(i)

Thus, a* is obtained from a by coordinate-reshuffling. As the function g is symmetric,
we conclude that

(3.10) R(o) g(a) g(a) R(a).

Finally, given a permutation 7r on { 1,..., n } and a subset K of { n ), we denote
the set { -( i)" e K} by r(K).

LEMMA 3.1. Consider a t, n, m)-multipartitioning problem and let r be a corre-
sponding multipartition. Then there exists a permutation r such that

(a) a (a)+,
(b) IfK is a -cutfor which ais K-decreasing, then 7r( K) K, in particular, in

such cases a is also K-decreasing, and
(c) IfK is a -cut for which tr is K-monotone, then r( K) K, in particular, in

such cases a is also K-monotone.
Proof. We can easily construct a permutation 7r such that, for each 1, m,

r(i) is the index of the ith largest element of a and 7r(K) K for every -cut K with
respect to which a is K-decreasing (the latter imposes an extra requirement only when
there are ties among (a) (a)n). In particular, (a)i)= (a)iil for each
n. Combining this observation with (3.9) shows that a" (a")+. Also, if K is a subset
of { 1,..., n } where a is K-decreasing, then the assumption 7r(K) K and (3.9) imply
that { (a)i K} { a *)i" K} and { (a’)i K } { a ’)i: K } hence, the
assertion that a is K-decreasing immediately implies that a is K-decreasing as well.
Finally, if a is K-monotone, then r is K-decreasing, and therefore r(K) K, immediately
implying that the a is also K-monotone.

Lemma 3.1 implies that, for every multipartition o, there is a multipartition o’ with
R(o’) R(o) and a e R. In particular, when searching for an optimal multipartition,
it suffices to restrict attention to those multipartitions a for which a is K-decreasing.
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Example A (continued). Consider Example A introduced earlier in this section.
We have seen that the multipartition 0-* with 0- ( 1, 2 ), 0- e { 3, 7 }, o-13 { 4, 6 },

tr*
0-14 { 5, 8 } has a 18, 10, 9, 6), R 0-* g(a*) 1, and is optimal. We will show
that up to a permutation of the sets, 0-* is the only optimal multipartition. Let 0- be an
optimal multipartition. By possibly permuting the sets of 0-, we will assume that a is
decreasing; see Lemma 3.1. Then, a >> 18, 10, 9, 6); hence, a satisfies

(a") >_- 18,

(a") + (a")2 >= 28,

a") + a")3 >- 27,

(a) + (a)2 + (a)3 >= 37,

(a )1 + (a)3 + (a )4 >= 33,

(a)l + (a)2 + (a)3 + (a)4 43.

We first note that the inequality (a")l -> 18 can be satisfied with our data only if
0-11 {1, 2}, in which case (a") 18. Substituting (a") 18 into the remaining
inequalities, we see that necessarily (a")2 >- 10, (a")3 >_- 9, (a")2 + (a")3 >= 19, (a")3 +
(a")4 >_- 15, and (a)2 + (a")3 + (a")4 25, implying that (a")2 10, (a")3 + (a")4
15. In particular, as (a")2 10, our data implies that 0-12 { 3, 7 }. It now follows that
0-13 I,.J 0-14 (4, 5, 6, 8 ), and therefore the requirement (a")3 -> 9 can be satisfied with
our data only if either 0-13 4, 5 } or 0-13 { 4, 6 } but, if 0-13 { 4, 6 }, we have that
(a")3 11 > l0 (a")2, contradicting the assertion that 0- is decreasing. So, the only
remaining alternative is that 0-13 { 4, 6 }, in which case, 0- 0-*.

4. Existence of monotone optimal multipartitions. In this section, we show that
Schur convexity with respect to partial orders can be used to establish existence of an
optimal multipartition that is monotone with respect to each -cut.

THEOREM 4.1. Consider a n, m )-multipartitioningproblem where the restriction
of the partition function to R’ is -Schur convex. Then there exists an optimal multi-
partition 0- that is K-monotonefor every -cut K andfor which a is decreasing.

Proof. Let K be a -cut and let 0- be a multipartition. A K-violation of 0- is defined
as a quintuple i, j, u, k, p) such that K, j Kc, u e ( }, k o-Hi, and p e 0-u-,
where k < p. We denote by V : the set of pairs (i, j) in ( n n } such
that, for some u, k, and p, (i,j, u, k, p) is a K-violation of 0-. In particular, a multipartition
0- is K-monotone if and only if V is empty.

We first consider any fixed -cut K*. Let 0-* be an optimal multipartition for which
a* is decreasing such that the cardinality of V ** is smallest among all optimal multi-
partitions 0- for which a is decreasing. We will show that 0-* is K*-monotone by showing
that V * is empty. Suppose that this is not the case and that V r. contains a pair, say
(i*, j* ). To establish a contradiction, consider the multipartition 0-’ obtained from 0-*
by repartitioning the elements in 0-i. U 0-uj. for each u 1, and assigning the m
elements with the higher indices to i* and the remaining m elements to j*. In particular,
we have that

(4.1) 0-ti-0-u*i foru=l,...,t and i{1,...,n}\{i*,j*},

and using the fact that (i*, j*) e V k**, we also have that

(4.2) (a)i. > (a" )i. and (a"*)j. < (a"’)j...
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Furthermore, as

a, a
k. a’ui k i

and

for all u 1,..., and e { n ) \ { i*, j* }

nm n

a,= ] a,= ] a for allu= 1,...,t,
kaui k u i= kaui

rt tit follows that, for 3’ (a). (a"*). (a **) j. (a)j. > O,
a* j*(4.3) a’ a + "y(e i* e ).

Now, as K* is a -cut, i* e K*, and j* e K* c, we have that j* completely dominates i*.
Furthermore, as a* e R, Theorem 2.3 implies that [a*’], [a* + ,(ei* ej*)]* >>=

tr* na Thus, by the assumptions that g is symmetric and its restriction to R is -Schur
convex,

R(a’) g(a’) g[(a )+] g{[a* + ,(ei* eJ*)]+} >= g(a*) R(a*).

As tr* is optimal, it follows that a’ is also optimal.
We will next argue that V r. is a proper subset of V k**. Of course, (i*, j*)

V k** and the construction of a’ assures that (i*, j* V k’.. To see that V r* - V k.,
assume that (i’, j’) V :’.. So, a’ has a K*-violation of the form (i’, j’, u’, k’, p’), i.e.,

p’ k’ p’.i’ K* j’ K*c, u’ (1, }, k’ ru,i, ru9,, and < We first observe
jt ,that, if ( t’, } f) ( i*, j } , then (4.1) implies that ( i’, j’ } V ** So, assume that

j’ ’ K* i’ j* K* c, K* c, we{t’, }f3{i* j*}q=.As(i* j*)ctVic,,i* K*, andj’
conclude that either ’= i* andj’ { i*, j* } orj’= j* and i’ { i*, j* }. We next examine
the following distinct alternatives:

(a) i’ i* and j’ { i*, j* }. The construction of a’ assures that a,/, r*/, and
* and p’that a u*’i contains an element k/x < k’. Then, k/ < k’ < p’, k/ a *’i* a u’i -a,’, au*’j". It follows that (i’,j’, u’, k/, p’) is a K*-violation of a*; hence, { i’,j’} V*;

(b) j’ j* and i’ { i*, j* }. The construction of a’ assures that a,’i’ a*’i’ and
that a u*’j, contains an element p,X _>_ p,. Then, k’ < p’ =< p/, k’ e a,,i, a *’i’, and p/X e
a *,j, a *,. It follows that (i’, j’," u’, k’, p/ is a K*-violation of a*; hence, { ’,’j’ } V*

As a "* is decreasing, a a* + 3’(e;* e*) for 3’ > 0, i* 6 K*, and j* K*c, it
follows that a’ is K*-decreasing. Hence, Lemma 3.1 implies that there exists a permutation
r such that a’ (a’)+ 6 R and r(K*) K*. We note that the set of K*-violations
of a’ and a’* do not coincide, but, as r(K* K*, (i, j, u, k, p) is a K*-violation of a’
if and only if (r(i), r(j), u, k, p) is a K*-violation of a’*; in particular, the number of, V’,K*-violations of a and a’ coincide, and the cardinality of Vc, and are equal. As
Vc’, is a proper subset of Vr,, we conclude that V’, has a smaller cardinality than does
V**. Furthermore, as a’ is obtained by coordinate-reshuffling of a ’, we have that
R( a’*) R(a’), and therefore a is optimal. So, a’* 6 R, V, has a smaller cardinality
than does V**, and a is optimal, resulting in a contradiction to the selection ofthe a*.
This contradiction proves that V/, is empty; i.e., a* is K*-monotone.

It remains to show that we can achieve K-monotonicity simultaneously for all -cuts K. We will sketch an (inductive) modification ofthe above construction that proves
the general result. The key idea is to observe that it is possible to guarantee that the above
construction will preserve K-monotonicity for -cuts K.

Specifically, let our be a maximal set of -cuts such that there exists an optimal
multipartition a that is K-monotone for every K 6 3U and where a 6 R. We will show
that is the set of all -cuts. Suppose that this is not the case and that K* is a -cut
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that is not in :If. Let a*, i*, j*, a’, and r be defined in terms ofK* as in the earlier part
of our proof, except that the permutation 7r is selected such that r(K) K for every
K of. The latter is possible because a is K-monotone for each K :If, and therefore
the permutation 7r selected by applying Lemma 3.1 has 7r(K) K. We then have that
a is an optimal multipartition that is K*-monotone and for which a’ is decreasing.
Now, let K 3U. Then K is a -cut, and a* is K-monotone; in particular, tr* has no K-
violation, implying that either both i* andj* are in K or both are in Kc. This conclusion
combines with the assertion that 7r(K) K to show that

flu*K-- for allu= 1,O’uK O’uK

As r* is K-monotone, we now conclude that so is a’. Thus, a is an optimal multi-
partition that is K-monotone for every o e K t.J { K* } and for which a’ is decreasing.
This contradicts the maximality in the selection ofgf, and thereby completes our proof.

Theorem 4.1 asserts the existence of optimal multipartitions having the property
that, for certain pairs (i, j) e { 1,..., n } { 1,..., n }, where j i, we have that rui

gets uniformly lowerelements than does ru; i.e.,

(4.4) if u { 1, }, k O’ui and p auj, then k < p.

A natural direction for extending Theorem 4.1 is to study the existence of optimal mul-
tipartitions a for which (4.4) is satisfied for a broader class of pairs (i, j) satisfying
j i, hopefully all such pairs. In fact, it is well known that such an extension is valid
when the partial order is the linear order >, and in this case there exists an optimal
multipartition for which (4.4) is satisfied for all pairs i, j) for whichj i; see Corollary
4.4. However, the following example demonstrates that, in general, (4.4) cannot be
achieved simultaneously for all pairs (i, j) satisfying j i.

Example A (continued). Reconsider Example A discussed in 3. It was shown
that the multipartition a* with r 1 { 1, 2 }, a 12 { 3, 7 }, a 13 { 4, 6 }, a 14 { 5, 8 }
has a* 18, 10, 9, 6), R(a*) g(a *) and is optimal. It was further shown that
the only optimal multipartition a for which a is decreasing is r a*, so, up to permutation
of the sets, r* is the only optimal multipartition. However, a* does not satisfy (4.4) for
the pair (3, 4), though 4 3. Of course, there are additional optimal multipartitions
for which a is not decreasing, and the above discussion shows that these are necessarily
obtained by applying a permutation to the sets of a*. We will next argue that no such
optimal multipartition satisfies (4.4) for all pairs (i, j) for which j i. Observe that
under a* the only pairs (i, j) { 1, 2, 3, 4 } { 1, 2, 3, 4 } for which (4.4) is satisfied are
those with 1. Also, the pairs (i, j) { 1, 2, 3, 4 } { 2, 3, 4 } satisfying j are
1, 2), 1, 3), 1, 4), and (3, 4). Now, if is an optimal partition, then r a* for
some permutation r; hence, if satisfies (4.4) for the pairs (i, j) { (1, 2), (1, 3),
1, 4) }, we have that r( 1. However, in this case, a r* cannot satisfy (4.14) for

the pair i, j) (3, 4).
We next explain the idea underlying the above example. We first recall from Lemma

2.1 that, for all positive 3’, (18, 10, 9, 6) + 3,(e e4) >> (18, 10, 9, 6). So, if we
exchange 5 and 6 in u*3 and a u*4, we obtain the vector 18, 10, 11, 4), which -majorizes
18, 10, 9, 6). However, the new vector is not decreasing. As the function g is symmetric,

its definition is uniquely determined by the increasing permutation of the underlying
vector. So, the objective value ofthe permuted multipartition is g 18, 11, 10, 4). However,
the 18, 11, 10, 4) does not -majorize 18, 10, 9, 6); hence, the objective is reduced
asg(18, 10, 11,4)=0< =g(18, 10,9,6).

We observe that the proof of Theorem 4.1 can be used to show that, ifj i,
then there exists an optimal multipartition r { ru: u 1,..., and x 1,..., n },
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where, for each u, all the indices in ffui are smaller than any of the indices in auj, but the
proofcannot be used to show that this can be accomplished simultaneously over all pairs
(i, j), wherej i. We next determine sufficient conditions that "simultaneous mono-
tonicity" can be achieved.

Call an integer e { 1, n }, well ordered with respect to the partial order ,
abbreviated -well ordered if, for every integerj { 1,..., n } \ { }, either j or
j. As the partial order is consistent with the linear order >, we have that, if is -well ordered, j whenever j > and j whenever > j.

The following lemma relates the property of being well ordered to -cuts.
LEMMA 4.2. An integer { 1,..., n } is -well ordered if and only if { 1,...,
} and { i} are -cuts.
Proof. First, assume that is well ordered. Then, for every p, q e { 1,..., n } satisfying

p < < q, q p. As we also have that p for every p < and q for every
q > i, it immediately follows that both { 1, 1} and {1 i} are -cuts.
Alternatively, assume that both { 1, i- } and { 1, i} are -cuts. Then, for
j K { }, the fact that K is a -cut and K implies that j. Also,
for j K’ { + 1, n }, the fact that K’c is a -cut that contains and does not
contain j implies that j i.

The next result, obtained by combining Theorem 4.1 with the above lemma, shows
that when the associated function is -Schur convex on R, it is possible to determine
the composition of sets corresponding to -well-ordered integers in some optimal mul-
tipartitions.

THEOREM 4.3. Consider a t, n, m)-multipartitioningproblem where the restriction

of the partition function to R is -Schur convex. Then there exists an optimal multi-
partition a such that a is decreasing, and,for every { 1,..., n } that is -well ordered,

(a) Forj { } and u t, auj is a subset of { 1,..., m }
b For u 1, aui { 1)m + 1, im and
(c) Forj e { + 1, n and u t, au is a subset of { im + 1, nm }.
Proof. Consider the optimal multipartition a whose existence was established in

Theorem 4.1. Select {1,..., n}, which is -well ordered, and let u e {1,..., t}.
By Lemma 4.2, K { 1,..., is a -cut; thus, the construction of a implies that
a is K-monotone. It follows that

(4.5) aui {1 mlKI} {1,..., im},

establishing (a). Also, Lemma 4.3 shows that K’ { 1, } is a -cut, and therefore
a is K’-monotone. Thus,

(4.6) aui, {1 talK’l} {1,..., im),

implying that

(4.7) au/,c {im + 1,..., nm},
establishing (c). Finally, (4.6) and (4.7) combine to show that

(4.8) aui-- aui\a,i(, aui {(i- 1)n + 1,..., in},

establishing (b).
COROLLARY 4.4. Consider a t, n, m)-multipartitioningproblem where the restric-

tion to the partition function to R is Schur convex. Then the multipartition a with

(4.9) aug= {(i- 1)m+ 1,(i- 1)m+2 im} forallu= 1,...,t

is optimal.
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Proof. We first observe that every integer { 1, n } is >-well ordered. Thus
the conclusion of our corollary follows directly from Theorem 4.3 and the fact that a
function g: R -’ R is Schur convex if and only if its restriction ofR is >-Schur convex.

We note that Corollary 4.4 is well known, e.g., E1-Neweihi, Proschan, and Sethur-
aman [1987 have a direct proof that relies on the definition of Schur convexity and the
observation that the vector associated with the multipartition a defined by (4.9) majorizes
all vectors associated with the other multipartitions. Thus, the Schur convexity of the
associated function g implies that, for every multipartition tr’, R(a’) g(a’) >=
g(a) R(a). This direct approach does not extend to prove Theorems 4.1 and 4.3.

5. An example contradicting the Du-Hwang conjecture. A multipartition for a
(t, n, m)-multipartitioning problem is called monotone if, for all u 1, and i,
j=l,...,n,

ifj > i, k ffui, and p auj, then k < p;

in particular, there is only one monotone multipartition tr*, and for this partition

aui { 1)m + 1,...,ira} for allu= 1,...,tandi= 1,...,n.

Call a function g: R R (t, n, m)-partition-monotone if, for every (t, n, m)-multi-
partitioning problem whose associated function is g, the monotone multipartition is
optimal. It is well known, e.g., Corollary 4.4, that every Schur convex function on R is
(t, n, m)-partition-monotone for all positive integers and m. Here we construct an
example of a continuous function that is 1, n, m)-partition-monotone for 1, arbitrary
n, and m 2, but is not Schur convex, thereby providing a counterexample to a conjecture
of Du and Hwang 1990 ].

Example B. Let n >_- 4 and consider the function h" R -- R defined for x
Rby

n--4

h(Xl, x, x) 3 (xg) + (x_3) + 2Xn-3X,- + Xn-3Xn-1
i=1

+ 2Xn-zX,-I + Xn-Xn + 2X,_ X,.

Note that h is continuous on R and continuously differentiable on int (R) with

6xi ifl <-i<=n-4,

2x_3+2xn_+x_ ifi=n-3,

hxi x) 2Xn 2 -[- 2X AV Xn if n 2,

Xn-3 -[- 2Xn-2 Av 2Xn if n- 1,

Xn-2 + 2x,,-1 if/= n.

Let the partial order be represented by Fig. 2. It is easy to verify that

hx, (x) >= hxj(X) for all x int (R) and i, j 1, n satisfying j i.

Thus, Corollary 2.5 implies that the function h is -Schur convex on R. Furthermore,
the inequality hx,_ 2(x) >= hxn -1 (X) does not hold for all x in R, e.g., it fails when
Xn-3 6, x,-2 5, Xn- 2, andxn 1, in which case hx,_(x)- hx,_2(x) 1. Thus,
Corollary 3.5 also implies that the function h is not >-Schur convex. In particular, we
conclude that the symmetric extension h/ of h to R n is not Schur convex.
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FIG. 2

We will next show that h/ is 1, n, 2)-partition-monotone for all n >- 4. Consider
a 1, n, 2)-multipartitioning problem with data given by { a:" k ,2n }, where

a]>=a>- >=
and associated function hA. To simplify notation, we will suppress the superscript of
this data and refer to a, a2,..., a2n.

We observe that 1, 2 n 3 and n are all -well-ordered integers. Hence,
Theorem 4.3 implies that there exists an optimal partition a with a "" decreasing and

{2i- 1,2i} if/= ,n-3,
ai=

{2n- 1,2n} if/=n.

The only elements whose assignment under a is not uniquely determined are a2n- 5,

a2 4, a2, 3, and a2n 2, which are assigned to fin 2 and an 1, respectively. Now assume
that a is not monotone and let a* be the unique monotone partition. We will show that
R a* >- R(a). This conclusion is trite if a2n a2 -4 a2 a2n 2. Hence, assume
that a2n < a2n 2.

Let an- 2 { b/, I)} and an- { w, }. As a" is decreasing, we have that u + v >-
w + t. Furthermore, as a2n < a2n 2 and a is not monotone, { u, v } an 2 { a2n 5,

a2n-4 }. It follows that { u, v } and { w, }; each contains exactly one element from
{ a2n- 5, a2n-4 } and exactly one element from { a2n- 3, a2n- 2 }, respectively. By inter-
changing the roles of u and v and/or w and t, we may assume that { a2n- 5, a2n-4 }
U, W an_ 2 and { a2n -3, a2n -2 } { v, t } an -1. Then

R(a*) R(a) [2(a2n-7 + a2n-6)(u q- I)) q- (a2n-7 + a2n-6)(w q- t)

+ 2(u+ v)(w+ t) W(u+ t)(a2n- + a2n)+ 2(w+ t)(a2n- + a2n)]

[2(a2n-7 + a2n-6)(u + w) + (a2n-7 + a2n-6)(v + t)

+ 2(u + w)(v + t) + (u + w)(a2n- + a2n) + 2(v + t)(a2n- + a2n)]

(I w)[a2n_ 7 -1- a2n-6 2u + 2t a2n- a2n].

As a2n- 7 + a2n- 6 2u and 2t >= a2n- + a2n, we conclude that R a* >= R(a). Hence,
a* is optimal, thereby establishing that the function hA is 1, n, 2)-partition-monotone.

We next show that the example we constructed was minimal in n; i.e., we show
that 1, n, m)-partition-monotonicity for a continuous function implies Schur convexity
when n < 4. This is trivial when n 1; hence, we consider only the cases where n 2
and n 3.



546 F. K. HWANG, U. G. ROTHBLUM, AND L. SHEPP

Let n 2. Suppose that g is 1, 2, 2)-partition-monotone, and we will show that g
is Schur convex, or, equivalently, that the restriction ofg to R is >-Schur convex. Let
b, c e R, where b >> c. Set

al a b/2, a Cl b/2, and a=c2-bl/2.
As bl >- c >= c2, it immediately follows that a >= a >= a >= a. Thus, the (1, 2, 2)-
partition-monotonicity ofg implies that, ifthe a’s are data for a multipartitioning problem
whose associated function is g, then the (unique.) monotone partition has a higher ob-
jective value than any other partition. Thus,

g(b) g(al + a, a + a4) R({1, 2}, {3, 4})

>= R( {1, 3}, {2, 4}) g(al + a, a + a) g(c).

So, the restriction of g to R is >-Schur convex, and therefore g is Schur convex.
We next consider the case where n 3. Suppose that g is a 1, 3, 2)-partition-

monotone, and we will demonstrate that g is Schur convex, or, equivalently, that the
restriction ofg to R is >-Schur convex. Let b, c R, where b >> c, and we will show
that g(b) >= g(c). By condition a4 ofCorollary 2.5, it suffices to consider the case where
bl > b2 > b3, c > C2 > C3, and either b Cl or b3 c3.

First, assume that b3 c3, in which case, b + b2 Cl + c2. Let

a[ c b2/2, a bl c + b2/2,

a a b2/2, and a a b3/2.

As 2c >= Cl + c2 b + b2, bl -> Cl, and b2 >= b3, it immediately follows that al >= a >=
a -> a4 >= a >= a61 Thus, the 1, 3, 2)-partition-monotonicity of g implies that, if the
a],’s are data for a multipartitioning problem whose associated function is g, then the
(unique) monotone partition has a higher objective value than any other partition. As
c2 bl + b2 c a + a, we conclude that

g(b) g(a + a,a + a,a + a) R({1, 2}, {3, 4}, {5, 6})
>- R({1, 3}, {2, 4}, {5, 6}) g(a + a, a + a, a + a) g(c).

Alternatively, assume that b c, in which case, b2 + b3 c2 + c3. Let

al a b/2, a a b/2,

a c2 b/2, and a 6"3 b2 / 2.

Again, it easily verified that a >-- a2 -> a >- a >= a >_- a, and that, by the 1, 3, 2)-
partition-monotonicity of g,

g(b) g(a + a,a + a,a + a)= R({1, 2}, {3, 4}, {5, 6})

>= R({1, 2}, {3, 5}, {4, 6}) g(al + a, a + a, a + a) g(c).

We have established that the restriction ofg to R is >-Schur convex, and therefore
g is Schur convex.

6. Conclusions. We identified monotonicity properties of optimal multipartitions
for (t, n, m)-multipartitioning problems whose partition functions are Schur convex
with respect to partial orders. This was accomplished by using the recent theory of ma-
jorization and Schur convexity with respect to partial orders. We then used the results
to construct a class of counterexamples to a conjecture ofDu and Hwang 1990 ], which
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asserts that Schur convex functions can be characterized by the existence of a monotone
optimal partitions for 1, n, m)-multipartitioning problems. We hope that the methods
we developed in this paper can be useful to more general assembly problems, for example,
for problems where the number of parts for each type in a module does not have to be
constant.
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INTERACTIVE COMMUNICATION OF BALANCED DISTRIBUTIONS
AND OF CORRELATED FILES*

ALON ORLITSKY"

Abstract. (X, Y) is a pair ofrandom variables distributed over a support set S. Person Px knows X, person
P, knows Y, and both know S. Using a predetermined protocol, they exchange binary messages for Py to learn
X. Px may or may not learn Y. The m-message complexity tm is the number of information bits that must be
transmitted (by both persons) in the worst case if only m messages are allowed, t is the number of bits
required when there is no restriction on the number of messages exchanged.

A natural class ofrandom pairs is considered. is the maximum number ofX values possible with a given
Y value. is the maximum number of Y values possible with a given X value. The random pair (X, Y) is
balanced if . The following hold for all balanced random pairs. One-way communication requires at most
twice the minimum number of bits: tl _-< 2(o + 1. This bound is almost tight: For every a, there is a balanced
random pair for which 01 >-- 2( 6 >= c. Three-message communication is asymptotically optimum, (3 --<
oo + 3 log t + 11. More importantly, the number of bits required is only negligibly larger than the number
needed when Px knows Y in advance, ( -< 3 --< log + 3 log log/ + 11.

These results are applied to the following correlatedfiles problem. X and Yare binary strings (files) within
a small edit distance from each other. Px knows X, while Py knows Y and wants to learn X. The above results
imply efficient three-message protocols for conveying X to P,. Efficient one-way protocols are provided for
certain restricted cases and their possible generalizations are discussed.

Key words, communication complexity, data compression, interactive communication

AMS subject classifications. 94A 15, 94A29, 94A99

1. Introduction. The Introduction is partitioned into three parts. Section 1.1 provides
the necessary background. Section 1.2 describes the problem investigated and some of
its possible applications. Section 1.3 reviews the results obtained.

1.1. Definitions and previous results. Consider two communicators: an informant
Px having a random variable X and a recipient Pr having a random variable Y. The
random pair (X, Y) is distributed according to a probability distribution that is known
to both communicators. Px and Py want the recipient Py to learn Xwith zero probability
oferror. The informant Px may or may not learn Y. How many bits must be transmitted?

This interactive communication problem can be viewed as a variation on commu-
nication complexity ], [2]. The function computed by Px and Py is trivial: f(X, Y)
X, and difficulty arises because the inputs X and Y are correlated.

To further specify the problem, we assume that the communicators alternate in
transmitting messages, finite sequences of bits. Messages are transmitted over an error-
free channel and are determined by an agreed-upon, deterministic protocol. For every
input--a possible value assignment forXand Y--the protocol determines a finite sequence
of transmitted messages. The protocol is m-message if, for all inputs, the number of
messages transmitted is at most m.

The (worst-case) complexity of a protocol is the number of bits it requires both
communicators to transmit, maximized over all inputs. 0m, the m-message complexity
of(X, Y), is the minimum complexity ofan m-message protocol for (X, Y). For example,

Received by the editors April 29, 1991; accepted for publication (in revised form) October 16, 1992. A
preliminary version of this paper appeared in the 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, October 1991.

f AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974.
The pair (X, Y) is implicit in the notation and will be implied by the context.
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INTERACTIVE COMMUNICATION OF BALANCED DISTRIBUTIONS 549, the one-way complexity of (X, Y), is the number of bits required in the worst case
when Py cannot transmit to Px, and 2 is the number of bits required in the worst case
when at most two messages are permitted: Py transmits a message reflecting Y, then Px
responds with a message from which Py must infer X. Since empty messages are allowed,
m is a nonincreasing function of m bounded below by O. We can therefore define
the unbounded-message complexity of (X, Y), to be the limit ofm as m -- . It is the
minimum number ofbits that must be transmitted for Prto know X, even ifno restrictions
are placed on the number of messages exchanged. Clearly,

The following example and results, taken from 3 ], relate these complexity measures.
For other aspects of interactive communication, see 4 ]-[ 6 ].

Example 1. A league has teams. P, knows two teams that played in a game, and
Px knows the team that won the game. They communicate for P, to learn the win-
ning team.

If only one message is allowed, necessarily from Px to P,, it must be based solely
on the winner (for that is all Px knows). If the message transmitted when team wins is
the same as (or a prefix of) the message transmitted when teamj wins, then, in the event
of a match between teams and j, P, cannot discern the winner (or when the message
ends). Therefore, there must be different, prefix-free messages, and at least one ofthem
must be of length >- [log t]. This bound is clearly achievable; hence, ( [log t]. If two
messages are allowed, P, considers the binary representations of the two teams that
played and transmits [log log t] bits describing the location of the first bit where they
differ. Px responds by transmitting a single bit describing the bit value of the winning
team in that location. Therefore, 2 =< [log log d + 1. It can be shown that, for this
example,

(2 ( [log log d + 1.

The example shows that for some random pairs, one-message complexity is expo-
nentially higher than the minimum (1 26- 1. Yet 3 shows that two messages always
suffice to reduce communication to almost the minimum: For all random pairs,

(z -< 4( + 3.

This contrasts with communication complexity, where a succession of papers [7 ]-[ 9]
showed that, for every m, there is a function whose m-message complexity is almost
exponentially higher than its (m + )-message complexity.

It is not known whether there is an m such that m-messages are asymptotically
optimum, namely, for all random pairs

m -< d + O(d).

In this paper, we consider a natural class of random pairs for which stronger statements
hold true.

1.2. Balanced pairs and correlated files. Let (X, Y) be a random pair. Its support
set is the set S of possible inputs. The support set is of interest as it determines the m-
message complexity tm for all m. This evident property of worst-case complexities is
formally proved in 3 ].
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Pr’s ambiguity when he has the value y is

(y) --f I{ x’(x, y)

the number of possible X values when Y y. Pr’s maximum ambiguity is

def
(2) t* max { #(y) },

y

the maximum number ofX values possible with any given Y value. Px’s ambiguity n(x)
when he has the value x, and his maximum ambiguity , are similarly defined. In the
league problem of Example 1, 2 as, for every game known to Pr, there are two
possible winners known to Px. Similarly, in that case is 1, corresponding to the
number of possible losing teams.

We consider the class of balanced random pairs, pairs satisfying . Balanced
pairs arise naturally whenever there is no distinction between the two communicators
or whenXand Yare known to be within some "distance" from each other. For example, 2

X and Y, inaccurate measurements of the same quantity, are integers within a
bounded absolute difference from each other, and

2) X and Y, obtained from a noisy binary transmission or from a faulty memory,
are n-bit strings within a bounded Hamming distance from each other.

Ofthese and other examples ofbalanced pairs, the following correlatedfiles, or edit-
distance problem, shows the most promise of being practically useful. The edit distance
between two binary strings X and Y is the minimum number of deletions and insertions
to X needed to derive Y. For example, the edit distance between the empty string and
any n-bit string is n, and the edit distance between 01010 and 10101 is 2. In the correlated-
files problem, X and Y are binary strings within a small edit distance from each other.
Px knows X, while Pr knows Y and wants to learn X.

This problem can arise in many situations: Px and Pr write a joint book, and
each updates his version individually; (2) X is the new digital image taken by a satellite
Px, and Y is the previous frame, known to Pr (successive images are likely to be within
a small edit distance); (3) X and Y are different versions of the same program or file;
(4) X and Ywere received from the same binary transmission with erroneous insertions,
deletions, and reversal of bits.

In all those cases, the edit distance between X and Y is much smaller than the
number of bits in each. We are looking for a way to communicate X to Pr without
transmitting all of it. Of course, in cases and (2), if Px keeps the original versions of
the file (or image), he can efficiently transmit the locations of the insertions/deletions.
In cases (3) and (4), however, there is no such reference sequence. Surprisingly, there
is almost no difference between the number of bits required in the two cases. We show
that, even when Px knows only X (as we assume), X can be communicated to Pr using
only negligibly more bits than the number needed if Px knew Y in advance.

The protocols achieving this near-minimum number of bits are interactive and
require Px and Pr to exchange three messages. For general one-way protocols, we can
only prove that they require twice as many bits as needed if Px knows Y. However,
efficient one-way protocols for this problem would have the following additional appli-
cations: simultaneous updates of many different files (without the need to respond

The pairs below are, in fact, symmetric: (x, y) S if and only if (y, x) e S. Clearly, every symmetric
pair is also balanced. Our results hold for all balanced pairs and hence are presented that way.
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individually to each one); (2) transmission of images to many recipients, each with a
different (possibly erroneous) prior image; (3) efficient backup of files without keeping
track of individual edit operations; (4) compression of long related sequences without
keeping a reference sequence.

For these reasons, we consider the possibility of efficient one-way protocols for the
correlated-files problem. Unfortunately, we can prove only partial results, and the main
question remains unsolved.

1.3. Results. For general distributions, one-way communication may require ex-
ponentially more bits than the minimum necessary (e.g., ( log tq versus (o
[log log t] + for the league problem with teams). Yet, Corollary in 2 shows that,
for all balanced random pairs, one-way communication requires at most twice the min-
imum necessary,

=< 2 + .
This bound is almost tight. Lemma 2 shows that, for all a >_- 0, there is a balanced random
pair such that

_>- 2 6 >_- a.

In 3 we show that three-messages communication is asymptotically optimum.
More importantly, we prove that, although the informant Px does not know Y, the
number of bits needed to convey Xto Pr is only negligibly larger than would be required
if Px knew Y in advance.

Specifically, and (2) defined Py’s ambiguity t(y) when he has the value y and
his maximum ambiguity t. Clearly, at least [log tz(y)q bits must be transmitted in the
worst case when Pr’s value is y. Hence,

(3) 0oo >- flog

Had Px known Y in advance, this bound would be tight, 0* log q, where 0*
denotes the number of bits needed if Px knows Y in advance (note that in this case
interaction cannot help; hence we omitted the subscript representing the number of
messages). However, Px does not know Y; hence log q bits cannot always be achieved.
In the league problem, for example, the maximum ambiguity is two, and if Px knew
Y (the game) he would need to transmit only one bit (say, whether the winning team is
lexicographically first). Yet, Px does not know the game, and we saw that many more
than log q bits must be transmitted: oo log log tq + bits.

However, 3 shows that, for all balanced pairs, there is almost no increase in com-
munication due to Px not knowing Y,

(4) 03 --< log/ + 3 log log/ + l.

Furthermore, for general distributions it is not known whether there is an m such
that m messages are asymptotically optimum. As a corollary of the last result, we get
that, for all balanced distributions, three messages are asymptotically optimum,

03_--< O + 3 log O + 11.

The bound of inequality (4) is refined in 4 for balanced distributions where Pr’s am-
biguity (y) varies widely with y. We show (see Theorem 2 for the precise formulation)
that, for all random pairs, there is a four-message protocol that, for all y’s with a given
(y), requires an average of at most log #(y) + 4 log log (y) transmitted bits.

In 5.1 we apply these results to the correlated-files (edit-distance) problem. We
derive three-message protocols that are bitwise-efficient both asymptotically and for mod-



552 ALON ORLITSKY

erately-sized files. We show that similar protocols can be constructed also for more realistic
edit models (e.g., where an edit operation can move a segment).

For one-way communication, the general results imply only protocols that require
at most twice the number ofbits necessary when Px knows Y. In view oftheir significance,
we consider asymptotically-optimal, one-way protocols for the correlated files problem
in 5.2. Unfortunately, we cannot prove that they generally exist. Instead, we reduce
the problem of conveying edited files to that of conveying files with insertions alone; this
simplifies the task of designing protocols and analyzing them; (2) describe an optimal
one-way protocol for a single insertion/deletion, showing that for the case

log (n + 2)q, where n is the length ofthe string Y; 3 analyze a possible reduction
of insertion protocols to protocols identifying inversionsma problem for which efficient
protocols exist (cf. Example 4). We then use this approach to construct efficient protocols
for a very restricted case of insertions and deletions.

2. One-way complexity is at most twice the minimum. For general pairs, one-way
communication may require exponentially more bits than the minimum necessary (e.g.,
[log tq versus [log log tq + for the league problem). However, for all balanced pairs,
one message requires at most twice the minimum number of bits. This will become
apparent once we delineate some preliminary definitions and results.

Let (X, Y) be a random pair with support set S. The support set ofX is the set

SX deZ { X’(X, y) E S for some y }
of possible values of X. The support set Sr of Y is similarly defined. Instrumental in
determining ( is G, the characteristic hypergraph of (X, Y). Its vertex set is Sx, and,
for every y E St, it contains the hyperedge

(4) E(y) deZ (X" (X, y) - S}.
The characteristic hypergraph is equivalent to a graph defined by Witsenhausen [10
who considered the one-message version of this problem. For the league problem with
teams, for example, G has vertices, one corresponding to each (team) value ofX. It has
() edges, one corresponding to each possible (game) value of Y. Each edge contains two
vertices (the possible winning teams in the game). In other words, G is Kt, the complete
graph on vertices.

A coloring of a hypergraph G is an assignment of a color to every vertex of G such
that no two vertices sharing a hyperedge are assigned the same color. The chromatic
number x(G) of G is the minimum number of colors required to color G. It can be
shown that the following holds.

RESULT (see Lemma 2 in [3 ]). For all random pairs, [log x(G)].
This proves again that, for the league problem with teams, 1 [log x(Kt)]

[log t], as was shown in Example 1.
LEMMA 1. For all random pairs,

(l-<log/+log+ 1.

Proof. According to Result 1, the one-way complexity of (X, Y) is determined by
the chromatic number of the characteristic hypergraph: (1 [log x(G)]. Each vertex in
G belongs to at most edges, and each edge contains at most t2 vertices. Hence,

X(G) <= ?1"(- 1) + _-< .. I--!

COROLLARY 1. For all balanced random pairs,

l--<21og+ l_-<2d’+ 1.
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Proof. The proof is immediate from the previous lemma and (3).
The next lemma proves this bound almost tight. Example 2 in {} 3 provides a slightly

weaker result for another, more elementary family of balanced random pairs.
LEMMA 2 (with Jeff Kahn). For every a >= O, there is a balanced random pair

satisfying

1 >- 2oo 6 >= .
Proof. Let n be a prime power. Then there is a projective plane r of order n. r

consists of n z + n + points and the same number of lines. Every line is incident upon
n + points, and every point is on n + lines. Every two points are connected by exactly
one line, and every two lines intersect at exactly one point.

Pr knows a line Y of r, and Px knows a point X on Y. The pair (X, Y) is balanced
as

==n+l.
Since every two points are connected by a line, in a one-message protocol, each of the
n 2 + n + points of r must be assigned a different message; therefore

log (n2
_

n + )].

We now construct a two-message protocol showing that

2 -< {log (n + 1)] + 2.

Let p, p2, and P3 be distinct points of r, not all on a single line. For each of the three
points, Px and Pr agree in advance on a [log (n + )q-bit encoding of the n + lines
incident upon it.

When Py is given a line Y and Px is given a point X on Y, Py transmits the index
of a point among p, P2, and P3 that is not on Y (there must be one by the choice of

the three points). Px responds with the encoding of the (unique) line incident upon Pi
and connecting it to X.

Py now knows two lines, both incident upon X. As every two lines intersect at a
unique point, Pr can determine X. V]

We have proved that a single message may require up to twice the minimum number
of bits. The next section shows that three messages require at most negligibly more bits
than the minimum necessary.

3. Three-message communication is asymptotically optimum. In 1.3 we noted
that, for general distributions, it is not known whether there is an m such that m-
message communication is asymptotically optimum, and (2) there may be a large dis-
crepancy between the number [log/ of bits needed when Px knows Y in advance and, required when Px does not know Y.

Balanced pairs are different. We show that three messages require only negligibly
more than [log/ bits. In particular, three-message communication is asymptotically
optimum.

First, we describe a two-message protocol that improves on Lemma for random
pairs with/ << . Recall that the support set S of a random pair (X, Y) is the set of all
possible inputs, that the support set ofX is the set Sx of all possible values ofX, and that
Sr is similarly defined. Py’s ambiguity set when his random variable attains the value
y Sr is the set E(y), defined in (4), of possible X values in that case. Denote the
collection of P,’s ambiguity sets by

o de___f {E(y) y S, }.
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A collection of functions, each defined over Sx, perfectly hashes if, for every y St,
there is a function in the collection that is one-to-one over (or hashes) E(y). For various
results on, and applications of, perfect-hash functions, see 11 ]-[ 14 ].

Let b be an integer and let be a collection of functions from Sx to { 1,..., b }
that perfectly hashes g. We show that

(5) 2 --< rlog I11 + Flog bq.

Px and Pr agree in advance on a Flog I l] -bit encoding ofthe functions in and
on a Flog b]-bit encoding of { 1, b }. When Px is given X and Pr is given Y, they
execute the following protocol. Pr finds a function fr that perfectly hashes E(Y).
Using Flog I q bits, he transmits the encoding offr to Px. Now Px knows X and ft.
He computesfr(X) and transmits it to Pr using Flog b] bits. Sincefr is one-to-one over
E(Y), Pr can recover X from fr(X).

LEMMA 3. For all nontrivial3 (X, Y) pairs,

t2 -< 2 log + log log max {/, } + 4.

Proof. In view of the above, we show the existence of a small collection of
functions with a small range { 1, b } that perfectly hashes o. Let b deZ 2. Pick a
random function F: Sx -- { 1, b } by assigning, uniformly at random, a value in
{ 1,..., b } to each element of Sx. For all y St, the probability that E(y) is hashed by
F is

b(y--2) b- ( 1)>---> >-
b(y) b’ / 4’

where x
def

x. (x ).... (x + denotes the th falling power of x.
Independently pick m such random functions. Let B(y) be the "bad" event that

E(y) is not hashed by any of these functions. For each y,

Pr (B(y)) <- )m.

Furthermore, each E(y) intersects E(y’) for at most .( values ofy’ St. Therefore,
the event B(y) is independent of the events B(y’) for all but at most .( values
of y’ St. By the Lovfisz local lemma (e.g., Chapter 8 in [15]), if

(6) 4"()m/’( 1)< 1,

then Pr ((.3ysr B(y)) < 1; namely, there is a collection of m functions that perfectly
hashes o. To conclude, we note that (6) holds for

m
log + log ,+ 2

log
=< 8 log max {t, }.

If log is larger than 2 log log max { , } + 7, we can reduce the total number of
transmitted bits. First, we use a log -bit message to convert the pair (X, Y) into a pair
(X’, Y) with ’ and ’ -< log max {/, } + 4 and then apply the lemma.4

THEOREM 1. For all nontrivial random pairs,

t3 =< log t + 3 log log max { t, } + 11.

pair (X, Y) is trivial if 1. For trivial pairs, t =... (o 0.
We use ’ and ’ to denote Px’s and Pr’s maximum ambiguities for the pair (X’, Y).
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Proof. Pick a random function F: Sx -- { 1, } by assigning, uniformly at
random, a value in { } to each element of Sx. For an integer k, let B(y) be the
"bad" event that F assigns some value in { ,/ } to more than k elements in E(y).
For all y,

Pr (B(y)) -</.
# . N

Fuhermore, the event B() is independent of the events B(y’) for all but at most.( values of y’ e S. By the Lovfisz local lemma, if

(7)
4..(- 1).

< I,
k

then there is a functionf Sx { 1,..., } that is not "bad" for any y; namely, for all
y Sr and all e { },

I{xeE(y): f(x)=i}l k.

We are interested in a small k satisfying (7). Using the inequality k (k/e), it suffices
to require that

,8,
e/

It is easy to verify that

k=[logmax{,} +4]

satisfies (8) for sufficiently large max {/, }’s and satisfies (7) directly for smaller
max { , }’s.

Therefore, if Px’s first message consists of [log ] bits describing f(X), then Px
and Py can restrict their attention to a random pair (X’, Y), where X’ is the random
variable X restricted to the domain { x" f(x) f(X) }. By choice off, we have/’ =<
[log max { , } + 4] and ’ -< . Thereafter, Px and Pr can use the two-message protocol
of the previous lemma to convey X’ to Pr. The total number of bits transmitted is at
most

log/] + 2 log [log max { , } + 4] + log log (max { , } + 3) + 4

_-< log/ + 3 log log max { i, } + 11.

With more care, the constant 11 can be reduced.
For balanced pairs, , and we readily obtain the following corollary.

COROLLARY 2. For all balanced random pairs,

3=<log+31oglog+ 11.

The techniques used to prove Lemma 3 and Theorem work extremely efficiently
in the following example.

Example 2. Consider an n-by-n chessboard with two rooks in mutually capturing
positions (i.e., in the same row, or the same column, or both same position)). Px knows
the position X of one rook. Py knows the position Yofthe other rook and wants to learn
X. Formally,

S de2 { ((Xl, x2) (Yl, Y2))" 0 =< Xl, x2, yl, Y2 -< n and either Xl Yl or x2 Y2 }.
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Consider one-way complexity first. If Px assigns the same message to two different
rook positions (x, x) and (x’, x), then, in the case that Pr’s rook position is
(x, x) (or (x’, x2)), he will not know X. Hence t [2 log nq. For every rook position
Y known to Pr, there are 2n possible X positions; hence/ 2n 1. Therefore,

>= [log (2n 1)],

and this many bits are needed even if Px knew Y in advance.
A simple three-message protocol based on the league problem shows that

3 [log n] + [log log n] + 1.

Using [log n] bits, Px transmits the diagonal d (x + x2) mod n that his rook is
on. Now, Pr knows that (x, x2) is either (y, (d Yl)n) or ((d Y2)n, Y). They
use the two-message league-problem protocol to determine (x, x2) while exchanng
[log log n] + bits. Thus, for this example,

03log+loglog0+log

providing another example of a balanced random pair where 1 2.
We do not know of a two-message protocol for this example whose worst-case com-

plexity is log n + o(log n) bits.

4. Distributions with varying ambiguities. For some balanced pairs, (y) varies
widely with y. For these pairs, the bound provided by Corolla 2 may not be ve useful.
We describe an efficient refinement for such cases. Let l,(x, y) denote the number of
bits transmitted under the protocol for the input (x, y). Consider a (not necessarily
balanced) random pair (X, Y), possibly with widely vaing (y). For eve y, there are
(y) possible x values. Although l,( x, y) may be low for some x’s, when averaged over
the x’s, it must be at least log u(y). Namely, for all y,

Z lo(x, y) R log U(Y).

Note that this holds tree even if Px knows that Y y in advance. For u e , let

Sr() de ( y. (y) }
be the set of Y values with ambiguity u. Clearly, for all feasible

Z -1 Z lo(x, y) > logu.
ISY(U) ySr() U x:(x,y)S

The next theorem says that this average lower bound can almost be met. Its proofresembles
that of Theorem 3 in 6 ]; hence it is omitted.

THEOREM 2. Let (X, Y) be a random pair. There is afour-message protocol such
that, for allfeasible u,

Z l(x,y)logu+41oglog

Two progressively stronger statements are false in general.
(i) For eve (balanced) (X, Y) pair, there is a protocol such that, for all y,

l(x, y) z o ,(y) + o(o ,<y)).

t is feasible if St(u) is nonempty.
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(ii) For every (balanced) (X, Y) pair, there is a protocol such that, for all y,

max ( l(x, y) (x, y) e S} -< log #(y) + o(log #(y)).

To see some cases where these statements are false, consider a generalization ofthe league
problem (Example with teams,/, of them playing in every game. (Again, Py knows
the game and wants to learn the winner, known to Px.) If statement (i) were true, there
would have been a protocol for that problem with worst-case complexity of at most
t log + o(, log t). Results in 3 imply that every protocol for that problem must
have worst-case complexity of at least log log + bits. For >> z, these two conclusions
are contradictory. An even larger discrepancy is derived when statement (ii) is assumed
to hold. Note that this problem is not balanced, but can be balanced easily.

5. Correlated files. Section 1.2 described the correlated-files problem and some of
its potential applications. Essentially, X and Y are binary strings within edit distance of
at most a from each other; Px knows X, while Py knows Yand wants to learn X. When
we want to emphasize the maximum distance between X and Y, we refer to the problem
as the a-edits problem.

In the next section, we apply results proved in the previous sections to obtain efficient
interactive protocols for this problem. In 5.2 we discuss one-way protocols.

5.1. Interactive communication. First, we evaluate tz(y)--Py’s ambiguity when his
string is y. Px’s string x can be obtained from y by insertions and d deletions, where
+ d =< a. In the special case where x can be obtained from y by insertions alone, we

say that x is a superstring of y (and that y is a substring of x). The number of (n a)-
bit substrings ofan n-bit string y depends on y. For example, 010 has three 2-bit substrings
(01, 00, 10), whereas 000 has only one. Yet it is known that the number of (n + a)-bit
superstrings of y is the same for every n-bit string y.

LEMMA 4. The number of (n + a)-bit superstrings of an n-bit string is

o f
We use the lemma to estimate Pr’s ambiguity in the a-edits problem. Let yl

denote the number of bits in a string y; then

(9) lYl + (y) k.
a i= i=0 a

Therefore, the number of bits Px must transmit ifhe knows Y in advance is bounded by

In cases of interest, yl is (much) larger than a; hence this bound is tight. A simple
protocol almost achieves this number: For each edit operation needed to convert y to x,
Px describes its nature (delete, insert 0, or insert and location. The total number of
bits transmitted under this protocol is at most a( log ([Y[ + a)q + 2). Note that the
protocol assumes that Px knows Y in advance.

The maximum ambiguity ofthe a-edits problem is infinite: There is no upper bound
on the length ofy, hence on #(y). Therefore, all worst-case complexities are infinite, too.
For a more sensitive measure, let be a protocol for a random pair (X, Y) and define
l( x, y) to be the number of bits exchanged under for the input (x, y). For every y e
Sy, let

r(y) def
max { l(x, y)" (x, y) e S}
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be the number ofbits transmitted under b in the worst case when Pr’s value is y. Clearly,

[,(y) >- [log #(y)],

and equality holds ifPx knows Y in advance, c is asymptotically efficientfor every y, or

efficient for short, if, for all y St,

[,(y) <- log #(y) + o(log/(y)),

namely, if $ requires only marginally more bits than needed when Px knows y in advance.
The discussion at the end of the last section implies that many (X, Y) pairs, even

balanced ones, do not have efficient protocols: [,(y) may have to be much larger than
log a(y) for some y’s. However, the next corollary shows that the correlated-files problem
has an efficient three-message protocol (one-way protocols are discussed in the next
section).

COROLLARY 3. For every a, tke a-edits problem kas an efficient tkree-message
protocol 4 satisfying

[,(y) -< log #(y) + 3 log log #(y) + log c + 13.

Proof. The lengths XI and YI of the strings X and Y are within a from each
other. Hence, if Px transmits X mod (2a + ), then Pr can infer X I. Thereafter, Px
and Pr can use the three-message protocol of Corollary 2 for strings of length at most

IXl /.
The next numerical example shows that the protocol implied by the corollary is

efficient not only asymptotically, but also for moderately sized files.
Example 3. Suppose that Y is a 223-bit file (roughly 1,000,000 characters) and that

X can be derived from Y via 8,000 insertions and deletions of bits (say, 1,000 character
changes). If Px knew Y in advance, he would need to transmit [log/(Y)] bits in the
worst case, which (10) evaluates as

(223 + 8’000) < [log/(y)-91,800 -< log
8,000

_-< log ( 2
23 -I- 8,000’ + 3 log (8,000) + <- 91 845.
8,000 ]

The corollary shows that, even when Px does not know Yin advance, using three messages,
he can convey X to Pr using at most

log #(Y) + 3 log log #(Y) + log (8,000) + 13 =< log #(Y) + 75 bits.

Generalized edit distance. We can assume a more general setting than before. For
example, in addition to inserting and deleting bits, a single edit operation (a mouse or
a key click) may move or complement contiguous segments of arbitrary length. Still, the
number of operations needed to derive a string from another can be easily seen to be a
"distance" between the two.

Assume that X and are derived from a string Z using, respectively, a and a2 edit
operations. As all the above operations are reversible, X can be derived from Y using at
most a o1 d- a2 edit operations. Every edit operation is characterized by a location in
the string and a small number of bits, say four, identifying the operation (delete, insert
0, insert 1, move, complement, and so forth). If Y is of length n >> a, then the number
of possible X sequences within a edit operations from Y is at most 2 a(lg(n+a)+4). This
bound is not far from the actual number as, for every Y, there are at least ("+ ) possible
X string derived by a insertions to Y. We can therefore apply Corollary 2 to derive a
near-optimum protocol for this problem.

The theorem still holds ifwe allow the editor to delete arbitrary long strings. However,
now t(Y) can be arbitrarily larger than the number of bits in Y (say, Ywas derived by
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erasing all ofX), and so all complexity measures are unbounded. Note that, in this case,
even if Px knew Y in advance, he would still need to transmit arbitrarily many (in the
length of Y) bits to describe X.

5.2. One-way communication. Section 1.2 mentioned several reasons rendering one-
way protocols more useful than interactive ones. However, the general results proved in
2 only imply one-way protocols requiting at most twice the number of bits needed

when Px knows Y in advance. We therefore investigate one-way protocols for correlated
files in more detail.

A one-way protocol for the a-edits problem is a function b { 0, } * -- { 0, } *

such that, if x and x’ are distinct strings obtained from the same y via at most a edits
(insertions and/or deletions), then neither (x) nor (x’) is a prefix 6 of the other. This
guarantees that PY can tell when Px’s message ends and then deduce the value ofX.

A special case ofthe a-edits problem is the a-insertionsproblem, where Xis obtained
from Y by exactly a insertions. A one-way protocol for the a-insertions problem, or an
a-insertions protocol, is therefore a mapping { 0, } * -- { 0, } * such that, if x and
x’ are distinct strings obtained from the same y by exactly a insertions, then neither (x)
nor (x’) is a prefix of the other. To simplify the statement of the next lemma, we place
an additional demand on the behavior of the protocol for strings of length less than a.

We require that, if/3 < a, then (x) is not a prefix of (x’) for all distinct x, x’
{ 0, } . Intuitively, this corresponds to allowing Pr to have a string of"negative length"
fl a. As all/3-bit strings can be obtained by a insertions to this string, the protocol
must distinguish between them.

LEMMA 5. Let a be a nonnegative integer. Any a-insertions protocol is also a
insertions protocolfor all 0 <- {3 <= .

Proof. The proof follows by definition. Let be an a-insertions protocol. If [xl
x’l </3, then neither (x) nor (x’) is a prefix ofthe other bythe additional requirement

above. Ifx and x’ can be obtained from a string y by/3 insertions, let y’ be a string derived
from y by deleting any a -/3 bits. Then x and x’ are obtained from y’ by a insertions,
and again neither (x) nor (x’) is a prefix of the other.

Conceptually, insertion protocols are simpler to construct than edit protocols. They
need to handle only insertions and only a fixed number of them (unlike insertions,
different number of edits may result in strings of the same length). The a-insertions
problem is also more appealing analytically. Whereas (9) only bounds/ for the a-edits
problem, Lemma 4 says that, for the a-insertions problem, all strings y have #(y)

-0( ?).
The next theorem shows that, in a sense, the two problems are equally difficult. It

reduces the problem of constructing a one-way protocol that handles insertions and
deletions to that of constructing a one-way protocol that handles only insertions.

THEOREM 3. Ifthe a-insertions problem has an efficient one-messageprotocol, then
so does the a-edits problem.

Proof. Let be a one-message a-insertions protocol. Define

(x) (Ixl mod (2a + 1), (x))

to be the protocol that, for every string x, transmits the binary representation of the
length ofx mod (2a + ), follows by (x). We show that, ifx and x’ are distinct strings
that can be derived from a string y by at most a edits, then if(x) is not a prefix of ff(x’).

If Ix[ 4: Ix’l, then Ix[ [x’[ mod (2a + 1); hence (x) and (x’) have different
beginnings. If Ix[ Ix’l, then there are i, i’, d, d’ such that

The string 011 is a prefix of 011 and of 01101; hence, if a string is not a prefix of another, they cannot,
in particular, be equal.
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+ d -< a, and x can be derived from y by insertions and d deletions;
2) i’ + d’ -< a, and x’ can be derived from y by i’ insertions and d’ deletions;
3) i-d=i’-d’(because Ix[ Ix’l).

From and 2), there is a sequence of d insertions and deletions taking x into y and
a sequence of i’ insertions and d’ deletions taking y into x’.

We can change the order ofa sequence ofinsertions and deletions applied to a string
without affecting the resulting string. We must only ensure that if, in the original sequence
of insertions and deletions, a bit is inserted and then deleted, and this order is reversed
in the new sequence; then, in the new sequence, we neither delete this (yet nonexistent)
bit nor insert it later. Therefore, there is -< + d’ such that a sequence of fl deletions
followed by a sequence of insertions takes x to x’. Let y be the sequence obtained from
x after the deletions. Both x and x’ can be obtained from y by insertions. From 3 ),
i+d’=i’+d;hencefl=<i+d’= 1/2(i+d’+i’+d)_-<a. ByLemma5,b(x) isnota
prefix of q(x’).

Regarding efficiency, /transmits only Flog (2a + )] o(log (lyl+)) bits more
than b. The maximum ambiguity of the a-edits problem is higher than that of the a-

insertions problem. Hence, if 4 is efficient, so is . [3

In view ofthe theorem, we consider only insertions protocols. First, we discuss their
efficiency. Let 4 be an a-insertions protocol. Define

l,( n
def
max{l(x) l’x{0, 1} +}

to be the maximum number of bits Px transmits according to when y is n-bit long.
Lemma 4 said that every n-bit string has 7--0(n+; ) superstrings of length n + a.

Hence,

l(n) >- log
----o

and 4 is etficient if

lim
lo(n)

1,
log ]7--0 (n+a)i

namely, if the number of bits transmitted for every y is asymptotically the same as that
needed when Px knows Y in advance.

We now consider efficient insertion protocols for some restricted cases. We begin
with the most elementary of these protocols, one that identifies a single insertion (and,
by arguments similar to the ones used to prove Theorem 3, a single deletion, too).

Suppose that Y is an n-bit string and that X is an (n + )-bit string obtained from
y by a single insertion. According to Lemma 4, for every possible value of Y, there are
n + 2 possible X’s. Therefore, even if Px knew Y in advance, he would have to transmit
Flog ()] Flog (n + 2)] bits in the worst case. We describe a protocol that transmits
exactly that many bits and does not require Px to know Y in advance.

LEMMA 6. Let X { O, } n + be a superstring of Y { O, } . Then

01 o Flog ] Flog (n + 2)].

Proof. View a string z as an integer sequence zl,..., Zlz Using Flog (n + 2)] bits,
Px transmits

n+l

ok(x) a=f , ixi mod (n + 2)
i=1

(here (x) is a number rather than its binary representation). To verify that Pr can
deduce Xfrom (X), we show that maps all superstrings ofa given string into different
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numbers. For example, if Y is 010, then there are 3 + 2 5 possible X sequences,
and maps each one into a different integer mod 5:0100 -- 2, 0010 -- 3, 1010 - 4,
0110 -- 0, 0101 -- 1.

In the general case, assume that y has k "ones" (hence n k "zeros") and consider
the effect of a single insertion on the value of the function f { 0, } * -- e/ defined
byf(z) E izi.

Assume first that x is derived from y by inserting a "zero" between the ith and
(i + )th rightmost "ones" in y, where 0 _-< _-< k. Each of the "ones" to the fight of
the inserted bit is shifted one position to the fight, and so f(x) f(y) + i.

Next, assume that x is derived from y by inserting a "one" between the ith and
+ )th leftmost "zeros" in y, where 0 _-< _-< n k, and assume further that the "one"

was inserted between the jth and (j + )th leftmost bits of y. It is easy to verify that, in
that case, f(x) f(y) + (j + + ((n -j) (n k i)) f(y) + k + + i.

Therefore, ifx is derived from y by inserting a "zero," f(y) increases by an integer
ranging from 0 to k, while, ifx is derived from y by inserting a "one," f(y) increases by
an integer ranging from k + to n + 1. As (x) isf(x) mod (n + 2), it too is different
for every supersequence x of y.

This one-insertion protocol is related to an insertion/deletion code of Varsha-
mov and Tenengolt [16 ]. This code consists of all n-bit codewords x with a fixed
Z = ix mod (n + 2). We note, however, that an efficient code does not imply an
efficient one-way protocol. An efficient protocol corresponds to a collection of disjoint
efficient codes that cover { O, } *.

To derive a protocol for identifying more than a single insertion, we could try to
generalize the above protocol. In the following, we suggest an alternative approach that
may prove more tractable. It attempts to reduce the problem to one ofexchanging strings
to within small Hamming distance from each other. We show that this approach works
in a restricted case of insertions and deletions.

The Hamming distance dn(x, y) between two equal-length strings x and y is the
number of bit locations where they differ. In the Hamming-distance problem, X and Y
are n-bit sequences within a small Hamming distance from each other. Px knows X,
while Py knows Y and wants to learn X. Witsenhausen and Wyner 17 considered the
problem in the context of video compression. The (independent, but essentially the
same) solution described here is taken from 18 and was done by E1 Gamal and Brand-
man, extending Example 5 in [4].

Example 4. Px has an n-bit sequence X, and Pr has an n-bit sequence Y. The
Hamming distance between X and Y is at most t. How many bits must be transmitted
in the worst case for Pr to learn X?

Py’s ambiguity is the same for every y

u(y)
i=1

Therefore,

t >_- ( >= log >= t(log n log t).
i=1

Using error-correcting codes, we show that

11 tl _-< t[ log (n + )].

We are mostly interested in cases where << n. For these cases, the two bounds are quite
close. We assume that the reader is familiar with basic results concerning linear error-
correcting codes. The protocol is based on an (n, k) linear t-error correcting code C (we
will determine k later). Px and P, agree a priori on a parity-check matrix H for C. When
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Px is given X and Py is given Y such that dn(X, Y) <= t, they execute the following
protocol.

Px transmits XHr, the n k) -bit syndrome ofX. Py computes XHr yHr, the
syndrome of (X- Y). He finds an n-bit sequence Z with Hamming weight =< such
that ZHr (X Y)Hr and decides that X is Z + Y.

To prove that Pr always determines X correctly, we now show that Z (X- Y).
Namely, (X- Y) has Hamming weight _-< t, and (2) no other n-bit sequence with
Hamming weight =< has the syndrome (X- Y)Hr.

(1) holds as dn(X, Y) <= t. To prove (2), note that, if an n-bit sequence s has
Hamming weight =< and syndrome (X- Y)Hr, then (X- Y) s has Hamming
weight =< 2t and syndrome 0; that is, (X- Y) s is a codeword in C with Hamming
weight -< 2t. Since C is t-error correcting, it has minimum distance

_
2t + 1; hence s

X-Y.
The number of bits transmitted under this protocol is n k. To prove a low one-

message complexity, we need a t-error correcting code with low redundancy. The BCH
bound (e.g., [19 or Theorem 9.2 in [20 ]) guarantees that, if n + is a power of 2, then
there is a linear t-error correcting code with n k -<_ log (n + implying 11 ).

To reduce the edit-distance problem to the Hamming-distance problem, we need
the following two mappings: { 0, } _. { 0, } m and " { 0, } +

__
{ 0, } (the

value of m will be discussed later) such that, for all y e { 0, } n and for all x
{ 0, } / that are superstrings of y,

(i) ’(x) ’(x’),
(ii) dn(’(x), (y)) =< a.
If and " exist, we can construct a one-message protocol for identifying a insertions

as follows. Px computes ’(x), and Pr computes (y). Condition (ii), above, guarantees
that the Hamming distance between ’(x) and (y) is at most a. By the last example, Px
can convey ’(x) to Pr while transmitting alog mq bits. Condition (i), above, ensures
that x is the only superstring of y mapped by " into ’(x); hence P, can determine x.

The number of bits transmitted by the protocol is alog mq, whereas the number
of bits needed ifPx knows Y in advance is log #(y) log 0 (n { ). For the protocol
to be efficient, m must grow as (n + a) / ot) (say, m (n + a) log (n + a)).

The smallest value m can attain is n + a: The number of (n + a)-bit superstrings
ofyis 7--0 ), and, according to above conditions, this number must be smaller
than Z 7--0 (7’), the number of (n + a)-bit strings within Hamming distance a from the
m-bit string (y). Hence, at least in terms of "first-order" cardinalities, rn n + a may
be possible. So far, " and with m n + a are known only in very special cases: all n
and a 1; all a and n 1; and, due to J. Reeds, n a 2.

We do not know whether and " exist in general (even with m > n + a). However,
following is a construction for a restricted case where x is obtained from y by a edits
that do not introduce new runs or destroy existing ones. This restriction severely limits
the sequences that can be obtained from y. For example, the string 0 cannot be transformed
into the string without destroying a run, and 0 0000 can be transformed into 000010
by four insertions and deletions, but six are needed if no runs are to be eliminated or
introduced.

We demonstrate and " for this restricted-edit problem by converting the strings x
and y known to Px and Py into integer sequences within LI distance of at most a from
each other. In turn, this Ll-distance problem can be reduced via a Gray code to the
Hamming-distance problem, thus exhibiting and ’.

Represent a string z with r runs 7 as an r-element integer sequence whose ith element
is the length of the ith run in z. For example, 010000 is represented as 1, 1, 4. If x can

A run in a string is a contiguous sequence of "zeros" or "ones."
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be obtained from y by insertions and deletions that do not introduce or destroy runs,
then x and y have the same number of runs and both start with the same bit. Therefore,
given y, there is a one-to-one correspondence between x and its representation above. It
follows that the restricted-edit problem is almost equivalent to the following L-distance
problem.

Example 5. Let r and a be positive integers and let X1,..., Xr and Y1 Yr be
integers such that

E [Xi Yi[ <- a.
i=1

Px knows X (X1, Xr), while Pr knows Y (Y, Yr) and wants to learn X.
How many bits must be transmitted in the worst case?

It is easy to verify that, for all y (y, Yr),
min{i,r} ( )(; )#(y)= + ] E 2j.

r

i= =1 J
Using Gray and error-correcting codes, we show that

(1 =< a[ log + r log (2a + ))].

The bound is asymptotically tight, and the implied protocol is efficient whenever a/r -- 0.
Let

fl de=f [-log (2a + 1)].

A r-bit Gray code is a sequence go, g2,- of r-bit strings such that, for 0
2-1,

dli(gi, gi + ,) 1.

Simple constructions of Gray codes are known for every positive ft. Map the sequence

x Xr into the (r)-bit string ggx.., gx,. by concatenating the corresponding
Gray-code strings (again, indices are interpreted modulo 2). Map yl, y into
g,g:.., g, similarly. Simple properties of Gray codes guarantee that

dt(gx,, gy,) <= xi Y;I.

Hence,

dn(gxgx2 gxr, gy, gy2 gyr) --< sumS= xi Yi <---- a.

Example 4 implies that Px can transmit aFlog (rfl)q bits, enabling Py to learn gx, gx2
gxr" By choice of r, two integers that are mapped into the same Gray sequence must be
at least 2a + apart; hence Px can infer x, Xr.

We apply the example to prove the following corollary.
COROLLARY 4. The a-restricted-edits problem has an efficient one-way protocol.
Proof. The length ofX can be transmitted using Flog (2a + )q bits. Thereafter, Px

and Py can use the protocol given in the example. The total number of bits, transmitted
for X, is

al-log (I X log (2a + ))0 + [log (2a + )q a log X] + o(a log X I).

For fixed a,

log (#(y)) a log IXl o(a log IxI);

In this equation and below, Gray-sequence indices are taken modulo 2 a; hence g2a denotes go.
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hence the protocol is efficient. Note that, by invoking the example, we implicitly
used the fact that the restricted-edits problem has and " with range-dimension m
X I[log (2c + )].

6. Open problem. The main open problem suggested by this paper is the construc-
tion of efficient one-way insertion protocols. As shown in Theorem 3, such protocols
imply efficient one-way protocols for the edit-distance problem, hence may have practical
applications. Two possible directions towards such a construction are extension of
the single-insertion protocol of Lemma 6, and (2) construction of the functions
discussed in the last section for additional values of n and

Acknowledgment. I thank Jeff Kahn for his help in formulating and proving
Lemma 2.
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Abstract. This paper considers the following problem: Given a positive integer and graph H, construct
a graph G from H by adding a minimum number A(t, H) (respectively, A’(t, H)) of edges and an appropriate
number of vertices, such that after removing any vertices (respectively, edges) from G the remaining graph
contains H as a subgraph. This problem was motivated by the design of fault-tolerant interconnection networks
for multiprocessor systems. The authors estimate A(t, H) and A’(t, H) for the cycle, path, complete binary
tree, grid, torus, and hypercube on n vertices.
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1. Introduction and preliminaries. This paper considers the following problem:
Given a positive integer and graph H, construct a graph G with the minimum number
of edges, such that even after removing vertices or edges from G, the remaining graph
contains H as a subgraph. This problem was motivated by the design of fault-tolerant
multiprocessor interconnection networks. We construct such graphs with small number
ofedges for the cycle, path, complete binary tree, grid, torus, and hypercube on n vertices.
We give lower bounds for the number of edges in G and show that our constructions for
the cycle, path, and complete binary tree are optimal in the sense of the "order" of the
number of edges with respect to n. Many related results can be found in the literature
[1]-[141.

Let G be a graph and let V(G) and E(G) denote the vertex set and edge set of G,
respectively. If S

_
V(G), G S is the graph obtained from G by deleting S together

with the edges incident to the vertices in S. If S
_
E(G), G\S is the graph obtained

from G by deleting the edges of S. We use d(v) to denote the degree of a vertex v of
G. If H is a subgraph of G, we define A(G, H) E(G)I E(H) I. Let Cn, Pn, Sn,
B,,, Rn, Dn, and Qn denote the cycle, path, star, complete binary tree, grid, torus, and
hypercube on n vertices, respectively. Note that n 2p for some p in the case ofB,
and we assume that n r- for some r in the case of Rn and Dn, and, of course, n 2 d

for some d in the case of Qn.
Let be a nonnegative integer. A graph G is called a t-FT (t-fault-tolerant) graph

with respect to H if G S contains H as a subgraph for every S
_

V(G), with SI =< t.
Define A(t, H) min ( A(G, H) IG is a t-FT graph with respect to H}. That is, A(t, H)
is the minimum number of edges added to H to construct a t-FT graph with respect to
H. A graph G is called a t-EFT (t-edge-fault-tolerant) graph with respect to a graph H if
G\S contains H as a subgraph for every S

_
E(G), with Sl --< t. Define A’(t, H)

Received by the editors December 3, 1990; accepted for publication (in revised form) September 11,
1992. This work was supported in part by National Science Foundation grants NCR-91-02524 and DMS-92-
06991.

f Department of Electrical and Electronic Engineering, Tokyo Institute ofTechnology, Tokyo 152, Japan.
Bellcore, Red Bank, New Jersey 07701.
Department of Electrical Engineering and Computer Science, University of California, Davis, California

95616.
Department of Mathematics and Computer Science, San Jose State University, San Jose, California

05192.

565



566 UENO, BAGCHI, HAKIMI, AND SCHMEICHEL

min { A(G, H) IG is a t-EFT graph with respect to H}. Since a t-FT graph with respect
to H is also a t-EFT graph with respect to H, we have the following inequality.

PROPERTY 1. A( t, H) >= A’( t, H)for any graph H.
It should be noted that V(G)I >= V( H) + if G is a t-FT graph with respect to

H, and IV(G)[ >= IV(H)[ if G is a t-EFT graph with respect to H. We investigate the
following problems.

PROBLEM 1. Given a graph H, construct a t-FT graph with respect to H by adding
A( t, H) edges and an appropriate number ofvertices.

PROBLEM 2. Given a graph H, construct a t-EFT graph with respect to H by adding
A’( t, H) edges and an appropriate number ofvertices.

We estimate A(t, H) and A’(t, H) for cycles, paths, complete binary trees, grids,
tori, and hypercubes.

Some related problems are considered in the literature. Erdrs, Graham, and Szem-
errdi 5 consider the directed analogue of Problem for dipaths, in connection with
the complexity of Boolean functions, and give a good estimate for the number of edges
in an n-FT acyclic digraph with respect to the dipath of length n. Alon and Chung
construct a graph G with O(n/e) vertices and maximum degree O( 1/e 2), such that,
even after deleting e)l V(G)[ vertices or e)[ E(G)[ edges, the remaining graph
still contains Pn as a subgraph, for every e > 0 and every positive integer n. This result
settled a problem raised by Rosenberg 12 in connection with fault-tolerant linear arrays.
Friedman and Pippenger 8] generalize the result in 1] from Pn to the trees with n
vertices and maximum degree at most d. For some special cases, the existence of such
graphs is proved by Beck 2] nonconstructively.

The following problem, which is a variant ofProblem 1, is considered in the literature
[3], [61, [7], [91.

PROBLEM 3. Given a graph H, construct a t-FT graph with respect to H on
IV( H) + vertices by adding a minimum number ofedges.

Chartrand and Kapoor 3 and Hayes 9 show that the minimum number ofedges
in Problem 3 for C, and Pn are 1/2tn + 1/2t(t + 2) and 1/2(t )n + 1/2t(t + + 1, respectively.
Farrag and Dawson 6 solve Problem 3 for S,; in particular, they show that the minimum
number of added edges is tn + 1/2(t )t if =< n. Note that this is equal to the following
trivial upper bound for A(t, H). Let G, G2 denote the join of graphs G and G2; that
is, V(G,G2) V(G)tA V(G2)andE(G,G2) E(G)I,AE(G2)I,A {(u,v)lu_ V(GI),
v V(G)}. It is easy to see that H,Kt is a t-FT graph with respect to any graph H.
Thus we have the following upper bound for (t, H).

PROPERTY 2. A(t, H) <= A(H*Kt, H) tl V(H)I / 1/2t(t )for any H.
Note also that, if H is connected and G is a t-FT graph with respect to H on

[V(H)[ + t vertices, then d(v) _>- + for any v V(G). It follows that
[E(G)[ >= 1/2(t + 1)(1V(H)[ + t). Thus we have the following lower bound for
iX(G, T,), where T, is a tree on n vertices.

PROPERTY 3. If G is a t-FT graph with respect to T, on n + vertices, then
A(G, T,) >= 1/2(t 1)n + 1/2t(t + 1) + 1.

It is interesting to note that A(t, Sn) tn t, which we can easily see, since Sn has
a vertex of degree n 1. This shows that the result in 6 mentioned above is quite close
to the solution of Problem for Sn. In fact, the difference between the solutions of
Problems and 3 for S depends only on t. However, we will show that the "orders" of
A(t, Bn) and A(t, P) with respect to n are smaller than that of the lower bound in
Property 3. We also show that the "order" of A(t, Cn) with respect to n is smaller than
that of the result in [3] and 9 mentioned above. On the other hand, Paoli, Wong, and
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Wong 11 ], and Wong and Wong 13 consider the following problem, which is a variant
of Problem 2.

PROBLEM 4. Given a graph H, construct a t-EFT graph with respect to H on V( H)
vertices by adding a minimum number ofedges.

They show that the minimum numbers of edges in Problem 4 for Cn and Pn are
1/2tn, if =< n 3 and 1/2(t )n + 1, if =< n 2, respectively. Again, we will show that
the "orders" of A’(t, C,) and A’(t, Pn) with respect to n are smaller than those of the
numbers above. We will also examine Problem 4 for Bn and an when 1.

2. t-FT graph with respect to B,. Let p be the number of levels of Bn. The root of
Bn is at level 0, and the leaves are at level p 1. The number of vertices at level is 2
and n 2p 1.

THEOREM 1. (i) A(t, B,) -< 1/2t(t + 4)fn + 2t, ifp is even.

(ii) A(t, B,) <= (V/4)t(t + 6)/n + 2t, ifp is odd.
Proof. Let q [p/2], and X 1, X2, X be vertex disjoint q-level complete

binary trees. Let Y be the complete q-level binary subtree ofB consisting of the vertices
at levels 0 to q of Bn. Note that Y is isomorphic to X (i 1, 2 t). Suppose
that the leaves Ul, U2, U2q-I of Ycorrespond to the leaves l)il /)i2, 1)i2q-1 0fXi
(i 1, 2,..., t) by an isomorphism, respectively.

Proof of (i). We construct a graph G from Bn, X X2, X by the following
procedure:

1. Join the root ofX (i 1, 2 t) to the vertices at level q of B;
2. Join the root of X; (i 1, 2,..., t) to the leaves ofXj (j 1, 2, 1,

i+ 1,...,t);
3. For each j (j 1, 2,..., 2 q- 1), join vii (i 1, 2,..., t) to the children of uj

in B.
We show that G is a t-FT graph with respect to B. Let S be a subset of V(G) with

sI --< t, We show that G S contains Bo as a subgraph. From the construction of G,
we may assume that S V(Bn). Each connected component of Bn V(Y) is a q-level
complete binary subtree of B,. Let Q be the set of all such subtrees of Bn including Y.
Let Z Z 2,..., Z k (k =< t) be the subtrees in Q that have a vertex of S. It is easy to
see that, if we replace Z by X 1, 2 k), then Bn is in G S. Thus G is a t-FT
graph with respect to Bn. To construct G, we added t2 q-

edges in step 2, t2 q edges in step 3, and the edges in X (i 1, 2 t). Thus
A(G, Bn) t2q- + t(t- 1)2q- + 12 q + t((2q- 1)- 1)= 1/2t(t + 4)/n + 2t.

Proofof(ii). We construct a graph G from Bn, X X2, X by the following
procedure:

1. Join the root ofX (i 1, 2, t) to the vertices at level q 2 of B;
2. Join the root ofX (i 1, 2,..., t) to the vertices at level q 2 ofX (j 1,

2,...,i- 1, i+ ,t);
3. Join uj (j 1, 2,..., 2 q- 1) to the father of vii (i 1, 2,..., t).
We can easily see by similar arguments as in the proof of (i) that G is a t-FT graph

with respect to B, and A(G, Bn) (/4)t(t + 6)/n + 2t.
THEOREM 2. A( t, nn) >= - /t(n + 1/2 t.
Proof. Let G be a t-FT graph with respect to B,. G contains a subgraph H isomorphic

to B,. Define A V(G) V(H), a A l, B { v v 6 V(H), there exists v’ V(G)
such that (v, v’) E(G) E(H) }, and/3 B I.

Case 1. 3 <- t. G B contains a subgraph isomorphic to Bn, which is vertex disjoint
from H. Thus, A(G, H) >_- n >= /t(n + 1) 1/2t.
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Case 2. > t. We may assume that /3 < 2p-2" otherwise A(G H) > 1/2/3 >
-(n + >- /t(n + 1/2t. Let 3’ Llog/J. Let K be the set of complete binary sub-
trees ofH rooted at the vertices at level , + 2 of H. Since K] 2+ > 2/3, there exist
subtrees Y , y2, yt in K that have no vertex in B. Let S be the set of fathers of

roots of Y, Y, Yt in H. G S contains a subgraph H’ isomorphic to B, as

ISI -< t. Since V(H’) f) V(Y) for 1, 2,..., t, we have that a >= A
V(H’) > t 2

=1 V(Y)I t( 2p "- 1). It follows that(a + t)/3 > 1/4t(n + 1),
which means that max {a + t,/3} >_- 1/2/t(n + 1). Thus A(G, H) >- 1/2 max {a, } >=
1/4/t(n + 1) 1/2t. [3

3. t-EFT graph with respect to Bn.
THEOREM 3. (i) A_’, B,,) <= 2t/n + 2t, ifp is even.
(ii) A’(t, Bn) <= (3V2/2)t/n + 2t, ifp is odd.
Proof. We slightly change the construction procedures in the proof of Theorem 1.

Proof of (i). We construct a graph G from Bn, X , X2, X by the following
procedure:

1. Join the root ofX (i 1, 2 t) to the vertices at level q of B;
2. Join uj (j 1, 2,..., 2q-) to the father ofv0.(i 1, 2,..., t).
We can see by a similar argument as in the proof of Theorem that G is a t-EFT

graph with respect to Bn. To construct G, we add t2 q- edges in step 1, 12 q- edges in
step 2, and the edges in X (i 1, 2, t). Thus A(G, B) t2 q- + t2 q- +
t((2q- 1)- 1) 2tVn + 1- 2t.

Proofof(ii). We construct a graph G from Bn, X , X, X by the following
procedure:

1. Join the root ofX (i 1, 2 t) to the veices at level q 2 of B;
2. Join the father of u/(j 1, 2,..., 2 q-l) to the grandfather of vi/(i 1, 2,

We can easily see that G is a t-EFT graph with respect to B, and A(G, B)
(3/2)tn + 2t.

THZOZM 4. A’(t, B,) (/8)t(n + 1) t.
Proof. Let G be a t-EFT graph with respect to Bn. G contains a subgraph H iso-

mohic to B,. Define A, , B, and B as in the proof of Theorem 2.
Case 1. 3 t. Let S { (u, v)l v B, (u, v) E(H) }. GS contains a subgraph

H’ isomohic to B, as SI t. Since H’ is edge disjoint from H, A(G, H)
]E(H’)[ n (/8)i(n + 1) t.

Case 2. 3 > t. We may assume that < 2p-3; otheise A(G, H)
(n + (/8)t(n + t. Let [log J. Let Kbe the set of complete binaff
subtrees of H rooted at the veices at level + 3 of H. Since KI 2+ > 4fl,
there exist subtrees Y y2 yt in K, which have no veex in B Let S
{ (ui, ri)lri is the root of Y, ui is the father of ri in H, 1, 2, }. GS con-
tains a subgraph H" isomohic to Bn. Since V(H") V(yi) for 1, 2,

t, we have that a t(2p-- 1). It follows that (a + t)B t(n + 1), which

means that max {a + t, B} (1/2)7(t(n + 1). Thus A(G, H) max {a, B}

4. t-FT and t-EFT graphs with respect to Cn.
THEOREM 5. A(t, C) < 6tVn + 12t2- 2t.

Proof. Suppose that the vertices of Cn are labeled 0, 1, 2, n such that

(i, + 1) E(Cn) (mod n) for 0, 1, 2, n 1. Let q [Vnq, m ln/qJ, and
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r n qm. Define I {iq (mod n)li 0, 1, 2, rn} V(Cn). Let p l, pZ,
p-t be vertex disjoint paths with q vertices. Suppose that the vertices of pi (i
1, 2, 2t) are labeled l, i2, iq_ such that (ij, ij + l) E(pi) for j 1, 2,
q- 2. Define J1 {il]i 1, 2 ,2t}, J2 {iq-lli 1, 2,..., 2t}, and J
Jl hi J2. We construct a graph G from Cn, pl, p2, pZt by the following procedure:

1. Join each vertex of I to each vertex of J;
2. Construct a complete graph Kzt on Ji (i 1, 2), and subdivide each edge of Kzt

by placing a vertex in the middle of that edge;
3. If r 4: 0, join the vertex 0 V(Cn) to it-1 (i 1, 2, 2t).
4. If r 4: 0, join the vertex ir-l (i 1, 2 ,2t) to the vertices added in step 2

and adjacent to iq_ 1.

We show that G is a t-FT graph with respect to Cn. Let S be a subset of V(G) with
SI --< t. We show that G S contains Cn as a subgraph. From the construction of G,

we may assume that S
_

V(Cn). Each connected component of Cn I is called an
interval. We can denote each interval as the open interval (iq, (i + )q) for some i. If
iq, (i + )q S and (iq, (i + )q) has a vertex in S, then we replace (iq, (i + )q) by
a path in { p1, p2 pZt}. If iq or (i + )q, say (i + )q, is in S, then we replace
(iq, (i + 1)q) together with ((i + 1)q, (i + 2)q) by the composition of paths in
{pl, p2, pZt}. Since the number of intervals to be replaced is at most 2t, we
construct Cn in G S. To construct G, we add at most 4t(m + edges in step 1,
4t(2t edges in step 2, at most 2t edges in step 3, at most 2t(2t edges in step 4,
and the edges inpi(i= 1,2 ..,2t).ThusA(G, C,,)<=4t(m+ 1)+4t(2t- 1)+
2t + 2t(Zt- 1)_+ 2t(q- i < 4t(fn + 1) + 4t(Zt- 1) + 2t + 2t(Zt- 1) +
2t(Vn- 1) 6tnn + 12t2- 2t

THEOREM 6. A’(t, C) < 2tfn + t.

Proof. We follow the construction procedure used in the proof of Theorem 5. We
will present the construction when III is even, where I is defined as in the proof of
Theorem 5. The construction when II is odd is quite similar and is omitted. We construct
a graph G from C,, p1, p2, pt by the following procedure:

1. Join/l(/= 1,2,...,t)tojq(j= 1,3,...,m-lifr=0, motherwise);
2. Join iq_l (i= 1,2 ,t)tojq(j=0,2,... ,m- 2ifr= 0, m- otherwise);
3. Ifr4:0, joint0tOir_l(i= 1,2,...,t).
It is easy to verify that G is a t-EFT graph with respect to C, and A(G, C) <

2tn + t.
It should be noted that the number of vertices added in the procedure above is less

than tf.
THEOREM 7. A’(t, C,) >_- n 1/2t.
Proof. Let G be a t-EFT graph with respect to C,. G contains a subgraph H iso-

morphic to C. Suppose that the vertices ofH are labeled 0, 1, 2 n such that
(i, + 1) E(H) (mod n) for 0, 1, 2 n 1. Define A V(G) V(H),
a= [AI,B= {vlvV(H),d(v)>=3},and [BI.

Case 1. [3 <= t. Let S { (i, + (mod n)[i B }
_
E(G). G\S contains a sub-

graph H’ isomorphic to Cn as IS[ _-< t. Since H’ is edge disjoint from H, A(G, H) >_-
[E(H’)I n >= 1/2n- 1/2t.

Case 2. > t. Each connected component of H- B is a path. Suppose that
PJ (j 1, 2, t) is the jth longest path among these paths. Let e be an edge
in PJ (j 1, 2, t) and S {el, e2,..., el}. G\S contains a subgraph H" iso-
morphic to Cno Since V(H") fq V(PJ) for j 1, 2 t, a >_- [A f) V( H")[ >_--

E=l V(PJ)] t(n- [3)/[3. It follows that (a + t)>-_ tn, which means that
max {a + t, /3} >_-n. Thus A( G, H) >_- 1/2max{a,
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COROLLARY 1. A(t, C,) >_- 1/2 1/2t.
Proof. It follows from Property and Theorem 7.

5. t-FT and t-EFT graphs with respect to Pn.
THEOREM 8. A(t, e) -<_ 6(t 1)/n + + 12(t ) 2(t + 2.
Proof. Since a (t )-FT graph with respect to Cn+ is a t-FT graph with respect

to en, A(t, en) <- A(t 1, C,+ 1) -- 2.
THEOREM 9. A’(t, en) <= 2(t )V + (t 1) + 1.
Proof. Since a (t )-EFT graph with respect to Cn is a t-EFT graph with respect

to P,, A’(t, en) <= A’(t 1, C,) + 1.
THEOREM 10. A’(t, Pn) >=(V/4)/(t 1)(n + 1) ](t 1).
Proof. Let G be a t-EFT graph with respect to P,. G contains a subgraph H iso-

morphic to Pn. Suppose that the vertices of H are labeled 0, 1, 2, n such that
(i,i+ 1)eE(H)fori=O, 1,..., n- 2. DefineA V(G)- V(H),a= [AI,B=
{ vlv V(H), da(v) > did(v) }, and fl nl.

Case 1. B <= t/2. Let S {ele E(H), e is incident to some vertex in B}. G\S
contains a subgraph H’ isomorphic to Pn as IS] --< t. Since H’ is edge disjoint from H,
A(G, H) >_- E(H’)I n >= (f/4)/(t 1)(n / 1) (t 1).

Case 2. 3 > t/2. Each connected component of H- B is a path. Suppose that
PJ (j 1, 2, It/21) is the jth longest path among these paths. Let ejl and e2 be
edges of H connecting a vertex in PJ and a vertex in B and let S {ell, el2, e2, e_2,

eql, eq2 }, where q It/2/. G\S contains a subgraph H" isomorphic to Pn. Since
V(H")CI V(P) 5 forj= 1,2 ,q,

q q(n- )
a >= IA f V(H")I > Z [V(W)I > >

=l /3+1

(n-r)

It follows that

t- 1) (t- 1)(n+ 1)a+
2

(/3+ 1)
2

which means that max {a + (t- 1)/2, /3 + 1} (1/f)/(t- 1)(n+ 1). Thus
A(G,H)>= 1/2 max {a,/3} >= (/4)/(t- 1)(n+ 1) -(t- 1). V]

By This theorem and Property 1, we have the following corollary.
COROLLARY 2. A(t, P,) >- (V/4) /(t )(n + (t ).

6. t-FT and t-EFT graphs with respect to R. and D.. Let G1 G2 be the
Cartesian product of graphs Gl and G2; that is, V(G1 G2) V(G1 V(G2) and
E(G1 G2) {(UlVl, U2Vz)[Ul U2 and (vl, v2) E(G2), or Vl v2 and (Ul, u2) e
E( G1 )}. Rr2 Pr Pr is called a (square) grid and Dr2 Cr Cr is called a torus.
It is easy to verify the following lemma.

LEMMA 1. If G is a t-FT (respectively, t-EFT) graph with respect to H, then
G G is a t-FT (respectively, t-EFT) graph with respect to H H.

We show the "order" of A(t, H) and A’(t, H) with respect to IV( H) for R, and
D when is fixed. Although we can give explicit upper bounds by means of and n as
in the previous sections, they are somewhat complicated.

THEOREM 1. A( t, D,) and A’ t, D,) are 0 n 3/4) if isfixed.
Proof. This follows from Theorems 5 and 6, the notes following their proofs, and

Lemma 1. U!
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Similarly, we can prove the following.
THEOREM 12. (i) A( 1, Rn) and A’( 1, Rn) are O(n ).
ii A( t, R,) and A’ t, Rn are 0 n 4 if . 2 isfixed.
We conclude this section with the following remarks:
1. It should be noted that the results for Bn can be generalized to the complete k-

ary tree for any k;
2. Although we showed sublinear upper bounds for R, and On, we do not know

any nontrivial lower bound. We may expect that improvements on our results are possible.
In fact, the result in 5 provides some evidence in support of this. Specifically, the result
in 5 implies that A(n, P,) and A’(n, P) are O(n log n), while our upper bounds imply
that A(n, Pn) is O(n2) and A’(n, P,) is O(n fn);

3. Finally, given a connected n-vertex graph H, and a positive integer >= 2, it
appears that there may exist a universal lower bound for A(t, H,). In fact, we conjecture
that A(t, H) >- cn + f(t) for a constant c > 0. In this connection, it is worth noting
that A( 1, Pn) 2 and A(t, inK2) t, where mK2 is m vertex disjoint union of copies of
K2. Note also that A’(t, Sn) t.

7. 1-EFT graphs for H Q. and H B. on V(H)I vertices. Let us consider
Problem 4 for H Q and H Bn when 1. We will denote the minimum number
of edges that must be added to H to make it 1-EFT by A’(H).

(i) H Qn. We consider first H Qn, where n 2 a. As usual, we will denote the
vertices ofQ by d-bit strings (Xl,..., Xd), with two such strings adjacent if they differ
in exactly one component. If v is a vertex of Q,, the vertex diametrically opposite v is
the one that differs from v in every component. We say that an edge in Qn is ofdimension
k if the end vertices differ in the kth component. We now obtain the precise value
of A’(Qn).

THEOREM 13. A’(Qn)= n/2.
Proof. Certainly, A’(Q,) >= n2, since each vertex must be incident to at least one

of the additional edges.
For the reverse inequality, consider the graph G obtained from Qn by adding the

n/ 2 edges between each of the n/ 2 diametrically opposite pairs of vertices. To show that
G is 1-EFT for Qn, suppose that we remove some edge of dimension k in the original an
from G. Upon removing from G the remaining edges of dimension k, we obtain two
copies Q’/z and Q’/2 of the (d- )-dimension hypercube Q/2 joined by the n2 new
edges. An isomorphism from this remaining subgraph ofG to Q, may be easily described
as follows: Each vertex of Q’n/2 is mapped to itself, and each vertex of Q’/2 is mapped
to the diametrically opposite vertex in Q/2.

(ii) H Bn. We now consider H B,, where n 2p 1. Our goal is to establish
lower and upper bounds for A’(Bn).

THEOREM 14. A’(Bn) >= n + ).
Proof. Suppose that we add edges to Bn to form a 1-EFT graph G with respect to

B. We make the following trivial observations:
1. Every vertex degree in G must be at least 2;
2. Removing any edge of G must leave neither a vertex of degree adjacent to a

vertex of degree at most 2, nor a path of three vertices of degree 2.
Consider now two leaves x, y in the original Bn that are distance 2 apart in B, and

let z denote their father in Bn.
Claim. There must be three or more edges of E(G) E(B,) that are incident in

G to the vertices { x, y, z }.
Proofofclaim. By observation 1, there must be an edge ofE(G) E(B,) incident

to both x and y (this might be the single edge (x, y)). So if there are at most two edges
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oo

o

(i) (ii) ftii)

FIG.

in E(G) E(Bn) incident to {x, y, z}, we must have (up to symmetry) one of the
situations depicted in Fig. 1, in which broken lines denote edges in E(G) E(B,). In
Fig. 1, and ii respectively, in iii ), removing (y, z) respectively, z, father (z)
violates observation 2. This proves the claim.

To complete the proof of Theorem 14, note that there are (n + )/4 such triples
{ x, y, z }. Since an edge in E(G) E(B,) could be incident to vertices in at most two
triples, it follows by the claim that A’(Bn) >= (rt + ). Vq

We now give a constructive upper bound for A’(Bn).
THEOREM 15. A’(B,) --<_ (n + 2.
First, we prove the following result.
LEMMA 2. The graph B in Fig. 2 is 1-EFT for B5.
We note that B contains just 6 ( 15 + extra edges, which is optimal by the

above theorem.
Proof. We indicate in Fig. 3 four other Bts’s in B, letting the darkened vertex denote

the root. Noting that each edge of the original Bl fails to occur in at least one of the
four, we have the result that B is 1-EFT for B5. []

In the following, we will schematically denote B by

where the darkened vertices represent the four roots of the B5’s in Fig. 3 (i)-(iv). We
will also need the following easy lemma, whose proof we leave to the reader.

FIG. 2. The graph B.
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Ciii) (iv)

FIG. 3. Copies ofB5 in B.

LEMMA 3. For n >= 15, we can add n edges to Bn (i.e., double the number of
edges), so that the resulting graph B’ is 1-EFTfor Bn and that regardless ofwhich original
edge in Bn is removedfrom B’, the reconfigured nn has the same root and leaves as the
original B,.

FIG. 4. The graph G.



574 UENO, BAGCHI, HAKIMI, AND SCHMEICHEL

Proof of Theorem 15. Let n >- 2 8 and consider the graph G as depicted in
Fig. 4. It is easily seen that G is 1-EFT for Bn, and that the number of extra edges is
(n+ 1)-2. {q

Acknowledgment. The first author is grateful to Professor Y. Kajitani for his en-
couragement.
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IMPROVED SPACE FOR BOUNDED-SPACE, ON-LINE BIN-PACKING*
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Abstract. The author presents a sequence of linear-time, bounded-space, on-line, bin-packing algorithms
that are based on the "HARMONIC" algorithms Hk introduced by Lee and Lee [J. Assoc. Comput. Mach.,
32 (1985), pp. 562-572 ]. The algorithms in this paper guarantee the worst case performance of Hk, whereas
they only use O(log log k) instead ofk active bins. For k >_- 6, the algorithms in this paper outperform all known
heuristics using k active bins. For example, the author gives an algorithm that has worst case ratio less than 17 /
l0 and uses only six active bins.

Key words, combinatorial problems, on-line, bin-packing, suboptimal algorithms
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1. Introduction. In the classical one-dimensional bin-packing problem, we are given
a list of items L (a, a2, an), each item ai e (0, 1], and we must find a packing
of these items into a minimum number of unit-capacity bins. This problem arises in a
wide variety of contexts and has been studied extensively since the early 1970s. Since
the problem of finding an optimal packing is NP-hard, research has concentrated on
approximation algorithms that find near-optimal packings.

Let OPT(L) and A(L) denote, respectively, the number ofbins used by an optimum
algorithm and the number of bins used by a heuristic algorithm A to pack the input list
L. Then the worst case performance ofA, denoted by r(A ), is defined as

lim sup A(L)/OPT(L).
OPT(L) L

This ratio is customarily used to measure the performance of a heuristic bin-packing
algorithm. A bin-packing algorithm is called on-line if it packs all items ai solely on the
basis of the sizes of the items aj, =< j _-< and without any information on subsequent
items. A bin-packing algorithm uses k-bounded space if, for each item a;, the choice of
bins to pack it into is restricted to a set of k or fewer active bins, where each bin becomes
active when it receives its first item, but, once it is declared inactive (or closed), it can
never become active again.

The latter restrictions (on-line and bounded-space) arise in many applications, as
in packing trucks at a loading dock or in communicating via channels with bounded
buffer size. Essentially, only the following three types of bounded-space, on-line, bin-
packing heuristics have been studied:

(i) The Next-k-Fit (NFk, k >_- 2) introduced in [6] simply puts an item ai into
the lowest indexed of k active bins into which it will fit. If no active bin has room for ai,
the lowest-indexed active bin is closed, and ai is put into a new opened bin. Csirik and
Imreh 2 and Mao 8 proved that r(NFk) 17 / 10 + 3 / Ok 10) holds;

(ii) The k-bounded Best Fit (BBF, k >= 2) introduced in [4] always places an
item into the fullest active bin into which it will fit. If no active bin has enough room, a
new bin is started, and the fullest active bin is closed. Csirik and Johnson 4] showed in
a very sophisticated proofthat, independently ofthe value of k, r(BBFk) 17 / 10 holds;
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(iii) The HARMONIC algorithm Hk 7 is based on a special nonuniform partition
of the interval (0, 1] into k subintervals (where the partitioning points are 1/2, 1/3,

1/k). To each of these subintervals, there corresponds one active bin, and only
items belonging to this subinterval are packed into this bin. If some item does not fit
into its assigned bin, this bin is closed, and a new bin is used. Lee and Lee [7 analysed
the worst case ratio of Hk. They showed that, as k tends to infinity, r(Hk) tends to
ho 1.69103.

A summary of the worst case ratios of these heuristics for some small values of k is
given in Table 1. Lee and Lee [7] also showed that for any k-bounded-space, on-line,
bin-packing algorithm A, r(A) >= ho must hold. That means that, asymptotically, Hk is
optimal.

In this paper, we present an on-line bin-packing algorithm, called SIMPLIFIED
HARMONICk, or SHk. By using a better partition of the interval (0, than Hk does,
we get a worst case performance ofapproximately ho + 10 -5 while using only nine active
bins! To reach this worst case performance, Hk had to use 43 active bins, whereas NFk
and BBFk cannot even come beneath 17 / 10. Generally, SHk has a worst case performance
that the HARMONIC algorithm cannot reach by using a number of active bins less than
doubly exponential in k.

Furthermore, our heuristic SH6 has worst case ratio beneath 17 / 10 while using only
six active bins. This contradicts a conjecture of Csirik [1 ].

The paper is organized as follows. Sections 2 and 3 present the results on SHk for
the case where k 3m. Section 4 extends these results to the other values of k, and 5
gives the discussion.

2. The simplified harmonic algorithm. The following sequence (introduced by Go-
lomb 5 is essential in the definition and in the analysis of our algorithm:

tl 2,

ti + ti (ti + for >= 1.

We will define the algorithm SHk only for k 3m, m >= 1. We fix the value ofm for this
and the next section and consider the following partition k of the unit-interval into

TABLE
Asymptotic worst case ratios, rounded tofive decimal places.

2 2.00000 1.70000 2.00000 2.00000 1.70000
3 1.85000 1.70000 1.75000 1.75000 1.70000
4 1.80000 1.70000 1.72222 1.72222 1.70000
5 1.77500 1.70000 1.70833 1.70000 1.70000
6 1.76000 1.70000 1.70000 1.69444 1.69444
7 1.75000 1.70000 1.69444 1.69388 1.69388
8 1.74286 1.70000 1.69388 1.69106 1.69106
9 1.73750 1.70000 1.69345 1.69104 1.69104

42 1.70732 1.70000 1.69106 1.69103 1.69103
43 1.70714 1.70000 1.69103 1.69103 1.69103
o 1.70000 1.70000 1.69103 1.69103 1.69103

k NFk BBFk Hk SHk Minimum
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k 3m subintervals:

A =(1/2, 11,

Bi (1/ ti, 1/( ti 1)] fori=2...rn+ 1,

C=(1/(ti+ 1), 1/ti] fori=2...m,

Di =(1/(ti+l- 1), 1/(ti + 1)] fori=2...m,

E= (0, 1/tm+l].

The algorithm SHk simply proceeds as follows. For each of the k subintervals, it keeps a
separate active bin. In this bin, only items belonging to the corresponding subinterval
are packed. Now, if the algorithm receives a new item ai to pack, it first classifies ai
according to the partition k. Then it tries to pack ai into its corresponding active bin.
If there is not enough room in the bin, this bin is closed, a new active bin is opened, and
ai is put into it.

Since item classification can be done in O(log k) time and there are only k active
bins at any time, the algorithm runs in O(n log k). Hence, if we take k to be constant,
the time complexity is linear.

3. Worst case analysis of simplified harmonic. We define below a weighting function
W(x), which we prove has the following two properties. If W(L) is the cumulative
weight of the pieces in L, then (i) the length of the SHg-packing of L cannot exceed
Wg(L) + k and (ii) Wk(L) cannot exceed I’ times the length of an optimum packing,
where (remember that k 3m)

m tm+l
ti (tm+l 1)

holds. From this, it immediately follows that SH(L) k =< Wg(L) =< I’OPT(L), and
this yields r(SHk) =< Pk. Define the weighting function W(x) as follows:

W(x) x+ 1/2

=-xq-
ti+l-

ti+l
ti

for 1/2 <x

for 1/ti <x<= 1/(ti 1) and 2 =< =< m +

for 1/(ti+l- 1)<x=< 1/tiand2<-i-<m

tin+ -x forx--< 1/tm+l.
tin+l--

An illustration for this weighting function and for the partition of the unit-interval in
the case where k 6 is given in Table 2. The following observation immediately follows
from the definition of the weighting function.

OBSERVATION 1. For <= rn and x <= 1/ti, Wk(X)/X <= (ti + )/ti holds.
CLAIM 1. Wk(L) >- SHg(L) k.
Proof. We show that, in the SH-packing, every closed bin B has weight at least 1.

Together with the k last active bins, this implies the claim. We distinguish the following
five cases:

(i) The bin B corresponds to the A-interval. Then it contains a single item of
weight greater than 1;
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TABLE 2
Illustration for SH6. The two rightmost columns hoMfor closed bins.

Type Interval Weight (x) Contents # Items

A (1/2, 1] x + 1/2 >1/2 =1

B2 (1/3, 1/2] x + 1/6 >2/3 =3
C2 1/4, 1/31 4x/3 >3/4 3
/92 (1/6, 1/4] 4x/3 >3/4 4, 5
B3 (1/7, 1/61 x + 1/42 >6/7 =6
E (0, 1/7] 7x/6 >6/7 >6

(ii) The bin B corresponds to some Bi-interval, 2 =< =< m + 1. Then it contains
exactly ti items, each of size greater than /ti. Consequently, the total weight of B
is at least

(ti- 1)’Wk +e >(ti-- 1). /+ 1"
ti+l-

(iii) The bin B corresponds to some Ci-interval, 2 -< _-< m. Then it contains exactly
ti items, each of size greater than / (ti + ). This gives a total weight of at least

(1) ti+l
li" Wk

ti + ti 1"
ti ti +

(iv) The bin B corresponds to some Di-interval, 2 -< -< m. Since the bin was
closed, some item in Di did not fit into it. Therefore B is at least ti/(ti + full and as
the weight function is linear on this interval, the total weight is at least

ti ti +
-1;

ti + ti

(v) The bin B corrresponds to the E-interval. Analogously to (iv), we see that B
is at least tm + / tm + full and that the total weight is at least 1. U]

CLAIM 2. In any packing of L, the weight of any bin is at most Fk. Hence,
Wk(L <= FkOPT(L) holds.

Proof. Consider some fixed bin B that contains items q >- q2 >"" qn. We dis-
tinguish two cases.

qi e (1/ ti 1/ ti 1)]fori= 1...m. WedenotebyQthesum’=m+lqi.
Obviously, Q < 1/(tm +1 1) holds. Now

W B , Wk q q -t- -t- Wk q
i=m+lti+l

tm+<= -Q+ ,
ti+l--

+ "Q"
tm+

It is easy to see that the latter expression becomes maximum when Q takes its maximum
value / (tin + ); in this case, the expression is exactly I’.

(ii) Suppose that r -< m is the least such that qi (1/ti, 1/(t 1)], and
hence qr <= /tr. We denote by Q the sum ’]= qi. Obviously, Q < /(tr holds,
and, by Observation 1, the total weight of all elements qr... qn is less than or equal to
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(tr + )Q tr. Similarly as in (i), this yields

r-1 tr+
Wk(B) <= Q + , +.Q

i=l ti+l- tr
r- tr + r+

<=Z +
ti tr(tr i= ti

< Ik,

and the proof of Claim 2 is complete.
LEMMA 1. For k 3m, the asymptotic worst case ratio ofthe heuristic SIMPLIFIED

HARMONICk is I’k.
Proof. Claims and 2 imply that r(SHk) -< I’k holds. To show that the bound is

tight, we present a family of lists Ln. We define

Olin (tm+ )(tm+ 2).

Now let n be a multiple of Cm. The optimum packing of our list L, will use n + bins,
and the SH-packing will use n1 bins. We choose two very small positive reals
such that

m + Olm’. -I- 6 Otm/ n.

We define Ln by giving its optimum packing. In this packing, we have bins ofthe following
contents:

nam times a bin that contains

1/ti+e(fori ...m), 1/tm+, 1/(tm+2- 1)-(m + 1)e;

(m )n/O/m times a bin that contains

1/ti +e(fori= m), 1/lm+l q-e, 1/(tm+2-- 1)--(m+ 1)e;

a single bin containing

n/ Ogm)-times an item of size m + am"

In the SHk-packing, the packing of the items of size /ti + e, <-_ <= m is easy to
analyse. Independently of their ordering, they use exactly n/(t bins. Analogously,
we see that the items of size 1/tm + + e are packed into (am )n/(tm+
bins. Thus, the only interesting items are the items that are -< /tm + (i.e., the E-items).
These are given to SH in ncm "packages" of the following type:

1-(m+ 1)e, (m+
tm+l’ tin+z-

OOm-times

We show that SH puts each package into a separate bin. This holds, since the total size
of a package is exactly (tin +, )/tm + + 6. Hence, when the first item of the next
package arrives, it does not fit into the active bin. Consequently, the bin is closed, and
the next package is treated in the same way. Summarizing, SH uses a total number of

n Om n n

ti_ am tm +

bins, and this number is equal to n I’.
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4. Main results. In this section, we extend the results of the preceding sections to
the cases where k 3m + and k 3m 1. The underlying set T ofpartitioning points
of the unit-interval is given by

T=
i= ti + ti’ ti-

To define the algorithm SHk for general k, we take the k largest values in T. These
values partition the interval (0, into k subintervals. SHk keeps for each subinterval a
separate active bin and proceeds exactly as in the preceding sections. It is easy to verify
that for k 3m this indeed leads to our old algorithm. Before we can state our main
theorem, we give the following definitions, for m >_- l"

m

I3m-I 1i= ti tm+ 2

tm+l
I3m--

ti- )2,(tm+l

m t2m+ + tm+l +
I3m+l--- --ti t2m+l(tm+ 1)

THEOREM 1. For k >= 2, the asymptotic worst case ratio ofthe heur&tic SIMPLIFIED
HARMONICk is

The proofs are analogous to the proofs of Claims and 2 and to the proof of
Lemma 1. Essentially, we use the same weighting function again. The only modification
concerns elements x in the smallest interval (0, a ]; these elements always get weight x

a). The details are left to the reader as an exercise. Some values of Fk for some
small k are given in the fourth column of Table 1.

Finally, we compare the behaviour of the heuristics Hk and SH. Theorem 2 in [7]
states that, for k tm + 1,

m

r(Hk) 1i-- ti-- tm+l--2"

This value is equal to our I3m 1. Consequently, HARMONIC using tm+ active
bins and SIMPLIFIED HARMONIC using 3m active bins achieve the same asymp-
totic worst case ratio. As the ti grow doubly exponentially, the following theorem holds.

THEOREM 2. To achieve the worst caseperformance ofheuristic HARMONICk with
k active bins, the heuristic SIMPLIFIED HARMONIC only has to use O(log log k)
active bins.

5. Discussion. In this paper, we derived a sequence of new k-bounded-space, on-
line, bin-packing algorithms called SIMPLIFIED HARMONICg. For k >= 6, the worst
case behaviour of our algorithms outperforms all known heuristics using k active bins.
For k =< 4, the best-known algorithms are the BBFk due to Csirik and Johnson. For k
5, BBF5 and SH5 both have the same worst case performance.

The average performance of SIMPLIFIED HARMONICk suffers from the usual
drawback of harmonic algorithms: For Ln, a random list of n items with sizes chosen
independently from a uniform distribution, the average value H(L)/OPT(L) approaches
1.28987 as k tends to (see 3 ), whereas the average value of NFk(L)/OPT(L) em-
pirically approaches 1. Computational experiments performed on large item lists indicate
that, in the average case, SHg performs as poorly as Hk does.
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There remains a number of (seemingly hard) open questions.
What is the best possible worst case performance of any on-line, bin-packing

heuristic using 2-bounded space? (BBF2 achieves a worst case ratio of 17/10.)
(2) What is the smallest k such that there exists an on-line, bin-packing heuristic

using k-bounded space with asymptotic worst case ratio strictly less than 17/10? (sn6
comes beneath 17/10 by using 6-bounded space.)

(3) If we only consider algorithms that pack the items by Next-Fit according to
some fixed partition of (0, into k subintervals, which partition gives the best worst
case ratio? (It is easy to see that, for k and k 2, in this case the best possible worst
case performance is 2, but for k >= 3 no tight bounds are known.)

Acknowledgments. I gratefully acknowledge the hospitality of Jrzsef Attila. Fur-
thermore, I thank Jfinos Csirik, Gbor Galambos, and Hannes Hassler for several helpful
discussions.
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Abstract. Several constructions are presented for extending a bounded-to-one sliding-block code to a
bounded-to-one surjection onto its range, while preserving nice properties of the original code.
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1. Introduction. Motivated by some results from the theory of codes, we investi-
gate the following problem: Given a bounded-to-one k-block map S -+ T between
symbolic shift spaces S and T, construct an enlarged domain S

_
S and a surjective

bounded-to-one extension S T of the given map . We present several con-
structions that apply under different hypotheses on the given k-block map S - T;
each construction preserves some desirable property of . In 2 we extend a general
bounded-to-one block map between shifts of finite type (SFTs) to a bounded-to-one fac-
tor map between SFTs. This is linked to the imbedding of a code into a maximal code,
given by Ehrenfeucht and Rozenberg [10]. In 3 we extend a right-closing block map be-
tween SFTs to a right-closing factor map between SFTs, and in 4 we extend a biclosing
block map between SFTs to a biclosing factor map between SFTs. In 5 we prove a sofic
version of the general bounded-to-one extension theorem. Our last two constructions
deal with the simultaneous extension of two block maps S - T and S - T’.
In 6 we simultaneously extend two bounded-to-one maps between SFTs, and in 7 we
simultaneously extend two right-closing maps between SFTs.

In each construction, with the exception of that of 5, the map is assumed one-
block with shift of finite type domain E Ea given by bi-infinite walks on some graph. In this setting, our extensions are constructed by imbedding the graph into a graph
and extending , regarded as a graph homomorphism, to all of . We depart from this

theme in 5, where the domain is sofic.
The constructions have roots both in the theory of codes and in symbolic dynamics.

The first extension construction relies almost entirely on the theory of codes, while the
following constructions become progressively more dependent on symbolic dynamics.

As we hope to interest both coding theorists and symbolic dynamicists in these re-
sults, we provide here the necessary definitions and background from both fields. Our
primary reference for the theory of codes is [3]. For symbolic dynamics, they are [1] and
[6].

Given a finite set ,4 of letters or symbols, we define a word w over A to be a finite
sequence (a... a) of symbols from A and we denote w ax... an. We form the
concatenation uv of two words u ala2.., an and v bib2.., b, by juxtaposing them
as follows: uv al... a,bl.., b,. The empty sequence, denoted by e, is the identity
element for the operation of concatenation.

The set of all words over A, denoted by A*, is called the free monoid over A. If
X c A*, we denote the set of all concatenations of elements of X (including the empty
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concatenation, e) by X*. We denote the set of all nonempty concatenations by X+. A
subset X c .A* is a code over A if each element of X+ has a unique factorization into
words from X. As a particular case, aprefix code is one in which no code word is a prefix
of another.

A graph (S, ) is defined by a finite set S of states and a finite set of edges,
where each edge has an initial state and a terminal state in S. We allow multiple edges
from one state to another in
where the terminal state of edge zi is the initial state of edge z+l for 1 < i < n 1.
The path z z,, begins at the initial state of edge z and ends at the terminal state of
edge

We denote by e8 the emptypath of based at state s E S. The terminal and initial
states of e8 are both state s, and uev is a path of if and only if path u ends and path v
begins at state s. The path e is a 0-path.

We often regard the edges E of a graph as symbols. In this connection, a nonempty
path in is an element of E+.

A labeling of a graph (S, E) is a function 6 E /3, where B is a set of
symbols. We can regard 6 as a function from the nonempty paths of into B+" we say
path z... z,, has 6-1abel 6(x... z,) (zl)... (z,). A labeling of is deterministic
if, for each state s of , 6 is one-to-one on the set of edges beginning at state s.

Afinite automaton M is defined by (S, E, B, 6, qo, ), where (S,E) is a graph, B is
a finite alphabet, 6 B is a labeling, q0 E S is the start state, c S is the set of
accepting states. A deterministic finite automaton (DFA) has a deterministic labeling.

We say the set L c B* is recognized by M if L is the set of labelings of paths in M
starting at state q0 and ending at an accepting state. By a construction of Rabin and Scott
[16], any set L c B* accepted by finite automaton is also accepted by a deterministic finite
automaton. Such a set L is called a regular language or a rational language. In particular,
if a code is regular as a language, we say that the code is a regular code. It is well known
that the set of regular languages is closed under Boolean operations (union, intersection,
complement in/3*) and closed under concatenation and the Kleene-star operation (if L
is regular, then so is L*). The set of regular languages over an alphabet B is the closure
under the operations of union, concatenation, and Kleene star of the set of single symbol
languages {b}, b B [12].

If (S, E) is a finite directed graph and so S, then it is easy to see that the set
L c_ E* of nonempty paths starting and ending at state so but not passing through state
so is a regular language and a code. We call L the set offirst returns to state so in

We now give the necessary background from symbolic dynamics. We denote

Az A}.

The elements of
Az defined (ax)i xi+ is called theshiftmap on Az. A shift-invariant subset E c_ Az is
an n-step shift offinite type if membership of x ,4z in E can be determined by examining
the words of length n + I occurring in x: There is a set of words V c Jt’+ with

2 {x AZ’xi...xi+, Wforalli Z}.

An example is tz itself: it is a 0-step shift of finite type.
Of particular interest are the shifts of finite type constructed from square nonnega-

tive integer matrices. Given such a matrix A indexed by a set S, define a finite directed
graph GA (S, Jr) such that Aij edges point from state i to state j. Define the (one-step)
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shift of finite type 5]A as

5]A {X E ,mZ edge xi+l follows edge xi in the graph GA }.
It is sometimes convenient to define an SFT Eg directly in terms of a graph G, below:

5] {x E z. edge xi+l follows edge xi in the graph G (S, )}.
In a certain sense, it involves no loss of generality to confine our study to SFTs de-

fined by matrices if we allow recoding by a conjugacy, a notion we now explain.
Given a shift-invariant subset S c_ Az, an n-block map S - Bz is a function

satisfying the following conditions: o a a o (shift commuting), and there is an
integer such that, if xxz+l.., xz+,-i yzyz+l y+,-l, then (x)o (y)o. Thus
each coordinate (x)i of (x) can be determined by examining a window

Xld-iXld-i-t-1 Xld-i-t-n-1

of x of length n. Such maps are called block maps or sliding-block codes.
Of particular interest are one-block maps 5]A 5]B. Such a one-block map

defines a labeling from the edges of TA to the edges of GB that we again call . What is
less obvious, also defines a function from the states of GA to the states of GB via

(initial state of edge e) initial state of edge (e).

We must check that is well defined and that , as a function of edges to edges and
states to states, is a graph homomorphism: respects the initial and final states of edges.

It is a fundamental observation [11] that block maps are exactly the shift-commuting
continous maps when we regard Az and Bz as metric spaces with distance formula

where
t’

) 0 if a b,
6(a, b)

1 ifab.

All the shift-invariant subsets of the full shift ,47‘ that we consider in this paper are
closed subsets of Az, when ,4Z is regarded as a metric space. Such subsets are called
subshifls.

If S T is a one-to-one and onto block map between subshifts, it follows from
a simple general topological argument that -1 T S is also a block map. We call
such a a conjugacy, because it conjugates the shift map on S to the shift map on T:
r =oso-.

It is in this regard that the study of shifts of finite type can be reduced to the study
of those defined by nonnegative integer matrices. If 5] is an n-step SFT where n > 1,
then we define a one-step SFT 5] [’] conjugate to 5] by letting the symbols of 5][] be the
words of length n that occur in points of 5] and allowing symbol bl... b, to follow symbol
al... a, in a point of 5][’] if and only if a2... a, bl... b,-l. It is easy to see that 5][’]
is conjugate to . Given a one-step SFT A, it is easy to define a 0-1 matrLx A such that A
is conjugate to 5]A" index A by the symbols of A and set A 1 if and only if ij occurs
in A. Thus, 5] is conjugate to 5]A.
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Afactormap is a surjective block map, and afactor of a subshift is its image under a
factor map. A sofic system [18] is a subshift that is a factor of an SFT.

A directed graph is irreducible if, for each pair of states s, t in , there is a path in
from s to t. An SFT E is irreducible if, for each pair ofwords u, v occurring in E, there

is a word w such that uwv occurs in E. A sofic system is irreducible if it is the factor of
an irreducible SFT.

An SFT E is aperiodic if there is an > 0 such that, for each pair of words u, v
occurring in E, there is a word w such that ]w[ and uwv occurs in E.

An irreducible component of an SFT E is an irreducible SFT E0 c_ E that is maximal
with respect to inclusion among all irreducible SFTs contained in E. It is not hard to
show that any SFT has a finite number of irreducible components.

The entropy h(A) of a shift space A is the asymptotic growth rate ofwords of length
n in A, below:

h(A) lim _1 log Iwords of length n in A].

For an SFT A, the entropy h(A) is also the asymptotic growth rate of the number
II, (A) of periodic points of least period n in A.

We use the following two lemmas from [1].
LEMMA 1.1 (see [1, (3.24)]). IrE is an SFTand o, , are its irreducible compo-

nents, then

h(E) max h(Ei).
0<i<n

LEMMA 1.2 (see [8], [1, (3.21)]). /of E is an irreducible SFT and A c_ E is any shift
space with h A h then A .

A block map b" A -* B is bounded-to-one if supueB is finite.
The following theorem is due to Coven and Paul [9].
THEOREM 1.3. A factor map c S --. T between irreducible sofic systems S and T is

bounded-to-one ifand only if h(T) h(S).
A diamond for a k-block map b S -. T is a pair of distinct points z, t E S with a

common left-infinite tail, a common right-infinite tail, and with b(z) b(/).
THEOREM 1.4 (see [13], [8]). A block map c -- T with irreducible SFTdomain ,

is bounded-to-one ifand only if c has no diamonds.
If the edges of a directed graph A (S, ) are labeled by a function b -. B,

then 05 defines a one-block map b Ea BZ. The function b has no diamonds if and
only if any two distinct paths in A with the same initial state and same final state have
distinct labels.

THEOREM 1.5. Let a be an irreducible graph. Let c EA -- T be the one-block map
defined by a labeling of A. Let R be the set offirst returns in A to a fixed state io. The
following are equivalent:

(i) b is bounded-to-one;
(ii) b has no diamonds;
(iii) 05 is one-to-one on R*;
(iv) b is one-to-one on R and c(R) is a code.
The equivalence (i) (ii) is Theorem 1.4; (ii) , (iii) and (iii) : (iv) are easy to

see. If any of the equivalent conditions of Theorem 1.5 hold, we call the labeling given
by b unambiguous.
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2. Bounded-to-one maps between SFTs. In this section, we prove the following the-
orem. It can be viewed as a generalization in terms of symbolic dynamics of a result due
to Ehrenfeucht and Rozenberg [10]. Our proof closely follows their proof recapitulated
in [3, Chap. 1, Prop. 5.2].

THEOREM 2.1. Let a and B be irreducible graphs and let the one-block map
Ea ---’ defined by an edge-labelingofa be bounded-to-one. Then there is an irreducible
graph

_
A with a labeling extending that ofa defining a bounded-to-one one-block

factor map b" a .
COROLLARY 2.2. If and A are irreducible SFTs and E --. A is a bounded-to-

one block map, then there is an irreducible SFT

_
and a bounded-to-one factor map

" A extending .
Before proving Theorem 2.1, we need a marker path y, as provided by the following

lemma.
LEMMA 2.3. Given a state i in a irreducible graph and a proper subshifl A c ,

there is a path y in starting and ending at state i such that
(i) g occurs in no point of A,
(ii) y has no nontfivial self-overlaps (we say y is unbordered).
Proof. Since A is aproper subshift of EB, there is a word u occurring in some point of

E, that occurs in no point of A. Now is irreducible, so by prepending and appending
words to u, we can assume that starts and ends at state i. Now (uniquely) parse u as
u ww... w, where eachw is a first return in to state i. As is irreducible and
as A is a proper subshift of 2, we can choose a first return w to state i that is distinct
from wl. Define g uwlwk.

Suppose that t is nonempty, t is a prefix of g, and t is a suffix of g. To show that g is
unbordered, we prove t g. The path t begins and ends at state i, so t can be uniquely
parsed into first returns to state i, below:

where vl wl (since t is a prefix of y) and < 2k + 1. Since t is a suffix of y, t is
the concatenation of the last first returns to i in g. If < k, then t w giving the
contradiction wl w # wl; so > k+ 1 and t wlwg.... WkWlWt--l. If k- 1 < k,
then wl w (because t is a suffix of g), so k- 1 > k. Thus > 2k+ 1, giving 2k+ 1
and t y. Thus y is unbordered.

Proofof Theorem 2.1. We can assume that is not onto. Fix a state a in a. Let
R c_ ,4* be the set of first returns to state a in GA, let S c_/3* be the set of first returns
to state (a) in GB, and let X (R) {(x) x R}. Note that X* c_ S* and that
X* and S* are regular languages. Using Lemma 2.3, choose a path y E S* such that y
occurs in no point of (EA) and y is unbordered. Define a regular language

u s* \ (x* u

Let M (7"Z, E, B, 6, q0, .T) be a DFA that recognizes U. Imbed the graph GA into a
graph 6a and extend the labeling on GA to a labeling on G as follows (see Fig. 1):

(1) From state c, draw a new pathp labeled y returning to state c;
(2) From state c, draw a new pathp labeled y terminating at a new state fl;
(3) From state fl, draw a copy 7-/of the graph (7"Z, ) with its labeling 6, with state fl

identified with state q0 E 7"Z;
(4) For each accepting state s .T, draw a path ps labeled y from its copy in 7-/to

the state fl;
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(5) For each accepting state s E ’, draw a path p, labeled from its copy in to
the state a.
Let 2i be the SFT defined by the graph and let Ea /3* be the one-block map
defined by the labeling of.

Y

We first show that really maps into En. Let R be the set of first returns to state
in and let X (R). Then X X U y(Uy)* because any first return to state
either (i) remains in A and therefore has label in X, (ii) isp and therefore has label
y, (iii) passes through state k _> i times and therefore has label in y(Uy)k.
Since y E S*, X c_ S*, and U c_ S*, it follows that X* c_ S*. By the irreducibility of,
any word u occurring in E occurs in a word w in R*. Now (w) E (R)* X* c_ S*;
so (u) is a path in n. Thus (Ea) is contained in the closure of
As En is closed, (Ea) c_

We show that 6 E - En is bounded-to-one by showing that is one-to-one on
R* and by applying Theorem 1.5. Suppose for a contradiction that there are distinct
x, /2* with (x) (5). Let z and 5 be shortest such paths. We make the following
two observations.

(z) begins and ends with . That prefix w of (z) preceding the first occurrence of
y is in X* and therefore labels a unique path p in R*. Thus z pz’ and 5 pc’, where
z’ and 5’ are distinct elements of R*. Using the minimality of [z], we conclude that w is
empty. Thus (z) begins with y. A similar argument shows that (z) ends with y.

k(z) contains no occurrence of VwV, where w X*. Any path p in with (p)
ywy, where w X* is of the form p p’p"p", where (p’) y, (p’") y, and p"
is the unique path in R* with (p") w. Thus, if (z) contains an occurrence of ywy,
then x x’p’p"p’"z" and 5 5’ffp"ff"5", where x’p’, p’"z", 5’if, if"5" E R* and
either x’p’ # ’ff or p’"x" # ff"". This contradicts the minimality of

Using these observations, we conclude that (x) y(Uy)* and hence that x and
are paths in (G,\GA) U (a} beginning and ending at state a. However, is right closing
on (G\GA) U (a), so x 5. This contradiction shows that is one-to-one on R*.

Finally, we show that E -, EB is onto. Let w be any path in GB. By the
irreducibility of 6B, there are paths u and v such that uwv S*. Express

uwv wlyw2y... Wk-lywk,

where y overlaps no wi. Since y and uwv each begin and end at state (a), so do each
of w,..., wk. Thus w S* \ B*yB* U u X*. Hence
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yuwvy ywyw2y. ywky

U * X*)*e

x)*
X*

(R)*.

Thus w occurs in (E). Because (E.) is closed,
The original result of Ehrenfeucht and Rozenberg can be expressed using the fol-

lowing notation: A code is said to be complete if any block of symbols occurs within some
concatenation of code words. Their theorem states that any regular code can be imbed-
ded into a complete code. It is known by a theorem of Schutzenberger [3, Chap. 1] that
a regular code is complete if and only if it is maximal with respect to inclusion. This
holds in particular for a finite code. It is not known, however, when a finite code can be
imbedded into afinite maximal code.

Theorem 2.1, when reformulated in terms of codes, says that any regular code can be
imbedded into a regular code that is complete with respect to a local condition; in other
words, each block occurring in some fixed shift of finite type occurs in some product of
words from the code. This is again equivalent to a maximality condition by a result of
Restivo [17].

3. Right-closing maps between SFTs. A one-block map " S --, T is ght-resolving
if, whenever aa’ and aa" are words of length 2 occurring in S and (aa’) (aa"), then
a’ a". It follows that a one-block map A
defines a deterministic labeling of the graph GA. The labels of the first returns to a fixed
state then form a prefix code. Conversely, each regular prefix code can be obtained in
this way.

A block map S -. T is right-closing f, whenever x, y E S have a common
left-infinite tail and (x) (y), then x y. We can similarly define left-closing by
replacing right by left. It is immediate that, if is right-closing, then has no diamonds
and therefore is bounded-to-one. A one-block map EA B is right closing if and
only if defines a labeling of GA that has finite delay d, where

V states s of A,
d rain n V paths x xo... Xn and y y0... y, beginning at state s

if (x) (y) then x0 y0

This states that the present state ofA and d+ 1 forthcoming edge labels together deter-
mine the next edge ofA and therefore the next state. A deterministic labeling has delay
0, so a right-resolving map A B is right-closing. Wc note that by precomposing
with a conjugacy, we can replace a right-closing map with a right-resolving map [5].

In terms of codes, a slightly different definition of delay is in use: Let X be a code
over an alphabet A. Then X is said to have deciphering delay at most d if, for all u, u E X
and v v... Vd Xd and for all w e ,4", we have that uvw uX* only when u u.
This means that all the initial parsings of a string into d + i words of X share the same
initial code word. Therefore prefix codes are exactly those with deciphering delay 0.
The relation between the two notions of delay is the following. Let A be an irreducible
graph with an unambiguous labeling defining a one-block map . Let R be the set of first



SURJECTIVE EXTENSIONS OF SLIDING-BLOCK CODES 89

returns in A to a fixed state i. Let X be the code (R). If has finite delay, then X has
finite deciphering delay. The converse, however, is not true, as is shown by the following
example.

Example 1. Let X be the code a*b t3 ba*c. It is not hard to show that this code has
deciphering delay 1 and that there is no finite automaton having a labeling with finite
delay presenting this code as the labels of the first returns to some fixed state.

However, it is easy to verify that, when X is afinite code, the labeling given by has
finite delay if and only if the code X has finite deciphering delay.

In this section, we prove the following result.
THEOREM 3.1. Let A and B be irreducible graphs and let the one-block map

A defined by an edge-labeling ofA be right-closing with delay cL Then there is
an irreducible graph a D_ A with a labeling extending that ofA defining a right-closing
one-blockfactor map Ea also with delay c

Before proving this theorem, we set up some notation and prove a lemma. If is a
graph, s is a state in 7, and n > 0, let

Fa(s, n) {z" z zl... z, is a path in 7 starting at state s}.

Note that Fa(s, 0) {}. If e is an edge with terminal state s in , define Fa(e, n)
Fg(s, n). If G A, abbreviate FGA FA.

LEMMA 3.2. Let A - B be a one-block map and let d >_ 0 be an integer.
Suppose that GB is irreducible. If, for each state s ofA andfor each d-path yl Yd in GB
either

Y Yd - CFA(S, d)

or
y... ydFB(Yd, 1) C_ CFA(s,d + 1),

then is surjective. Moreover, if, in addition, is right-closing, then the delay of is at
most &

Proof. We show by induction that, if y Yd CFA(s, d), then

y ...ydFs(Yd,1) C_ CFA(s,d + l)

for > 1. The case where 1 is the lemma assumption. Fix > 1 and assume that
the statement is true for I. Suppose that y... Yd CFA(s,d). Let Yd+... Yd+t+
FB(Yd,1 + 1). We must show that y ...Yd+t+ CFA(s,d + + 1). By the induc-
tive hypothesis, y ...ydFB(Yd,1) C_ CFA(s,d + 1). So there is a path x ...Xd+t in A
with label y... Yd+ starting at state s. Let t be the state along this path between the
edges xt and xt+. We have yt+... Yd+t CFA(t, d); so, by the lemma assumption,
Yl+X... Yd+tFs(yd+t, 1) C_ CFA(t, d + 1). So

Yl Yd+l+l yl...ytFA(t,d+ 1)
C_ CFA(s,d+l+ 1),

where the inclusion follows from the existence of the labeled path s ul.w t in A. So

y ...ydFs(yd,1 + 1) C_ CFA(s,d + + 1),

completing the induction. It follows from the irreducibility ofB that any finite path y
in GB occurs in (EA) and therefore that " 3A EB is onto.



590 ASHLEY, MARCUS, PERRIN, AND TUNCEL

Now suppose, in addition, that is right-closing. Suppose for a contradiction that
the delay of is greater than d, that is, there are two (d + 1)-paths :c0... :cd and :c... :c
beginning at the same state in A, having the same label (:c0... :cd) (:c... :c), but
having distinct initial edges :Co - :c. By the above induction, we have for all >_ 0 that

(xl...Xd)Fs((Xd),l) C_ CFA(i(xl),d / 1),
(x...X’d)Fs((X’d),l) C_ CFA(i(x’),d 4- 1).

Since the left-hand sides of these inclusions are equal, has delay at least d 4-14-1. This
contradicts the assumption that is right-closing.

For completeness, we include the following partial converse to Lemma 3.2.
LEMMA 3.3. Let A -’ B be a surjective one-block map with delay d and suppose

that A and B are irreducible. Then, for each state s ofA andfor each d-path yx Yd
in GB either

Y... Yd CFA(S, d)

or
y ydFB(Yd, 1) C_ CFA(s, d 4- 1).

Proof. Suppose for a contradiction that there is a state so in A and a (d + 1)-path
yl... YdYd+I in B with

y Yd e eRA(So, d),

but

Yl YdYd+ CFA (So, d 4- 1).

For any path z z... ZL in B with L >_ d, define D(z) by

D(z) {i(XL_d+l) x ...xL such that (Xl...XL) z}.

Since has delay d, ID(z’) > lD(z) whenever z’ is a prefix of z with [z’ > d. If x is a
path in a with Ix[ > d and x terminates at state so, then (x)y... Yd+x is a path in GB
and

D((x)) > D((x)yl Yd+t).

If the right-hand side is nonzero, we can use the irreducibility of GA to append a path x’
to some path u having (u) (x)y... Yd+ to form a concatenation ux’ terminating
at state so. Now apply the above inequality with x replaced by ux’ to further reduce the
size of the set. In this way, we get a path w in GB with D(w) . This shows that is
not surjective. [:]

Proofof Theorem 3.1. We define the graph G in three stages. First, let G0

_
GA be

a graph satisfying the following:
(1) G0 has a labeling extending as a right-closing graph homomorphism with delay

d and with range GB (that we again denote by ),
(2) For each d-path v in B, there is a state s,, of {70 with CFao (s,,, d) {v},
(3) For each d-path v of GB, each path leading from state s. can be extended to a

path terminating in the irreducible subgraph GA.
To construct G0, we could, for instance, choose a pathw in Gs containing as a subpath

each d-path of GB and ending at a state (s) in the image of , then attach to GA a path
x labeled w terminating at state s. (See Fig. 2.) Alternatively, we could attach trees to
a for more efficient use of new states.
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0

FIG. 2. o. The labeling defines a closing map into the two-shift having delay 1.

We now add further edges to the graph 70 to create 1 as follows. (See Fig. 3.) For
each state s of o, for each path ... a+ 6 F((s), d + 1) satisfying

Yl Yd CFgo (s, d)

and

Y... YdYd+ - F7o (s, d + 1),

attach an outgoing edge to state s labeled y and terminating at state su2...u+l. (If d 0,
we are attaching an outgoing edge to state s labeled y and terminating at state set,
where t is the terminal state of edge yl in GB.) Clearly, this labeling extends as a
graph homomorphism with range GB. Note that we have not added any new states in
constructing 7 from o.

or

gl

o

FIG. 3. Mappingfrom onto the two-shift with delay 1.

We prove that 1 satisfies the following:
(1) For each state s of 0 (equivalently, of ),

CFgl (s, d) CFgo (s, d),

(2) " G B has delay d,
(3) For each state s of G0, for each path yx... Yd in B, either

Y Yd - CFa (s, d)

yl... ydFB(Yd, 1) C_ CFg (s, d + 1).
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We show (1). Since 1

_
0, we have

eFg (s, d) D_ eFgo (s, d).

If zl Zd eFg (s, d), then z Zd is the label.of a path u Ud Fg (s, d). We
can assume that u... Ud Fgo (s, d). Let uj be the last edge of u... Ud that is not in
G0. Let t be the initial state of the edge uj. By the construction of , uj... Ud is the
prefix of a path ...d+ in G labeled y... YdYd+I, where yl... Yd also labels some
path x... Xd in G0 with initial state t. Now u... uj_x... Xd-+ is a path in G0 with
initial state s, with (Ul... uj_iXl... Xd-j+) z... Zd, and with a longer suffix in the
subgraph Go c_ G than u... Ud has. By induction, there is a path in G0 with initial state
s that is labeled z... Zd. Thus zl... Zd eFgo (s, d); so eFgo (s, d) eFg (s, d), as
claimed.

We show (2). Equivalently, we show that, for any state s ofG, the sets (e)Fg (e, d),
e Fg (s, 1) are pairwise disjoint. The sets (e)F (e, d), e Fo (s, 1) are pairwise
disjoint because eFg (e, d) eFgo (e, d) and lro is right-closing with delay d. By the
construction of G there is a one-to-one correspondence between the set of edges

Fg (s, 1)\Fgo(S, 1)

and the set of (d / 1)-paths of Gn

{Y Yd+ Yl Yd eFgo(s,d) but y yd+ eFgo(s,d + 1)}

such that edge e corresponds to path y... Yd+l if and only if

Now

(e)Fg (e, d) {y... Yd+X }.

U{(e)Fa (e, d)" e e Fgo (s, 1)} eFgo (s, d + 1),

so the sets (e)Fax (e, d), e E Fax (s, 1), are pairwise disjoint as claimed.
We show (3). Suppose that yx... Yd eFg (s, d). Then y... Yd eFgo (s, d); so,

by the construction of , y YdYd+ eF (s, d + 1) for each Yd+ F(Yd, 1).
This is (3).

If6 is not irreducible, let6 c_ G be the subgraph consisting of all states and edges
of G that are accessible byforward transitions from the graph GA. As GA is irreducible
and as any path in G can be extended to a path terminating in GA, we conclude that G
is irreducible.

Define the graph homomorphism Ga B by restricting to Ga. It is easy to
verify that satisfies the hypotheses of Lemma 3.2; so the corresponding one-block map

’]fi. ’]B is onto. This proves Theorem 3.1. [q

Theorem 3.1 is related to a result of Bruyere, Wong, and Zhang [7]. They have
proved that any regular code with finite deciphering delay can be imbedded into a code
that is maximal with respect to inclusion, is regular, and has the same delay. This solves
a question raised in [3]. The relationship with Theorem 3.1 is as follows. Ifwe start with
a finite code with finite deciphering delay, then we can realize the code as the labeling
of the first returns in a labeled graph with finite delay. By applying Theorem 3.1, we can
imbed the finite code into a maximal regular code having finite deciphering delay.

Except in the case where the given code is prefix, the maximal code that we obtain
is not finite. In fact, by a theorem of Schutzenberger [3, Thm. 8.4], a code that is finite,
maximal, and with finite deciphering delay is, in fact, prefix.
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4. Biclosing maps between SFI’s. In this section, we extend a right- and left-closing
one-block map b E - E between irreducible SFTs to a surjection b E - Eenjoying the same properties.

We say that a one-block map b is d-right-closing if it is right-closing with delay d, and
that b is d*-left-closing if it is left-closing with delay d*. If b is both d-right-closing and
d*-left-closing, we say that b is (d*, d)-biclosing.

This is related to the notion of a biprefix code; that is, a code that is prefix in both
directions. The relation is the following: Any finite biprefix code can be obtained as the
labels of the first returns in a graph with a biclosing labeling. Our next theorem is related
to a result by Berstel and Perrin [3, Chap. 3] according to which any finite bipreflx code
can be imbedded into a regular maximal code. Contrasting with the case ofgeneral finite
codes, it is relatively easy to give a necessary and sufficient criterion for a finite biprefix
code to be imbeddable into afinite maximal code. However the question of imbedding
a regular bipretix code into a maximal code is open.

THEOREM 4.1. Let A and be irreducible graphs and let the one-block map d?
]A "--4 )]B defined by an edge-labelingofA be (d*, d)-biclosing. Then there is an irreducible
graph a - A with a labeling extending that ofa defining a (d*, d)-biclosing one-block
factor map c" a .

Before proving this theorem, we set up some notation, make some definitions, and
prove some preparatory lemmas.

Agraph with boundary is a finite directed graph, except that some of the edges have
an initial state but no terminal state; these areforward boundary edges. Some ofthe edges
have a terminal state but no initial state; these are backward boundary edges.

For the remainder of this section, we fix an irreducible directed graph H. For any
set of paths W in 7, define

F+W (wb w W, b is an edge, and wb is a path in 7-/},

P+W (aw w W, a is an edge, and aw is a path in H},
F_W {z zb W for some edge b},
P_W {v av W for some edge a}.

Denote the paths of length d* preceding a state s in a directed graph by Pn(s, d*).

Given the directed graph , a molecule Wl over 7-t with delay (d*, d) is a graph with
boundary togetherwith state data andedge data satisfying the transition conditions below.
For each state s of AA, there is (1) a state 4(s) of 7-/, (2) a set H8 c_ Pt(b(s), d*), and
(3) a set V8 c_ F(c(s),d). We collect this data as a triple (Hs, b(s), Vs). For each
edge e of AA, there is (1) an edge b(e) of 7"/, (2) a set He c_ P(b(e), d*), and (3) a set
Ve c_ FT (b(e), d). We collect this data as a triple (He, b(e), Ve).

As we see in Lemma 4.5, the following transition conditions on the edge and state
data of a molecule 3A ensure, among other things, that, if AA has no boundary edges,
then for each state s of 3A we have H8 dpP(s, d*) and );8 cF(s, d).

For each state s of AA, denote the set of outgoing edges from s by .T’(s) and the set
of incoming edges to s by 7:’(s).

Note the following transition conditions:
(1) For each state s, {b(e)V e ’(s)} is a partition of F+V. In particular, no

two sets c(e)Ve and c(e’)Ve, coincide unless e e’;
(2) For each state s, for each edge e .T’(s), He Hs;
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(3) For each state s, {H(e) e P(s)} is a partition of P+bl,. In particular, no
two sets H(e) and bl,(e’) coincide unless e e’;

(4) For each state s, for each edge e E 79(s), ; Vs.
Transition conditions (1) and (3) alone or (2) and (4) alone ensure that is a graph

homomorphism in the sense that (e) Pn(s) for each e 79 (s) and (e) ’n(s)
for each e ’a (s).

We use the term molecule metaphorically: boundary edges are potential molecu-
lar bonding sites. Loosely speaking, a forward boundary edge can bond to a backward
boundary edge having the same edge data.

Let W {w w is a path in of length k}. Define a function 0 from the states
and edges of A4 to Zw*++1 by

and

0

if e is a forward boundary edge,

if e is a backward boundary edge,

otherwise.

For each word z E Wa,+a, define f Zwa*++1 by

Let/ c_ zWu ++x be the lattice generated by the set

It is clear that O(s) for each state s of
CLAIM 1. It holds that

-[0(s) s is a state ofA] [0(e) e is an edge of.M].

Proof. Use the fact that

e

partitions F+V, and that

e

partitions P+//. ]

Using the claim, we see that

[0(e) e is a boundary edge of .M] .
Example 2. Define a molecule A//0 as follows:
states: (d* + d)-paths uv of 7-/, where u has length d*, v has length d, and s is the

terminal state of u, with// {u},(uv) s, and ;, {v},



SURJECTIVE EXTENSIONS OF SLIDING-BLOCK CODES 595

edges: (d* + 1 + d)-paths uav of 7-/, where u has length d*, v has length d, and a is
an edge, with b/,,a {u}, (uav) a, and l)=a {v},

incidence:

.fo (uv) {uvb edge b follows path uv in 7},

79o (uv) {auv edge a precedes path uv in 7-/}.

It is easy to check that Mo satisfies the definition of a molecule. The molecule Mo
has no boundary edges.

Example 3. Let be a (d* + d)-path of 7-t. Define a molecule M_ by deleting from
Nlo the single state x. Then 34_ has forward boundary edges

{az edge a precedes path z in 7-/}

and backward boundary edges

{zb edge b follows path z in 7-/};

so

Z[O(e) e is an edge of .M-x]

Z[’, w e P+{x}]- ’[’w w e F+{x}]

fx

Example 4. Let x be a (d* + d)-path of 7-/. Define a molecule Mx by deleting from
M0 all states except the single state z and deleting all edges except those incident to
state z. The forward boundary edges of Mx are exactly the backward boundary edges
of 3A_x, and vice versa. So

[O(e) e is an edge of Mx] fx.
LEMMA 4.2. ff is a graph homomorphism that as a one-block map is

(d*, d)-biclosing, then can be imbedded into a molecule A4 over 7-[ in such a way that
: .M -- 7-[ extends -, as an edge labeling.

Proof. For each state s of , define H8 CPa (s, d*) and ;8 CFa(s, d). For each
edge e of from state s to t, define He H, and );e ;t.

As 7 stands, it might not be the case that

e

is a partition of F+;; however, it is true that (e));e C_ F+); and, as is right-closing
with delay d, that the sets (e)l;e, e ’(s), are disjoint. We augment the collection

e

by attaching forward boundary edges to the state s to complete a partition of F+V, as
follows. For each word

W Wl...Wd+I e F+)s\ U
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define an edge eo with data

() ,
v P_() (...

and attach eo to s as an clement of (s) and as a boundary edge of A/l. Now,

{()v ())

is a partition of F+;,. In a completely symmetric fashion, attach backward boundary
edges to the state s to augment the collection

to create a partition of P+bls. This construction is done at each state of to produce the
desired molecule M. El

We say an edge e of a molecule is (k, 1)-ramified if

k d* max{n all words of b/ have a common suffix of length n}

and

d max{n all words of ;e have a common prefix of length n}.

Thus e is (0, 0)-ramified if and only if b/e {u} and Ve {v} for paths u and v of 7-/
with lul d* and Iv[ d. We say the edge e is simple in this case.

LEMMA 4.3. Any molecule .M can be imbedded in a molecule A/" whose boundary edges
are all simple.

Proof. Suppose that the forward boundary edge e of .M with edge data (b/e, (e), ;e)
is (k, /)-ramified. Let t be the terminal state of the edge (e) in 7-/. Attach to edge e a
terminal state s with state data

(Lts, (s), V) (P_(Lte(e)), t,

For every path w wl... Wa+l E F+))e, attach an outgoing edge eo to state s with edge
data

(Me., (ew), Pe,) (P-(bleO(e)), w,P_{w}).

Note that, if k > O, then eo is (k 1, O)-ramified; if k O, then eo is simple. For every
path

w w... Wd.+l e P+P_(Lte(e))\Lle(e),

* to state s with edge dataattach an incoming edge

(u, (),v) (F_ {w}, o,+, V).

* is (0,1)-ramified.Note that
It is easy to check that the transition conditions are satisfied at state s. Thus we have

replaced the (k, /)-ramified forward boundary edge e in AA by (1) (k 1, 0)-ramified
forward boundary edges and (2) (0,/)-ramified backward boundary edges.
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In a completely symmetric fashion (reversing time), we can replace a (k, /)-ramified
backward boundary edge ofM by (1) (0,1 1)-ramified backward boundary edges, and
(2) (k, 0)-ramified forward boundary edges.

After max(k + 1,1 + 1) rounds, we can replace a (k,/)-ramified forward boundary
edge ofM by (perhaps many) simple forward and backward boundary edges.

LEMMA 4.4. Any molecule .M can be imbedded in a molecule 3/1 having no boundary
edges.

Proof. First, use Lemma 4.3 to imbed .M in a molecule Af with whose boundary
edges are all simple. Define

[0(e) e is a boundary edge of A/.

Claim i gives b E ; so we can express

b=

where b, x "}/d*+d are integers. Define a molecule 3/1 as follows. For each (d* + d)-
path x of 7-/define AA_ as in Example 3 and A4 as in Example 4. Recall that

and

[0(e) e is a boundary edge of A/l_z] _37

-’[0(e) e is a boundary edge of A4] f.
If bz > 0, let A/’l,..., JVb be disjoint copies of A4_z. If b < 0, let Afzl,..., Af-b be
disjoint copies of A/I. Let A74 be the disjoint union of A/" and all of the A/’. Now

[0(e) e is a boundary edge of ATt] - ’ 0.

As all boundary edges of A/’, ]X4_o, and 3/1o are simple, the boundary edges of ]UI are
simple, also. Any simple edge e has edge data ofthe form (//,, (e), V,) ({u}, (e), {v}),
where u(e)v w is a (d* + d + 1)-path in 7-/; so any simple forward boundary edge e
has 0(e) e, where {w} L/,(e)V,, and any simple backward boundary edge e* has
0(e*) -’o, where {w} L/** (e*)V,. As the w-component of 0(e) for is 0,

For each w, define a bijection

and identify each forward boundary edge e of A/[ having O(e) ’o with the backward
boundary edge Tw(e) of j[. Since the edges e and Tw(e) have the same data, this identi-
fication respects the transition conditions. Now A4 (with the boundary edge identifica-
tions) has no boundary edges. D

We verify in Lemmas 4.5-4.7 that ET is a (d*, d)-biclosing factor map if
.M is a molecule over 7-/without boundary edges.

LEMMA 4.5. (i) If s is a state ofa molecule ]Vl, then

eFj(s,d + 1) c_ F+V.



598 ASHLEY, MARCUS, PERRIN, AND TUNCEL

Moreover,
eFt(s, d-t- 1)

ifnoforward boundary edge ofJM occurs on a path in Fa (s, k) for any k < cL
(ii) If s is a state ofa molecule h4, then

Pa(s, d* + 1) C_ P+L/s.

Moreover,

CP(s, d* + 1)= P+L/

ifno backward boundary edge of jVl occurs on a path in P(s, k) for any k < d*.
Proof. We prove only (i), the proof of (ii) being similar. We denote the d-fold itera-

tion of the function F_ by Fd, below:

eFt(s, 1)= {(e) e e .T’(s)}

U
F+V.

Make the inductive hypothesis for i < < d + i that

eFt(s, Z) c_ F_+-F+V,
for all states s of AA and that equality holds if no forward boundary edge of iV/occurs
on any path in Fa(s, k) for any k < I. For any edge e that has a terminal state, denote
the terminal state by t(e). We have

eFt(s, + 1) U{(e)F(t(e), 1)" e e (s) and e is not a boundary edge}

Fd+l-lF.c_ U
eel’(s)

Fd+l-lF12s
F_+-(+F+V.

We prove that the inclusion is actually an equality in case there are no boundary edges
reached from state s before time + 1 as follows:

No boundary edge occurs on a path in F(s, k) for any k < + 1
No edge e E ’(s) is a boundary edge and no boundary edge occurs on a path in
F(t(e), k) for any k <

=> No edge e E ’(s) is a boundary edge and

CFa (t(e), l) Fd+l-lF+]2e

U{(e)F(t(e), 1)" e (s) and e is not a boundary edge}

U (e)Fd+l-lF+]2e"
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LEMMA 4.6. IfM is a molecule, then the map En is (d*, d)-biclosing in
thefollowing sense:

(i) For anypaths x x Xd+ and y yl Yd+ beginning at a state s of M, if
(x) (y), then x yx;

(ii) For any paths x x Xd.+ and y y Yd*+ ending at a state s of M, if
(x) (y), then Xd.+ Yd*+.

Proof. Let x xx... Xd+x and y y... Yd+l be two paths in 3A beginning at a
state s with (x) (y). By the inclusion part of Lemma 4.5, we have (x)
and (y) e (y);u. As

e

is a partition of F+;8, we have Xl yl.

LEMMA 4.7. If JVl is a molecule without boundary edges, then a -* En is
sutjective as a one-block map.

Proof. By Lemma 4.6, we have that a En is d-right-closing. By Lemma 4.5,
we have that CFa (s, d + 1) F+;8, so satisfies the hypotheses of Lemma 3.2. Hence

is surjective.
Proofof Theorem 4.1. Set a and n 7-/. Use Lemma 4.2 to imbed in a

molecule jA in such a way that A/I 7-/extends 7-/as an edge labeling. By
Lemma 4.4, we can assume that A4 has no boundary edges.

Let A40 be the connected component of AA containing 7 as a subgraph. By Lemma
4.6, Eo En is (d*, d)-biclosing. As no connected component of A4 has a bound-
ary edge, by Lemma 4.7, " Eo

5. Bounded-to-one maps between sofic systems. In this section, we prove the fol-
lowing sofic version of Theorem 2.1.

THEOREM 5.1. Let S ---, T be a bounded-to-one one-blockmapfrom an irreducible
sofic system S into an irreducible sofic system T. Then there is an irreducible sofic system
S

_
S and a bounded-to-one one-blockfactor map " S --, T extending .
To extend" S --, T to a sofic domain, S is the bestwe can hope to do, in general: As

the following example shows, even assuming that the domain of is SFT is not sufficient
to give an extension of with an SFT domain. Example 6 shows that assuming that
the range of is an SFT is not sufficient to give an extension with SFT domain.

Example 5. Let TA be the graph shown in Fig. 4. The even system S c_ {0, 1}z is the
image of EA under the one-block map 7r EA S defined by the edge-labeling

7r(a) 1, 7r(b) zr(c) O.

The even system is that set of sequences in {0, 1}z such that, between any two l’s, there
occurs an even number of O’s.

b
FIG. 4.
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Define a three-block map S (a,/}z by Table 1. We can verify that is
bounded-to-one by checking that the three-block composition

s +/- Z}z

has no diamonds and by applying Theorem 1.4.

TABLE 1

O0 a

010 a
011 /
10 /
11 a

There is no bounded-to-one extension of" S --, {a,/}z to an SFTdomain because
has a diamond. Specifically, we have

(010010) (001110) aaa/a,
where the underscored symbols occur at time 0.

Example 6. Let {0 } and let S be the even system as in Example 5. Define
E S by (0) 0. Suppose that there is an irreducible SFT ]

_
E and

a surjective extension S of . By replacing by [’*] if necessary, we can
assume that is a one-block map defined by an edge labeling of an irreducible graph A
and that E EA. As 0 E EA, and as (0) 0, the graph A has a self-loop at a
state i0 labeled 0. As A is irreducible and as A S is onto, there is a path in a
starting at state i0 labeled 0ml for some m > 0, and there is a path ending at state i0
labeled 10k for some k > 0. Thus all words of the form 10k0t0m 1, where > 0 occur in
(EA), contradicting (EA) C S. Thus {0 } - S cannot be extended to an SFT
domain.

To prove Theorem 5.1, we need more background from symbolic dynamics. The
following lemma is an immediate consequence of a much stronger theorem in [9].

LEMMA 5.2. IfS is an irreducible sofic system, then there is an irreducible SFT EI and
a bounded-to-one one-blockfactor map 7rR S.

Given two block maps 7r S T and 7r’ S’ T, we define the fiberedproduct R
of 7r and 7r’ to be the shift space

R e S S’

We have the one-block projections R S and ’ R S’ defined by ((x, y)) x
and ’((x, y))=y.

The following is well known. (See [1].)
LEMMA 5.3. Let R be the fibered product of 7r S T and 7r’ S’ T and let
R S and ’ R S’ be the correspondingprojections. Then
(i) 7r is bounded-to-one = ’ is bounded-to-one,
(ii) 7r’ is bounded-to-one = 42 is bounded-to-one,
(iii) 7r is surjective ’ is surjective,
(iv) r’ is surjective is swjective.
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Proofoflemma. We prove only (i). Let y S’. Then (x,y) (’)-X(y) , 7r(x)
71"t<y) 27 71"--171"<y). So I</)t)--l<y)l lTl’--171"t<y)[ for each y S’. As 7r is bounded-
to-one,

So b’ is bounded-to-one. D
Proof of Theorem 5.1. The following construction is illustrated in Fig. 5. Using

Lemma 5.2, let 7rA EA S and 7rB EB T be bounded-to-one one-block fac-
tor maps from irreducible SFTs. Let E be the fibered product of b o zrt EA T and
ZrB EB T with projections )A E ]A and bB E --, EB. By Lemma 1.1,
there is an irreducible component Eo of E with h(Eo) h(E). As b o 7rA is bounded-
to-one, Lemma 5.3 gives that n E0 --, En is bounded-to-one. By Theorem 2.1, there
is an irreducible SFT E _3 E0 and a bounded-to-one one-block factor map E --, En
extending pn E0 En. We define an irreducible sofic system $ by identifying (as
elements of an equivalence class) those symbols that occur in E0 c_ E that are mapped
via the one-block map 7rA o A E0 S to the same symbol of S, and by making no
identifications among the symbols of E that are not symbols of E0. Let p E S be the
one-block factor map making these identifications; in other words, p maps each symbol
of E to the equivalence class containing it.

FIG. 5. Commutative diagramfor extending c T.

Since zrn is bounded-to-one and onto, so is CA; thus h()A(E0) h(E0) h(E)
h(A), and, as EA is irreducible, Lemma 1.2 gives that A E0 EA is onto. Hence
7rA o A E0 --* S is onto, also. Thus the sofic system S can naturally be identified with
a subsystem of S via the one-block imbedding S S sending each symbol s of S to
the nonempty equivalence class of those symbols t in E0 c_ E with 71"a o 3A (t) 8. That
actually maps S to S follows from the fact that, for all symbols s that occur in E0,

(8) p(8)

and the fact that 7rA o )A 0 --+ q is onto.
The bounded-to-one one-block factor map 7rn o b E - T decomposes into one-

block maps & T because, for all symbols s, t occurring in T0, if 71"A O A(8)
7rA o bA(t), then
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o (,) o

o o

o o

o

o

In other words, each fiber of 71"A o CA 5]0 S is contained in a fiber of rB o 5] T.
Since rS o 5" --, T is surjective, so is . T.

We nowverify that - S T is an extension of" S T in the sense thato .
Let y 6 S. Choose x e 0 such that 7t’A o bA (X) y. Then

6. Simultaneous extension of bounded-to-one maps. We are given two bounded-
to-one one-block maps eB 5]A --* 5]. and C’EA Ec between irreducible SFTs.
We want to construct a single irreducible SFT 5]

_
5]A and bounded-to-one one-block

factor maps.’ -. 5]. and c 5] -* 5]c extending and c, respectively. If
such an SFT 5]A exists, then necessarily h(B) h(E) h(5]c) by Theorem 1.3. This
necessary condition is also sufficient.

THEOREM 6.1. Let A, , and c be irreducible graphs with (5]) h(5]c). Let
the one-block maps A --* andc A --* EC defined by edge-labelings ofA be
bounded-to-one. Then there is an irreducible graph

_
A with two labelings extending

those OfA defining bounded-to-onefactor maps 5]i --* 5] and c" 5]i --’ c.
The proof is almost entirely a recapitulation of the tableau method of [1]; the only

new element is a particular choice of a way of "filling in the tableau" to suit our present
needs. The method is based on the following theorem of Furstenberg [1].

THEOREM 6.2. Let A’ and A" be irreducible graphs (with transition matrices A’ and
A"). Then h(5]A,) h(5]A,,) if and only if there is a positive integral matrix F such that
A’F FA".

Proofof Theorem 6.1. Use Theorem 2.1 to construct an irreducible graph GA,

_
GA

with an edge-labeling defining a bounded-to-one one-block factor map eB 5]3’ --* 5]B
extending eB 5]A --+ 5]B. Similarly, construct GA,,

_
GA with an edge-labeling defining

a bounded-to-one one-block factor map c 5]A,, -* 5]C extending c.
Regard GA, and GA,, as disjoint graphs and let ’ A -- A’ and " A --> A" be

the graph homomorphisms imbedding GA into GA, and GA,,. In this regard, eB es o ’and c c o ".
Theorem 1.3 gives h(5]A,) h(5]B) and h(5]A,,) h(5]c). We are assuming that

h(5]B) h(Ec); so, by Theorem 6.2, there is a positive integral matrix F such that
A’F FA".



SURJECTIVE EXTENSIONS OF SLIDING-BLOCK CODES 603

We define a directed graph TF as follows. For each state s of A’, for each state
of a,,, TF has Fst directed edges eF(s, t, n), 1 < n < Fst, each with initial state s and
terminal state t. Thus all of the edges of run from A, to Ta,,.

For each state r in a,, for each state t in a,’, define two sets of two-paths in A,

state s in A" such that |
a

s in and s t in GA,,

and

state s in A’ such that |
t) a’f o,

r s in 6A, and s t in GF

CLAIM 2. For all states r in A, and all states t in A",

IFA,,(r, t)[ IA,F(r, t)l.

Proofofclaim. We have

[eFA"(r’t)l E F*A’’t (FA")t
8

and

Ia,F(r,t)l A’rFst (A’F)rt;
8

so the claim follows from A’F FA".
Let Tt FA,,(r, t) -- A,F(r, t) be a bijection. If r ’ro and t "to, where ro

and to are states ofA such that Aoto > 0, we further require that

Trt(eF(e’ro, "r0, 1)e"a) (’a)eF(c’to, "t0, 1)

for each edge a ofA from state r0 to state to.
The collection of bijections Tt defines a bijection

T" Ur,tFA,’(r, t) Ur,tA’F(r, t)

because the unions are disjoint. We make this definition for notational convenience.
We define a directed graph TD as follows. The states of GD are the edges of GF. For

each two-path fla" E FA,, [-Jr,tff.FA,,(r, t), there is an edge eD(fla") of 6D from
state f to state f, where T(fla") a’f2 A’F t-Jr,ta’F(r, t).

As usual, denote GF (SF, F) and D (-D, D).
Define a graph homomorphism 7rA,, D -+ A" by
(1) 7rA,, f s, where s e SA,, is the terminal state of edge f F SD,
(2) TrA,,eD(fa") a".

Similarly, define a graph homomorphism rA, GD --* GA, by
(1) 7ra, f s, where s SA, is the initial state of edge f F SD,
(2) 7ra, eD(T-(a’f)) a’.
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It is easy to verify that ?rA,, and 7rA, are well-defined graph homomorphisms. Denote the
corresponding one-block maps by 7rA,, :ED EA" and 7rA, :2D 2A,.

A one-block map " S T is left-resolving if, whenever a’a and a"a occur in S and
(a’a) (a"a), then a’ a".

It is helpful to regard an edge eD(fla") E $D as a box with left and bottom sides
given by the two-path fla" and top and right sides given by the two-path a’f2 T(fta").
See Fig. 6. Intuitively, 7rA,, is right-resolving because the left side (initial state ft) and
bottom side (Tra,,-label a") of a box eD(fa") determine the entire box. Similarly, 7rA,

is left-resolving because the right side (terminal state fz) and top side (TrA,-label a’) of a
box eD(T-l(atf2)) determine the entire box.

FIc. 6. An edge ofD.

Parts (iii) and (iv) of the following claim are due to B. Kitchens.
CLAIM 3. (i) 7rA,, ED EA" is right-resolving.
(ii) 7rA’ D --+ A’ is left-resolving.
(iii) 7rA,,(F) A,, for any irreducible component Of ED.
(iv) 7rA, (E) EA’ for any irreducible component of ED.
Proofofclaim. (i). The 7rA,,-image of the edge eD(fa") starting at state f in GD is

a", so the edges starting at state f are distinctly 7rA,,-labeled, so 7rA,, is right-resolving.
(ii). The 7rA,-image of the edge eD(T-x(a’f)) terminating at state f in GD is a’, so

the edges terminating at state f are distinctly 7rA,-labeled, so 7rA, is left-resolving.
(iii) and (iv). The irreducible components of D are ED1,...,ED., where

7D1, GD. are the maximal irreducible subgraphs of GD. Let 7-/be the directed graph
with states 1,..., n and an edge i -. j if there is an edge in TD from GD, to GDj. Because
the GD are maximal irreducible subgraphs, 7-/has no cycles.

A sink is a state with no outgoing edges, and a source is a state with no incoming
edges. Assume that I is a sink state of 7-/. We verify that 7rA,, GD --* GA" satisfies the
hypothesis of Lemma 3.2. For d 0, the hypothesis reduces to the following: For each
state s of D,

FA,,(TrA,,(8), 1) C_ 7rA,,FD (8, 1).

As this hypothesis is satisfied by GD and as GD has no edges leaving GD, it is also satisfied
by GD1. We can conclude that 7rA,, (ED1) EA". Theorem 1.3 gives h(EDx) h(EA,,).
As h(EA,) h(EA,,), Lemma 1.2 gives 7rA,(ED) Ea’. By reversing the sense of time
and applying Corollary 3.3 to the map 7rA, ED EA’, we see that 1 is a source state
of 7-/. In short, every sink of 7-/is a source. As 7-/has no cycles, it follows that 7-/has no
edges. Using Lemma 3.2, we obtain 7A,,(D, A" and 71"A,(D, A’ for each
1 < i < n. This proves the claim.

Define a graph injection " a D by
(1) (r) eF(’r, "r, 1) for each state r of GA,
(2) t(a) eD(eF(t/r, t/’r, 1)"a) where r is the initial state of edge a in A.
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That r is well defined follows from the fact that the terminal state of edge

eD(eF(e’r, e"r, 1)e"a) in GD is eF(’s, e"S, 1),

where s is the terminal state of edge a in A. Note that r(eF(r’r,r"r, 1)r"a)

CLAIM 4. (i) zrA,, o " as homomorphismsfrom gA to GA,,.
(ii) 7rA, o ’ as homomorphismsfrom GA to GA,.
The proof is a simple calculation. Thus we have the commutative diagram of Fig. 7.

FIG. 7. Simultaneous extension ofCB and

Let /i be the irreducible component ofD containing the irreducible graph/-(A).
The restriction of co ZrA,, to A is a surjective extension ofc A --+ (7 in the sense
that c o ZrA,, or C because qc o 7rA,, or qC o " C. Similarly, qB o ZrA, or

CB o ’ CB. Note that $c o ZrA,, and 8 o rA, are bounded-to-one because they are
compositions of bounded-to-one maps. D

7. Simultaneous extension of right-closing maps. We are given two right-closing
maps CB EA En and c ]a ]c between irreducible SFTs. We would like to
construct a single irreducible SFT Ea

_
EA and right-closing factor maps E,i --*

EB and c Ea - Ec extending CB and c, respectively.
We cannot hope, in general, to preserve the delays of right-closing one-block maps

CB and c. For instance, if CB and c are both right-resolving, and there is a state s of
the domain graph A whose image states CB(S) in B and Co(s) in c have an unequal
number of following edges in their respective graphs, then it is impossible to satisfy both

CsF(s, 1) Fn(s(S), 1) and cF(s, 1) Fc(c(s), 1),

which, by Corollary 3.3, are necessary conditions for the surjectivity of CB and c, re-
spectively.

We content ourselves with finding right-closing factor maps CB and c with a com-
mon irreducible domain extending CB andc in the sense that there is an imbedding
(one-to-one block map) t A -- Y], with CB CB O / and c c o e. Using the
Masking Lemma of Nasu [15], we can actually take t YA Y]fi. to be a one-block
map given by a graph imbedding of A into G. Furthermore, as explained in Remark
1, below, if the given maps CS and c are one-block maps, we can take their extensions
B and c to be one-block maps as well.
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As in the previous section, a necessary condition for the existence of 3 is that
h(En) h(Ec). The requirement that Cn and c be right-closing imposes a second
necessary condition on 2n and Ec. To explain this condition, we must give further back-
ground from symbolic dynamics.

We define (following [6]) the dimension group of an integral matrix A and collect its
properties thatwe use in this paper. IfA is an c x c integral matrix, let VA be the eventual
range of A regarded as a map A" Q Q acting on row vectors. Thus VA A(Q).
Define the dimension group

GA {E VA" 0"Ak E Z for sufficiently large k N}

and the automorphism of GA by . AlGa. The dimension group pair (GA, ) as-
sociated to the shift of finite type EA is a conjugacy invariant; i.e., if ZlA is conjugate to
EB, then there is a group isomorphism 0- GA -* GB with/ o 0 0 o A.

We say a square matrix A is eventually positive if A’ > 0 for all sufficiently large
powers n.

POPOSITION 7.1 (see [6, Prop. 2.12]). Let A and B be integral eventuallypositive ma-
trices with the same spectral radius k Then the following are equivalent:

(i) (GB, [3) is a quotient of (GA, A),
(ii) There exists L > 0 and nonnegative integral matrices S, R such that

AS SB and RS BL,

(iii) There exists L >_ 0 andpositive integral matrices S, R such that

AS SB and RS BL.

The following is the easy direction of the Eventual Factors Theorem of [6].
THEOREM 7.2. If there is a right-closingfactor map A -- n between aperiodic

SFTs EA and B, then (GB, ) is a quotient of (GA, A).
We remark that Theorem 7.2 can be proved directly for a one-block map " EA

EB with delay d by defining

S,t I{y CFA(S, d)" path y ends at state t in Gn}l

and

Rt8 I{x e FA(st, d) (x) Yt and x ends at state

where, for each state t of n, state st of A is chosen so that there is a path yt

CFA(st, d) ending at state t. We can show that

AS SB and RS Bd

and therefore that (Gn,/) is a quotient of (GA, ).
Following [6], we define the ideal class Z(A) of an integral eventually positive matrix

A. Denote the (unique) largest eigenvalue of A by A. Let ’be a right eigenvector for
eigenvalue A with entries in Z[A]. Since A is an algebraic integer, we have ) Z[1/),].
Thus the entries of ’generate an ideal [r-] in the ring Z[1/A]. Let 2(A) be the equivalence
class of the ideal Jr-I, where two ideals 2 and ,7 in Z[1/A] are equivalent if there are
nonzero x, y Z[1/] with y2" xff. Although f’ and hence [r--] are defined only up to
scalar multiples, 2(A) is independent of the particular choice of the eigenvector ’.
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The following lemma is contained in Proposition 5.10 of [6].
LEMMA 7.3. Let A and B be integral eventuallypositive matces with the same spectral

radius . If (GB,/) is a quotient of (GA, A), then Z(A) Z(B).
Proof. By Proposition 7.1, there are integer matrices R, S and > 0 with

AS SB and RS Bt.

Let f’be a right eigenvector of B for eigenvalue A with entries in Z[),]. Then Sf’is a right
eigenvector for A and [Sr--] c_ [r-]. Now [RSr-] [Btr-] At[r-] [, so [r-] c_ [Sr-], so
[r-] [S. Hence 2(A) 2(B).

Chaining together Theorem 7.2 with Lemma 7.3, we conclude that, for aperiodic
En and Ec to both be right-closing factors of a single aperiodic SFT Ea, it is necessary
that 2(A) 2(B). This condition, together with h(EA) h(EB), is also sufficient even
whenwe ask that the factor maps CB ’]fi. ---r YB andc 2 Ec extend given maps
CB EA EB and c "a C with domain 2A imbedded in Ea. We first prove
the aperiodic case.

THEOREM 7.4. Let CB A --+ B and (7 aA -- C be right-closing maps
between aperiodic SFTs. Suppose that h(EB) h(c) and Z(B) Z(C). Then there
is an aperiodic SFT, an imbedding EA -* ,, and right-closing factor maps-- and $c -* Ec such that o and co c. Moreover, the
imbedding A -"* fi can be taken to be a one-block map defined by a graph imbedding
ofA into .

Proofof Theorem 7.4. We can assume that h(EA) < h(EB) (= h(Ec)) and that
and c are one-block maps. Apply Theorem 3.1 to construct right-closing factor maps

EA, -. En and c EA,, EC, where EA, and EA,, are irreducible SFTs with
one-block imbeddings t’ A --+ YA’ and " Y]A -+ A" satisfying o ’and co " c. Alternatively, ,’ EA EA, can be constructed by first applying
a result of [5] to replace A by a conjugate SFT thereby reducing to the case where

EA - Ee is right-resolving. Now apply the resolving case (d 0) of Theorem 3.1
to construct ’ EA EA, as above. The attraction here is that the resolving case
of Theorem 3.1 is conceptually simpler; furthermore, we are not applying the delay-
preserving feature of Theorem 3.1 in the present construction. As EA is aperiodic,
and EA,, are necessarily aperiodic. By Theorem 7.2 and Lemma 7.3, we obtain Z(A’)
Z(B) and Z(A") Z(C). As Z(B) Z(C), we conclude Z(A’) Z(A").

The algebraic part of the proof of Theorem 7.1 of [6] gives the following lemma.
LEMMA 7.5. Let A’ and A" be aperiodic matces with h(EA, h(EA,, and Z(A’)

Z(A"). Then there is an aperiodic matrix D such that tr(D) > 0, h(,D) h(EA,)
h(EA,, ), and (GA, fi’) and (GA,, ") are both quotients of (GD, D).

We remark that in [6] the matrix D used in the proof of Theorem 7.1 there (and
constructed in Theorem 5.14 [6]) has tr(D) > 0, although this fact is used there only to
show that D is aperiodic.

To complete the present proof, we want to imbed EA into ED via an imbedding
EA --* ED, then extend the right-closing maps ’ o - (EA) --* EA, and " o -(EA) A,, to right-closing factor maps rA, ED --* A’ and rA,, ED EA,,. We

would use the following two Theorems (Theorem 7.6 to construct the imbedding and
Theorem 7.7 to construct the extensions rA, and rA,,). In their statements, we denote
by H(2) the number of periodic points of least period j in the shift space E. Note that
jIH(E) for j _> 1.

THEOREM 7.6 (see [14]). Let A and be SFTs with irreducible. There exists an
imbedding A ifthefollowing two conditions hold:
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(i) h(A) < h()2),
per

(ii) Hi(A) <_ Hj(2)for all j >_ 1. (We denote this by A--.)
THEOREM 7.7 (see [2]). Let A and B be aperiodic matrices satisfying
(i) h(EA) h(Es),
(ii) The dimensiongrouppair (GB, [) is a quotient ofthe dimensiongrouppair (GA,
(iii) For all j >_ 1, ifH(EA) > O, then there is q >_ 1 such that qlJ and H(EB) > 0.

per
(We denote this by ,,

A -- )2B

IfA C_ )2A is a subshift offinite type and A - )2B is a right-closing map, then can
be extended to a right-closingfactor map " )2A --+ EB.

However, )2D might not have enough periodic points of certain orders to accom-
per

modate an imbedding )2A -’ ’D ()2D might violate AC")2D). Furthermore,
might have periodic points of certain orders precluding the factor map rA, )2D --per
or rA,, )2D --* )2A"- ()2D might violate the condition )2D-- ;A’ or the condition

2
per

D "-*)2A" .) The followin lcrnma of Boyle [4] solves these periodic point problems of
D.

LEMMA 7.8 (see [4, Lem. 2.1]). Suppose that F is an irreducible shift offinite type of
positive entropy and Hq(F) > 0, and Mo, M1,..., Mk are positive integers. Then there is
an irreducible shift offinite type such that

(i) There is a right-closingfactor map - F,
(ii) /fP is aperiodic, then is aperiodic,
(iii) Hj() Hi(F) ifj is not among q, qMo,..., qMk,
(iv) Hq(f’) IIq(F) q + q I{i" Mi 1}1,
(v) HqM () HqM, (F) + qMi I{J" Mj Mi}l, for those i with Mi > 1.
As remarked in [4], --. F as constructed there is right-closing. We remark that

the proof of Lemma 7.8 proceeds by "blowing up" a periodic orbit of F of least period q
into k + I periodic orbits, the ith of which has least period qMi, for 0 _< i _< k.

We use Lemma 7.8 to construct an SFT)2I satisfying
(1) There is a right-closing factor map " )2A
(2))2A is aperiodic,

per
(3) EA

per per
(4) A-)23, and )2

as follows. As h()2D) > h()2A), we can fix N > 0 such that IIj()2D) >_ Hj()2A) for
all j _> N. Apply Lemma 7.8 to )2D with q I (recall tr(D) > 0) and with the set
{Mo,... Mk} satisfying

I{i" J}l for I<_j<N

to produce an SFT F0 satisfying
(1’) There is a right-dosing factor map o Fo )2D,
(2’) Fo is aperiodic,

per
(3’))23--’o.

We now "blow up" a finite number of periodic orbits of F0 using Lemma 7.8 to construct
per

an SFT satisfying (4):)2--)23, and )2 )23,,. As )2A, and )23,, are aperiodic, we
can fix M > 0 such that II (A,) > 0 and II(A,,) > 0 for all >_ M. Fix m0 > 0 such
that IImo ()23’) > 0 and II,o ()23,,) > 0. There are a finite number of periodic orbits of
Fo whose least period j satisfies II(3,) 0 or II()23,,) 0 because any such least
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period j has j < M. Iteratively apply Lemma 7.8 to each such orbit with q j and with
a single M0 m0 to blow up the orbit of least period j into an orbit of least period jmo.

After applying Lemma 7.8 once for each such orbit, we will have an SFT E satis-
fying (1)-(4), above. That (3) holds requires an explanation. As EA imbeds into EA’
and into A", for all j >_ 1, if IIj(A,) 0 or II#(A,,) 0, then IIj(A) 0. There-
fore, in each application of Lemma 7.8 after our first, no point of period j in F0, where

per
H(EA) > 0 is lost. Thus the condition EA’--+F0 remains undisturbed.

Now use Theorem 7.6 to construct an imbedding r A --* 2g. Because there is a
right-closing factor map a --o ED, Theorem 7.2 tells us that (GD, D) is a quotient

per
of (G, ). As both (GA,, .’) and (Ga,,, ") are quotients of (GD,/)), as-2A,

per
and 2-EA,,, and as any imbedding is right-closing, by Theorem 7.7 there are right-
closing factor maps 7rA, EA, and 7rA,, EA" extending the imbeddings
dor-i (EA) - 2A, and r"or-1 r(EA) A,,, respectively. So BOTrA, "Ei - EB
is an extension of CB EA EB in the sense that CB o 7rA, o r CB because

Similarly, c o 7rA,, o/, C. See Fig. 8. That r EA --+ E can be taken to be a one-
block map given by a graph imbedding ofA into GA follows immediately from Nasu’s
Masking Lemma [15, Lem. 3.18], a version of which we state here.

’FrA’ , !D "n’A"

2B 2c
FIG. 8. Extending right-closing CB andc simultaneously.

LEMMA 7.9. Let EA EYt be an imbedding. Then there is a conjugacy
such that the imbedding o Ea - is a one-blockmapgiven by a graph imbedding

ofA into .
We use the lemma to replace Ea byE,byo,n byno-1, andc byco-1

Remark 1. If the maps Cn’Ea En and c’Ea EC given in the hypothesis
of Theorem 7.4 are one-block right-closing maps, we can ensure simultaneously that
EA E is a one-block imbedding given by a graph imbedding, that Cn E En

and c a - Ec are one-block right-closing factor maps and that Cn Cn o and
c c o

Theorem 7.4 as stated ensures all of this, except that CS andc are one-block maps.
To achieve this as well, we can replace Ea by a conjugate SFT n, where we define the
graph 7-/as follows.
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Choose an integer N large enough so that both eB(x)0 and c(x)0 are determined
by X-N...XN. The states of. 7-/are the equivalence classes of (2N + 1)-paths in Ta
defined by the equivalence relation

X-N XN Y-N YN

if and only if
(1) The edges zo and Vo in have the same initial state,
(2) The edges CB(x_n...xN)O and Cn(V-N-.. VN)0 in n have the same initial

state, and
(3) The edges $C(Z-N...ZN)O and C(V-N... VN)O in 7c have the same initial

state.
The edges from state s to state t in 7 are defined to be the triples (s, e, t) such that

there is Z-N...ZN E s and V-N...VN E t with Z-N+I...zN V-N...VN-1 and
e x0 y-1.

We define an edge mapping from the edges of7-/to the edges ofG by((s, e, t))
e. It is easy to show that defines a one-block conjugacy En 53 with a (2N + 1)-
block inverse and that qs o and c o are one-block maps.

It only remains to show that -11(a) is a one-block map given by a graph injection
of (GA) (regarded as a subgraph of g) into the graph 7-/. To this end, we define a
graph homomorphism p (GA) --* 7-/as follows. For each state r of (gA), define p(r)
to be that state of 7-/that (as an equivalence class) contains all of the (2N + 1)-paths
X-g...XN of (GA) having state r as the initial state of the edge x0. Note that these
(2N+ 1)-paths are indeed all in a single equivalence class because eB le(gA) and
are one-block maps. For each edge e of (GA), define p(e) (p(s), e, p(t)), where s and
t are the initial and terminal states of the edge e. Regarding the one-block map as a
graph homomorphism from 7-/to G, we have that o p is the identity map on the graph
(GA). Thus p is a graph injection; furthermore, regarding p now as a one-block map
p" (EA) ETa, we have p -11(a). Thus, -11(a) is a one-block map given by a
graph injection of (TA) into the graph 7-/, as claimed.

To complete the argument, we replace E by En, e by -1 o e (given by a graph
imbedding), Ss by SS o (a one-block map), and c byc o (also a one-block map).

The period of an SFT E is the greatest common divisor of the set of periods of all
periodic points in E. Note that ifA has period p, then An is eventually positive. We state
without proof the version of Theorem 7.4 for periodic SFTs. The proof is a reduction to
the aperiodic case (Theorem 7.4).

THEOREM 7.10. Let eB _A ’]B and C’EA Ec be right-closing maps
between irreducible SFTs. Let p be the least common multiple of the periods of -B and
c. Suppose that h(B) h(Ec) and Z(Bp) (CP). Then there is an SFT with
period p, an imbedding )2A Fa, and right-closingfactor maps eB -- EB and
c Ea Ec such that (bB o eB and c o c. Moreover, the imbedding
i A Eft. can be taken to be a one-block map defined by a graph imbedding ofGA into

We remark that :(Bp) :(Cp) is a necessary condition for there to exist simul-
taneous right-closing extensions eB and c as in the theorem. The proof of this is a
reduction to the aperiodic case (Lemma 7.3).

Acknowledgment. We acknowledge the anonymous referee for his very thorough
suggestions that clarified and straightened out some ofthese constructions. In particular,
the proof of Lemma 3.3 is entirely his.
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AN INTEGER POLYTOPE RELATED TO
THE DESIGN OF SURVIVABLE COMMUNICATION NETWORKS*
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Abstract. The problem of designing communication networks that can survive the loss of any single link
is studied. Such problems can be formulated as minimum cost 2-edge connected subgraph problems in a
complete graph. The linear programming cutting plane approach has been used effectively for related prob-
lems in [Schwerpunktprogramm derDeutschen Forschungsgemeinschaft, Anwendungsbezogene Optimierung und
Steuerung, Report No. 188, 1989], where problem-specific cutting planes that define facets of the underlying
integer polyhedra are used. This paper introduces a new class of valid inequalities for the polytope associated
with the minimum cost 2-edge connected subgraph problem, and necessary and sufficient conditions for these
inequalities to be facet-inducing for this polytope are given.

Key words, network design, connectivity, polyhedra, facets, cutting planes
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1. Introduction. Communication networks have become more and more pervasive
today, thanks to advances in computer technology and in transmission technology. They
range from local area networks to cross-continent networks, and in many cases their role
is vital.

There are two main issues in network design---economy and survivability. Economy
refers to the construction cost. Survivability refers to the restoration of services in the
event of catastrophic failures, such as the loss of a link or failure of a facility switch.
The aim of network design is to minimize the construction cost while satisfying given
survivability requirements. This leads naturally to the problem of designing certain k-
connected networks (see [20]).

In this paper, we study networks that survive the loss of any single link and, for
simplicity, we assume the construction cost to be the sum of each link cost (typically
proportional to its length). This problem is known as the 2-edge connected spanning sub-
graphproblem (the TECSP, for short) and is of interest not only practically, but theoret-
ically as well. Mathematically, the TECSP can be formulated as follows: Given a graph
G (V, E) and vector c E E of edge costs, find a 2-edge connected spanning subgraph
having the minimum total edge cost. As is often the case, we restrict ourselves to prob-
lems where G is the complete graph K,, since any edge not existing in G can be included
with a sufficiently large cost without affecting the optimal solution. For convenience, we
will denote such a problem on n nodes by TECSP(n).

The TECSP is closely related to the widely studied (symmetric) Traveling Salesman
Problem (the TSP, for short), in which the aim is to find a minimum cost Hamiltonian
cycle in a given weighted complete graph. Like the TSP, the TECSP is NP-hard, since
the problem of determining if a graph contains a Hamiltonian cycle can be reduced to
the TECSP (see [9]).

In this paper, we study the TECSP(n) using a polyhedral approach. In this approach,
we first associate a polytope QE with the TESCP(n), which is the convex hull of all 0-1
incidence vectors of edge sets of 2-edge connected subgraphs of K,. We next try to find
some of the necessary or "facet-inducing" linear inequalities that describe Qg.. Some
classes of these facets are already known (see [4], [13], [19]). Note that it is unlikely
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that we will find a complete linear description of QZE, since the TECSP(n) is NP-hard
(see [18]). However, a partial linear description can be used in a linear programming
cutting plane approach to this problem. This approach, first introduced in [7], proved
to be quite successful in solving large-scale TSPs to optimality; el. [6], [10], [23]-[25].
It was also used effectively for other NP-hard combinatorial optimization problems (cf.
[1], [11]) and, in particular, for the problem of designing communication networks with
low connectivity constraints (see [14]).

In this paper, we introduce a large new class of facet-inducing inequalities for Q2,
thus extending the currently known partial linear description of QZE and enlarging the
set of TECSPs, which can potentially be solved to optimality using a cutting plane ap-
proach. This class of constraints, called the complemented comb inequalities, is closely
related to the comb inequalities, a class of facet-inducing inequalities for the TSP poly-
tope, which are used extensively in the cutting plane approach for solving TSPs. Note
that the successful incorporation of the complemented comb inequalities into a cutting
plane algorithm for TECSPs would require a separation algorithm (see [22]). Although
we do not address the problem of separation for the constraints in this paper, we feel
that their close relationship with the comb inequalities is an indication that they will be
useful in cutting plane approaches for TESCPs.

The remainder of this section is devoted to some definitions and notation. In 2
we describe the complemented comb inequalities, as well as the polyhedral relationship
between the Traveling Salesman polytope (QT) and Q2E’n We also describe other known
classes of facet-inducing inequalities for Qz, which are discussed in [4], [13], and [19].
In 3 we show the validity of the complemented comb inequalities for Q2E, and in 4
we show that most of this new class are facet-inducing, using a new proof technique de-
scribed in [4], which takes advantage of the relationship between Q and QZE- In 5
we show that, in the general case, the complemented comb inequalities are not equiv-
alent to any other known facet-inducing inequalities for Q2E and characterize exactly
when two complemented comb inequalities are equivalent. Finally, in 6 we make some
concluding remarks.

For any finite set E, we let ]RE denote the set of all real vectors indexed by E. For
any J c_ E and x E, we let x(J) denote (x j E). For any subset F of E, the
incidence vector of F is denoted by xF and defined by

F f 1 ifeF,
Xe

0 otherwise.

Given a matrix A E ]RLxE and subset J c_ E, we let Aj represent the (ILl IJI)-
submatrix of A consisting of those columns of A indexed by J. We abbreviate A{} by
A. The linear column rank of A is denoted by re(A).

We assume that the reader is familiar with standard graph theoretical terms; accord-
ingly, we summarize our notation and conventions here. Refer to [3] for the necessary
background.

The graph G (V, E) has node set V and edge set E, where each edge has two
distinct ends, belonging to V. If there is a unique edge with ends u, v, then we may
denote it by uv.

Given a graph G, we let V(G) denote the node set of G. For any S c_ V(G), we let
6(S) denote the set of edges with exactly one end in S and we let E(S) denote the set
of edges with both ends in S. We abbreviate 6({v}) by 6(v). If X and Y are two subsets
of V(G) (not necessarily distinct), then we let [X Y] denote the set of edges in G with
one end in X and the other in Y. AHamiltonian cycle ofG is the edge set of a connected
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spanning subgraph of G in which each node has degree 2. A Hamiltonian path of G is
a Hamiltonian cycle with one edge removed. A 2-edge connected (spanning) subgraph of
G is a subgraph that remains connected after the removal of any single edge.

We assume that the reader is familiar with the basic definitions and concepts of
polyhedral combinatorics; here we summarize our notation and specialized definitions.
Refer to [2], [21], or [26] for the necessary background.

For any polyhedron P c_ ]i, we let dim(P) represent the dimension of P. For any
finite X c_ ]RE, we denote the convex hull ofX by conv(X).

Given a linear system defining a polyhedron P, the set ofconstraints that are satisfied
with equality by all x P is called an equation system for P. Given a polyhedron P with
equation system Ax b and valid inequalities ax < ao and x < 0, we say that these
inequalities are equivalent (with respect to P)if {x P’ax a0} {x P’sx 80};
i.e., they induce the same face of P. If ax < ao and 8x < 0 are facet-inducing for P,
these inequalities are equivalent if and only if there exists -), > 0 and vector A such that
a -ya + AA and ao "Yo + Ab.

2. The complemented comb constraints. Let Kn (V, E) be the complete graph
on n nodes. The Traveling Salesman polytope, denoted by Q, is the convex hull of all
incidence vectors of Hamiltonian cycles of K,, i.e.,

Q := conv {xH ]E. H is a Hamiltonian cycle of K, }.
The 2-edge connected spanning subgraph polytope, denoted by Q2E, is the convex hull of
all incidence vectors of the edge sets of 2-edge connected spanning subgraphs of K,, i.e.,

Qn X
F ]E2 := conv ( e (V, F) is a 2-edge connected spanning subgraph of K, }.

We begin this section with a brief discussion of the currently known facets for Q and
n2E"
There has been extensive research on Q and its facets. Here we only mention the

results that are essential for later sections.
THEOREM 2.1 (see [15]). The degree constraints x((v)) 2 forall v V form a

minimal equation system ]’or Q.
Note that the set of degree constraints forQ can be written as Ax 2, where A is

the node-edge incidence matrix of K,. A consequence of Theorem 2.1 is the following
theorem.

THEOREM 2.2 (see [15]). The dimension ofQr is [E nfor n > 3.
Since Q is not full-dimensional, we may have inequalities ax < ao and bx < bo,

which induce the same facet ofQ and yet look quite different. An exact description of
the equivalence relationship for Q is the following (see 1).

THEOREM 2.3. Twofacet-inducing inequalities ax < ao and bx < bo are equivalentfor
Qr ifand only ifthere exists 9/> 0 and vector A such that b 7a + AA and b0 7a0 + A2,
where A is the node-edge incidence matrixfor Kn.

There are several well-known classes of facets for Q.
THEOREM 2.4 (see [15]). For all n >_ 5 and all e E, the nonnegativity constraints

x >_ 0 induce distinctfacets of Qr.
THEOREM 2.5 (see [16]). For all n >_ 4 and S c_ V satisfying 2 <_ ISI <_ [n/2J, the

subtour elimination constraints x(6(S) >_ 2 induce distinctfacets ofQ.
Another well-known class of facet-inducing inequalities for Q are the comb con-

straints, which were first introduced by Chvfital [5] and later generalized by Gr6tschel
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and Padberg in [15]. A comb consists of a handle It c_ V and mutually disjoint teeth
T1, T2,..., Tk C_ V (k > 3 and odd) such that

l<_j<_k.

The associated comb inequality is
k k

(2.1) x(E(H)) +Zx(E(T)) <_ IHI + ’(ITI- 1)
i=1 i=1

k+l

Note that the coefficients on the left-hand side of this inequality are 0,1,2. Figure 2.1
illustrates the left-hand side coefficients for the comb constraint az < 8. Edges with
coefficient 0 are not shown.

THEOREM 2.6 (see [15], [17]). If {H, T1, T2,..., Tk} is a comb, then so too is
{V\H, T1, T2,..., Tk }, and these induce the same facet of Q. In all other cases, each
comb induces a facet distinct from all other combs, subtour elmination constraints, and
nonnegativity constraints.

rl
0

H

O. O edge with
coefficient 1

O- O edge with
coefficient 2

FIG. 2.1. Edge coefficients ofa comb inequality.

In the case where I1 2 for all I _< i < k, the comb inequality (2.1) simplifies to
k k-1

(2.2) x(E(g)) + x(E(Ti)) <_ IHI +----.
i----1

These inequalities are called the 2-matching constraints and were first introduced in [8].
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There has been some research done on the polytope Q2nE In a much more general
form, Q2E is studied by GrStschel and Monma in [12] and by Gr6tschel, Monma, and
Stoer in [13]. It is also studied by Mahjoub in [19] for general graphs G. Below, we
describe all the results pertaining to the facets of QZE from [12], [13], and [19].

THEOREM 2.7. The dimension ofQZE is IEI for n > 4.
Note that, by Theorem 2.7, the equivalence problem for Q2E is much simpler than

for Q. Two facet-inducing inequalities for Q2E are equivalent if and only if one is a
positive multiple of the other.

THEOREM 2.8. For e E E, x < 1 is facet-inducingfor Q2E ifn > 4.
THEOREM 2.9. For e E, z > 0 isfacet-inducingfor QZE ifn > 5.
THEOREM 2.10. For all S c_ V, 0 S V, z(6(S)) > 2 is facet-inducingfor QE.
Another class of inequalities called the lifted 2-cover inequalities are introduced in

[13] for a more general polytope (of which QZE is a special case), and these are shown
to be facet-inducing under certain conditions. These inequalities can be described as
follows: Let H c_ V be a node set, let T c_ 6(H) be an edge set such that ITI > 3 and
odd, and let HI, Hz,..., Hp, p > 3 be a partition of H into nonempty disjoint node
sets such that no more than two edges in T intersect any Hi. Then the lifted 2-cover
inequality is given by

p

(2.3) x(E(H)) E x(E(Hi)) + x(,5(H)) x(T) > p
(ITI- 1)

2
i--1

In [19] Mahjoub found the same class of inequalities, which he calls the "odd wheel
inequalities," for the 2-edge connected spanning subgraph polytope for general graphs.

The polytope QE is closely related to the polytope Q. It is easy to see, from a graph
theoretic point ofview, that a 2-edge connected spanning subgraph forms a Hamiltonian
cycle if and only ifeach node in the subgraph is of degree 2. SoQ {z QIAz 2},
where A is the node-edge incidence matrix for K,, i.e., Q is a face of Q2E There-
fore, for every facet-inducing inequality for Q, there exists an equivalent form of that
inequality (with respect to Q), which is also facet-inducing for Q2E. It would be de-
sirable to exploit this relationship and somehow transform a facet-inducing inequality
for Q into an equivalent one that is facet-inducing for Q2E. In [4] Boyd and Pulley-
blank discuss how to do this for general polyhedra through a process called dimension
augmentation. Using this process, they convert the 2-matching constraints (2.2) for Q
into an equivalent form that is facet-inducing for QZE. These inequalities are called the
complemented 2-matching constraints and have the form

(2.4)

where c V is the set of nodes not contained in H or any T, 1 < i < k, and a is
defined by

ae {01 for e 6 E(H) or e 6 E(Ti), 1 <_ i <_ k,

otherwise.

We now convert the comb inequalities (2.1) into a set of equivalent inequalities (with
respect to Q) that are valid for QE and contain the complemented 2-matching con-
straints (2.4). Using some of the methods discussed in [4], we later show that these
inequalities are facet-inducing for QE in most cases.
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Given a comb, we define a 2-matching tooth to be a tooth consisting of only two
nodes and divide the nodes of a comb into the following six different classes:

Class 1. Nodes in the handle but not in any tooth;
Class 2. Nodes in the handle as well as in a 2-matching tooth;
Class 3. Nodes in a 2-matching tooth but not in the handle;
Class 4. Nodes in a non-2-matching tooth but not in the handle;
Class 5. Nodes in a non-2-matching tooth as well as in the handle;
Class 6. Nodes not in the handle or in any tooth.
We denote the node set for each class by C’, i 1, 2, 3, 4, 5, 6. Figure 2.2 shows a

comb with the different classes of nodes indicated.

(R) (R)

(R) (R) (R)

FIG. 2.2. A comb with the different classes ofnodes labeled.

Given a comb C, we let s IC’11, r IC’6I, p be the number of non-2-matching
teeth, and q be the number of 2-matching teeth. Furthermore, unless otherwise stated,
we assume that T, T,..., Tp are the non-2-matching teeth and that Tp+x, Tp+,..., T

O

are the 2-matching teeth and we let Ti Ti n H and T T\H for 1 < i < k.
O

We now convert the comb inequality (2.1) into an equivalent form (with respect to
Q) as follows:

1. Negate the inequality;
2. Multiply by 2;
3. Add two times the degree constraint for the nodes in C5 and one time the degree

constraint for each other node.
By using the relation ]vs z((v)) 2z(E(S)) + z(6(S)) for each subset S of V,

the resulting inequality is
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(2.5)
k

x(6(H)) +Zx(6(Ti)) Z x(5(v)) + Z x(6(w)) > 3p + 2r + q + 1.
i--1 vECg. wEC6

We call the inequalities (2.5) the complemented comb constraints and use the nota-
tion bx > bo to represent such a constraint for convenience, where

bo 3p+ 2r +q+ 1

and where b is defined by

o
0 if e E E(C1 U C2) t3 E(Ti) U E(Ti) td E(Tj) for 1 _< _< p, p + 1 _< j _< k;

o
o

1 ifeE[Ti’Ct.dC2tdTi] forl<i<p;
b t9

O

3 e[Ti’C6UTj] forl_<i_<p, l<_j<_k, andij;
o

2 elsewhere.

Figure 2.3 shows the edge coefficients b for the complemented comb inequality bx >_ 10
corresponding to the comb shown in Fig. 2.1. Here, edges e for which b 2 are not
shown.

Note that, in the case where ITil 2 for all teeth Ti of comb C, the corresponding
complemented comb inequality is simply a complemented 2-matching inequality multi-
plied by 2, and thus these are equivalent for Q2E Thus the complemented 2-matching
constraints (2.4) are a subset of the complemented comb constraints (2.5).

3. Validity of the complemented comb constraints. In this section, we give a proof
of the validity of the complemented comb inequalities (2.5) for Qzn. First, we introduce
the following lemma.

LEMMA 3.1. For any x Q2% and comb C, we have
(i) x(6(v)) >_ 2for all v C;

o

(ii) x(6(Ti)) x(E(T)) > l forp + 1 < i <_ k;
o

(iii) 2-x(6(T)) >_ 1 for 1 <_ i < p;
(iv) ,1/2(e(T,)) >_ l for I <_ <_ p;

o

(v) 1/2((T,)) _> for I <_ <_ p;

(vi) >_ 0for [C" H];
(vii) x>_Ofore[C3"H]\ k0=,+ E(T);
(viii) x > Ofor e [C4 H]\ pO: E(T).

Furthermore, not all ofthe above inequalities can hold with equality simultaneously.
Proof. Let K, (V, E). For any x Q2E, we clearly have

0_<x_<l for all eE, and

x(6(S)) > 2 for all S C V 0 - 5’ :/: V.

Thus (i), (iii)-(viii) are all valid for Q2E Inequality (ii) can be obtained by adding the
o

two valid constraints -x > -1 and x(6(T)) > 2 for p + 1 < i < k and {e} E(T),
and thus (ii) is valid for Q2E as well.
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Z
3 H

T

O- -O edge with
coefficient 0

@ edge with
coefficient 1

O O edge with
coefficient 3

FIG. 2.3. Edge coefficients ofa complemented comb inequality.

Now suppose that there exists z E Qz, which satisfies all the inequalities
(i),..., (viii) with equality. Without loss of generality, we can assume that z is the inci-
dence vector zF of a 2-edge connected spanning subgraph of K, with edge set F. Let

{ o o
E’ U [C6 AT C6 tATj] I <_ i j <_ k

0

and let E* FfqE’. We claim that I(v)CqE*l 2 for any v E C6 and that [6(Ti)fqE*
1for1 < < k.

For any v C6, we have

xF (t(v)) xF (8(v) fq E’) + xF[v HI.
f 0 for all e [v" HI by (vi), it follows that xf((v)Since xF((v)) 2 by (i) and x

E’) 2. Thus [(v) C E*[ 2, as required.
For Ti, p + 1 <_ i < k, we have

O O O

xF((Ti)) xF((Ti) fq E’) + xF(E(Ti)) + xF([Ti H]\E(Ti)).
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o
E 0 for all e E [Ti" H]\E(Ti), and thusSy (vii),

o o

xF(6(T) fq E’) xF(6(T)) xF(E(T)) 1

o

by (ii). It follows that I6(Ti) fq E*I 1, as required.
For Ti, 1 <_ i <_ p, we have

o o o o

xF(6(Ti)) xf (6(Ti) f3 E’) + xF[Ti Ti] + xF([Ti H]\E(Ti)).
o

o
By (viii), xE 0 for all e e [ H]\E(T). Also, by (iii)-(v), we have xE(6(Ti))

o o
xE (6(Ti)) xE (6(Ti)) 2, which implies that xE[Ti Ti] 1. Thus xE(6(T)E’) 1.

o o
o

It follows that 16(Ti) f3 E* 1, and the claim has been proved.
o

Since 21E* (16(v) f) E* v C) + (16(Ti) f) E* 1 _< < k), it now follows
that 21E* 2IC + k. However, k is odd, and thus IE*I ICl + k/2, which is not an
integer, leading to a contradiction. [3

THEOREM 3.2. The complemented comb constraints (2.5) are validfor QZE.
Proof. Given comb C, let bz > bo be the corresponding complemented comb con-

straint and let z > 0 be the valid inequality for Q’ obtained by adding all the inequal-2E
ities in (i), (ii),..., (viii) described in Lemma 3.1. Since not all of these inequalities can
hold with equality simultaneously by Lemma 3.1, it follows that x > 0 for all z QZE.
Furthermore, since , 0, and all the vertices of QzE are integer, we have

(3.1) x>_0/l for all xQ.

It is straightforward to check that b for all e E(K,). The right-hand
side of (3.1) is 2[C61 / q / 3p / 1 b0, and thus (3.1) gives bx >_ bo for all x E Q2, as
required. [3

The following corollary is a direct consequence of Theorem 3.2 and its proof. We
will use it later to prove that some particular Hamiltonian cycles H satisfy bz bo.

COROLLARY 3.3. For any z Q2 and comb C, we have bz bo if and only if z
satisfies all inequalities (i), (ii),..., (viii) in Lernma 3.1 with equality exceptfor exactly one,
which is violated by 1.

4. A characterization of facet-inducing complemented comb constraints. In this
section, we characterize the complemented comb constraints that are facet-inducing.
We make use of some of the results discussed in [4], which will allow us to exploit the
relationship betweenQ and Q., thus hopefully simplifying our proof.

Given a valid inequality ax < a0 for a polyhedron F, let Fff represent the face of F
induced by ax < ao, i.e.,

F2 := {x F: ax ao}.

Given a nonempty face F of a full-dimensional polytope P ]IE and a valid inequality
az <_ ao for F and P, define a set D c_ RE to be an independent direction set for F if

(i) For every d D, there exists a E F such that za := a + d 6 P;
(ii) For every d D, ad 0;
(iii) For some minimal equation system AEz bE for F, {AEd d D} are linearly

independent.
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THEOREM 4.1 (Corollary 2.2 in [4]). Let ax < ao be an inequality that is validfor a
full-dimensionalpolyhedron P IR andfacet-inducingfor a nonemptyface F of P. Let
Az b be a minimal equation system for F. Ifthere exists an independent direction set

forF ofsize re(A), then az < ao is also facet-inducingfor P.
Since Q is a nonempty face of Qz, bz > bo is valid for QzE, and Az 2 is a

minimal equation system forQ by Theorem 2.1, we obtain the following corollary from
Theorem 4.1.

COROLLARY 4.2. For any comb C, the corresponding complemented comb inequality
bz > bo isfacet-inducingfor QE ifthere exists a set D {d, d, d,} C_ IE such that

(P) Foreach 1 < i < n, there exists
Q2E

(P2) For each 1 <_ i <_ n, bd --O;
(P) Ad, Ad,..., Ad, are linearly independent, where A is the node-edge incidence

matrixfor the complete graph K.
We now find such an independent direction set D. First, we describe two specific

Hamiltonian cycles and introduce several lemmas that will be used later.
Let C be any comb with teeth Tx, T,..., T. We pair T and T+ for 1 _< i _<

(k 1)/2 and construct a Hamiltonian cycle H of K, as follows. For each pair Tzi and
o o

Tz+, Hx first traverses each node in T, then each node in Tz; then it goes to T+
oo

and traverses each node in T+, then each node in Tzi+, before going to the next
o o

pair. In the case where i (k 1)/2, H traverse each node in C before going to T.
After traversing each node in Tk, H goes to C and traverses each node in C before

o

traversing each node in T. In T, H first traverses each node in T, then each node in
oo

T1, before returning to the node in Tz with whichH started. The resulting Hamiltonian
o

cycle H1 is shown in Fig. 4.1.
Now suppose that comb C with teeth T1, T,..., Tk has at least one 2-matching

tooth. Without loss of generality, we assume that T is a 2-matching tooth. We con-
struct a Hamiltonian cycle H as follows. First, similar to the construction of Hx, we
pair Ti and T+ for 1 < i < (k 1)/2. We then construct H in the same way we
constructed H, except for teeth T, T, and node set C. After visiting each node in C,

o o

H2 traverses the node w in T, then each node in T, and then each node in T. Next,
o

H traverses each node in C and then the node v in T before returning to the node in
o

T with which H started. The resulting Hamiltonian cycle is shown in Fig. 4.2.
o

LEMMA 4.3. Given a comb C, let bx > bo be the corresponding complemented comb
constraint. Then bxH bo and, in the case that Chas T1 as a 2-matching tooth, bxH bo.

Proof. It is easily verified that xHx satisfies all of the inequalities (i), (ii),..., (viii) in
Lemma 3.1 with equality except for x. > 0, where u is the first node in Tz with which

o o

H1 starts and v is the last node in T1 that H visits (see Fig. 4.1). We have x,.H 1.
Thus, by Corollary 3.3, it follows that bxHx bo.

Similarly, it is easily verified that xH. satisfies all of the inequalities (i), (ii),..., (viii)
o

in Lemma 3.1 with equality except for x(6(T)) x(E(T1)) > 1. We have xH (E(T1))
o o

0 and xH-(6(T)) 2, i.e., xm(6(T)) xH. (E(T)) 2. Thus, by Corollary 3.3, it
follows that bxHz bo.
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T3

H

T1

FIG. 4.1. Hamiltonian cycle H1 satisfying bxH1 bo.

Given a comb C and corresponding complemented comb inequality bz > b0, we say
that node v V(K) induces a tight triangle (v, u, w) if there exists u, w V(K,) and
Hamiltonian cycle H of K, such that

(i) bxH bo;
(ii) bv + bw bw;
(iii) H contains uw, but not vw or uv.

Note that, if v induces a tight triangle (v, u, w), then H’ (H\{uw}) O{vw, uv} forms
a 2-edge connected graph satisfying bxH’ bo.

LEMMA 4.4. Given a comb C, node v E V(K,) induces a tight triangle if v C1 t3

Ca
Proof. Construct the Hamiltonian cycle H1 as previously described. By Lemma 4.3,

bxHI bo. Let w be the first node in tooth T2 visited by H and let u be the last node in
T visited by H (see Fig. 4.3).

If C for 1, 2, then let v be any node in C1 and let v2 be any node in C2.
Without loss of generality, we can assume that v2 Tk, i.e., Tk is a 2-matching tooth
(see Fig. 4.3). Then H contains uw, but not vu or vw for i 1, 2. Moreover, for
i 1, 2, we have bvo 0, b. b,o 2 if T2 is a 2-matching tooth, and bo 1,
b 2, bo 3, otherwise. Thus node vi induces tight triangle (vi, u, w) for i 1, 2.

If C4 , then let v4 be any node in C4. Without loss of generality, we can assume
that V4 T2 (i.e., T2 is a non-2-matching tooth), and va is the last node in T2 visited
by H (see Fig. 4.3). Then H contains uw but not vau or yaw. Moreover, we have
b,o 1, bv4u 2, and b,w 3. Thus node V4 induces tight triangle (V4, U, W).

If C5 }, then let v5 be any node in C5. Without loss of generality, we can assume
that v5 e T1 (i.e., T is a non-2-matching tooth) and that v5 is the first node in T1 visited
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T3

H

FIG. 4.2. Hamiltonian cycle H2 satisfying bxH2 bo.

by HI (see Fig. 4.3). Then H1 contains uw but not vsu or vsw. Moreover, bvso bvs,
1, b,,o 2 if T2 is a 2-matching tooth, and bvo 2, bv, 1, b,o 3 if T2 is a
non-2-matching tooth. Thus node v induces tight triangle (v, u, w). E]

LEMMA 4.5. Let A be the node-edge incidence matrix for the complete graph Kn
(V, E), let I E ]vxv be the identity matrix whose rows and columns are indexed by V, and let
T (VT, ET) be a subgraph ofKn, which is a tree. Then the vectors in {A e ET}tO{Iv }
are linearly independentfor any v V.

Proof(by induction on lET I). If ETI 0, then the result follows. So we assume that
IETI > 1 and that the result is true for any tree with fewer than IETI edges. Let A
and )v N be such that

(4.1) Z(AAe e e ET) + *vIv O.

Since T is a tree and IETI 1, T has at least two leaves, one of which is some node
u v. Let e’ be the unique edge in ET incident with u. Then, in the component indexed
by u, A, has 1, while A, e ET\{e’}, and Iv each has 0. Thus

(4.2) , O.

Furthermore, T’ (VT\{U}, ET\{e’}) is a tree with fewer edges than T; hence, by our
induction hypothesis, the result is true for T. This, combined with (4.1) and (4.2), gives
,k 0 and ,kv 0 as desired. [q

The following theorem is the main result of this chapter and characterizes the com-
plemented comb constraints that are facet-inducing.
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H

T

FIG. 4.3. Induced tight triangles for vl, v2, va, vs.

THEOREM 4.6. Given any comb C, the corresponding complemented comb inequality
bx > bo is facet-inducingfor Q2E ifand only if r 0 or (q + s) > 1.

Proof. Let Go (Vvo, Evo) be the spanning subgraph of K, (V, E) whose edge
set corresponds to the edges e in K, for which be 0, i.e., Evo .= {e E E be 0}.
The graph Go consists of several components. To be specific, all nodes in C1, C2, and C3
are in the same component, with the nodes in C tOC inducing a complete subgraph; for

each non-2-matching tooth T, the nodes in 7 form a component, and so do those in T;
O

each node in C6 forms a component by itself. Altogether, Go has 2p + r + 1 components
if [C11 + IC21 _> 1 and 2p + r components if IC l 1c21 0.

Consider any component M of Go that does not contain a node in C and let J be
the edge set of a spanning tree in M. By Lemma 4.4, M has at least one node v that
induces a tight triangle (v, u, w). Let d" .= x’ + x x’ and let d x for all
e E J. Then we claim that

Du := {de’e J} U {d’}

satisfies properties (P1)-(P3) of Corollary 4.2 (when n is replaced by IV(M)I DM I).
Recall that bx > bo is equivalent to a comb constraint for Q and thus by Theorem

2.6 does not induce the facet xe 1, e E, in Q,. Hence, for each e J, there exists
a Hamiltonian cycle H such that bxH bo and H does not contain edge e. Clearly,
H tO {e} is a 2-edge connected subgraph of K,, i.e., xH + de Q2E Furthermore, by
the definition of a tight triangle, there exists a Hamiltonian cycle H such that bxH bo,
and (H\{uw}) U {uv, wv} is a 2-edge connected subgraph of K,, i.e., xH / dv Q2E
Thus DM satisfies property (P1) of Corollary 4.2.
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For each edge e E J, bd be 0 by the definition of Go. Also, bd" b,,, +
bwo bo 0 by the definition of a tight triangle. Thus DM satisfies property (Pz) of
Corollary 4.2.

Now consider {Ad d DM}, where A is the node-edge incidence matrix for
For each e J, Ad A, and Ad" 2I, where I vxv is the identity matrixwhose
rows and columns are indexed by V. Thus, by Lemma 4.5, the vectors in {Acl" d D
are linearly independent, and DM satisfies property (Pa) of Corollary 4.2.

Now consider

D _J(DM M is a component of Go not containing a node in C6).

We claim that D is an independent direction set for Qr f3 {z 11 bz b0} with size
n r. First, for each component M that does not contain a node in C6, DM contains
IV(M)I vectors, and thus ]D n 1(761 n r. Second, since each set DM satisfies
properties (P1) and (Pz) of Corollary 4.2, so does D. Finally, to see that D also satisfies
property (Pa), note that, for any two direction vectors d, dz D that originate from
different components in G0, Ad and Adz do not have any nonzero entries in common
positions. Since DM satisfies (P3) for each component M, it thus follows that D also
satisfies property (Pa), and our claim is proved.

We now construct an independent direction set of size n. For this, four cases are
considered.

Case 1. r 0. In this case, D is an independent direction set of size n, and thus
bz > bo is facet-inducing for QZE by Corollary 4.2.

Case 2. r > 1 and q > 1. Let vi be any node in (76. Without loss of generality, let
o

toothT ofcomb Cbe a 2-matching tooth and letT {w} andT {v }. Construct the
o

previously described Hamiltonian cycle Hz for (7, which by Lemma 4.3 satisfies bzH2

b0. Without loss of generality, let vi be the last node in C6 that Hz visits and let u be the
first node in Tk that Hz visits (see Fig. 4.4). Let d’ x’ + x’’ x. We claim that

D’ D t_J {d" v EC6}
is an independent direction set of size n. Clearly, (H2\{uw}) t_J {wvj, uv} forms a 2-
edge connected subgraph of K,; thus xH- +d Q2E, and d"’ satisfies property (P) of
Corollary 4.2. Also, bd bo, / b, b,o 0 + 2 2 0, and thus dv also satisfies
property (P2). Now consider {Ad" d D’}. We know that the vectors in {Ad" d D}
are linearly independent. Furthermore, for each v e C6, Ad A, and this is
the only vector in {Ad d D’} with a 1 in its vdh component (all others have 0 in
this component). Thus the vectors in {Ad d D’} are linearly independent, and D’
satisfies property (P3). Since [D’ n, it follows from Corollary 4.2 that bx >_ bo is
facet-inducing for QeE.

Case 3. r >_ 1, q 0, and s _> 1. In this case, comb C has k p non-2-matching.
Let vi be any node in C6 and let v be a node in C. Construct the previously described
Hamiltonian cycle H for C, which by Lemma 4.3 satisfies bxH bo. Without loss
of generality, let v be the last node in C6 that H visits, let w be the first node in T2

oo

that H1 visits, and let u be the last node in T that H visits (see Fig. 4.5). Let d
xV + x" x’. Then we claim that

D’ D t3 {d" vi eC6}
is an independent direction set of size n. The proof follows almost exactly as in Case 2.
Thus bx >_ bo is facet-inducing for Q2E by Corollary 4.2.
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H

T

v

Tk_l

FIG. 4.4. Hamiltonian cycle Ha for Case 2.

Case 4. r > 1 and (q + s) 0. Let v be any node in C6. We show that bx > bo
is not facet-inducing for Q2 in this case by showing that xH(6(v)) 2 for all 2-edge
connected spanning subgraphs H that satisfy bx bo.

Suppose that xn(6(v)) >_ 3. Since bx bo, it then follows from Corollary 3.3 that
x (6(v)) 3, and all other inequalities (i), (ii),..., (viii) in Lemma 3.1 must be satisfied
with equality. Therefore all other nodes in C6 have degree 2 in H. Furthermore, each
tooth T, 1 < i < k satisfies xn(6(T)) 2, which implies that the number of odd-
degree nodes in H in each tooth is even. Overall, we have an odd number of odd-degree
nodes in H, which leads to a contradiction. Hence bx > bo is not facet-inducing for Q2
when r > I and q s 0. 1

5. Equivalence. We begin this section by investigating the equivalence of the com-
plemented comb constraints to the other known classes of facet-inducing inequalities for
Q discussed in 2. We proceed to give necessary and sufficient conditions under which
two complemented comb inequalities define the same facet of Qz.

In Theorems 5.3 and 5.4, below, we show that a complemented comb constraint
defines a "new" facet ofQz whenever it is not a complemented 2-matching constraint.
First, we require the following.

THEOREM 5.1. Let F be a nonemptyface ofa polyhedron P. Suppose that az < ao

1We recently discovered that the complemented comb inequalities are the same as a class ofcomb inequal-
ities described by Stoer [27] for a more general form ofQ. In [27] Stoer proves validity of these inequalities
and remarks that several small ones define facets, but does not show that the class is facet-inducing.
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T3

T H

Yo

FIG. 4.5. Hamilton cycle H1 for Case 3.

and &z < &o are both validfor F and P. If az < ao and &z < gto are not equivalent with
respect to F, then they are not equivalent with respect to P.

Proof. We prove the converse. Suppose that they are equivalent with respect to P
and F {x e P[Ax d}. Then {x Plax ao} {x Pltx o}. So

{x e Flax ao} {x e Plax ao} f3 {xlAx d}
{x e Plgtx gto} f3 {xlAx d} {x e Flax gto}.

So they are equivalent with respect to F.
COROLLARY 5.2. Two inequalities, both validfor Qr and Q2E, are not equivalent with

respect to Q2E ifthey are not equivalent with respect to Qr.
THeOReM 5.3. The complemented comb inequality bx > bo is not equivalent to
(i) x < 1fore E or
(ii) x > Ofor e E or
(iii) x(5(S)) > 2for I < I:1 <_ IvI- 1

with respect to Q2E
Proof. This follows directly from Theorems 2.6 and 2.1 and Corollary 5.2.
THEOREM 5.4. A complemented comb inequality is equivalent to a lifted 2-cover in-

equality (2.3) ifand only if it corresponds to a complemented 2-matching inequality.
Proof. In the case where IHil 1 for i 1, 2,..., p and the edges in T are disjoint,

a lifted 2-cover inequality (2.3) is identical to the complemented 2-matching constraint
with handle V(K,)\H and teeth corresponding to the end nodes for each edge in T.
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Furthermore, since the lifted 2-cover inequalities have left-hand side coefficients 0,1,
they cannot be equivalent to any other complemented comb constraint, since a comple-
mented comb constraint has left-hand side coefficients 0,1,2, and 3 whenever the corre-
sponding comb has at least one non-2-matching tooth.

We now address the question of equivalence amongst complemented comb con-
straints.

THEOREM 5.5. Let bz > bo and z > o be two,facet-inducing complemente.d comb
inequalities for Q2F corresponding to combs C and C, respectively. Let H and H be the
handles and let T(C) and T(C) be the set ofteeth for C and C, respectively. Then bz > bo
and z > [o induce the same facet ofQE ifand only if V(K)\H, T(O) T(C),
and s q r O, where s, q, and r are the number ofnodes in C1, C2, and C6 in comb
C, respectively.

Proof. Let K, (V, E). Suppose that we have H V\H, T(C) T(C), and
s q r 0. Then it is straightforward to verify that b0 =/0 and b for all e E,
and thus bz > bo and/z > b0 induce the same facet of Qg.E

Now suppose that bx > b0 and z > 0 induce the same facet of QE. Since QE
is full-dimensional, this implies that there exists a 7 > 0 such that -b and 0 "b0.
From Theorem 2.6 and Corollary 5.2, it follows that H V\H and T(C) T(C), which
implies that 7 1, i.e., b . We now show that, if s > I or r > i or q > 1, then there
is some edge e E for which b # , showing that we must have s r q 0.

Suppose that p 0, where p is the number of non-2-matching teeth in (7. Then
q > 3, and, for distinct nodes u, v Cz, we have b, 0 # 2 b,. Thus we must have
p > 1. Let u C in comb C. If q > 1, then for w C’ we have bo 1 - 2 w. If
r > 1, then for w e C we have bo 3 # 2 o. If s > 1, then for w e C we have
b,w 1 2 ,w. Thus s r q 0, as required. D

Note that Theorem 5.5 shows that two complemented comb inequalities may induce
different facets for Q2E even when they induce the same facet of Q.

6. Complemented eoml constraints and 2-node connected spanning subgraphs.
We conclude with some remarks on the problem of finding a minimum cost 2-node
connected spanning subgraph in a given complete weighted graph K, (V, E). The
polytope associated with this problem is

Q’N := conv{xF (V, F) is a 2-node connected spanning subgraph of K,}.

It is easy to see that a 2-node connected graph is also 2-edge connected, and thus Q’N C_
QZE. Therefore any valid inequality for QE is also valid for Q’N. In particular, the
complemented comb inequalities are valid for Q’N.

An interesting question is to find conditions under which the complemented comb
inequalities are facet-inducing for Q’N. In the case where the inequalities originate from
a 2-matching comb, we obtain the complemented 2-matching constraints that are shown
to be facet-inducing for Q’N in [4]. However, we show that not all of the complemented
comb constraints are facet-inducing for Q’N.

A comb C with handle H and teeth T1, T2,..., Tk is called simple if [T fq HI 1
for i 1, 2,..., k. In [4] a class of inequalities called the complemented simple comb
constraints is introduced and shown to be facet-inducing for Q’N. These inequalities
have the form

k+lo
ax >_ IvI + 2
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where c V is the set of nodes not contained in H or any Ti, i 1, 2,..., k and a is
defined by

a= {01 for e E(H) or e E(T), i 1, 2,..., k,

otherwise.

Given a simple comb (7, if we sum two times the associated complemented simple
comb constraint plus the constraints

x(6(v)) > 2 for all v Ti f3 H for some non-2-matching tooth Ti of C,

we obtain the associated complemented comb inequality. Thus the complemented comb
constraints originating from simple combswith at least one non-2-matching tooth are not
facet-inducing for Q’N.

REFERENCES

[1] N. ASCHEUER, L. ESCUDERO, M. GROTSCHEL, AND M. STOER, On LP bounds for the sequential order
problem, in preparation.

[2] A. BACHEM AND M. GROTSCHEL, New aspects ofpolyhedral theory, in Modem Applied Mathematics
Optimization and Operations Research, B. Korte, ed., North-Holland, Amsterdam, 1982, pp. 51-
106.

[3] J.A. BONDY AND U. S. R. MURTY, Graph Theory with Applications, Macmillan, London, 1976.
[4] S.C. BOYD AND W. R. PULLEYBLANK, Facet generating techniques, preprint, 1991.
[5] V. CHVATAL, Edmondspolytopes and weakly Hamiltonian graphs, Math. Programming, 5 (1973), pp. 29-

40.
[6] H. CROWDERAND M. PADBERG, Solving large-scale Symmetric Traveling Salesman Problems to Optimality,

Management Sci., 26 (1980), pp. 495-509.
[7] G. DANTZIG, D. FULKERSON, AND S. JOHNSON, Solution ofa large-scale TravelingSalesman Problem, Oper.

Res., 2 (1954), pp. 393-410.
[8] J. EDMONDS, Paths, trees, andflowers, Canadian J. Math., 17 (1965), pp. 449-467.
[9] R.E. ERIKSON, C. L. MONMA, AND A. E VEINOTr, JR., Send-and-split methodfor minimum-concave-cost

networkflows, Math. Oper. Res., 12 (1987), pp. 634-664.
[10] M. GROTSCHEL, On the Symmetric Traveling Salesman Problem: Solution of a 120-city problem, Math.

Programming Study, 12 (1980), pp. 61-77.
[11] M. GROTSCHEL, J. JUNGER, AND G. REINELT, A cutting plane algorithm for the linear ordering problem,

Oper. Res., 34 (1984), pp. 1195-1220.
[12] M. GROTSCHEL AND C. L. MONMA, Integerpolyhedra arisingfrom certain network design problems with

connectivity constraints, SIAM J. Discrete Math., 3 (1990), pp. 502-523.
[13] M. GRt)TSCHEL, C. L. MONMA, AND M. STOER, Facets for Polyhedra Arising in the Design of Com-

munication Networks with Low-Connectivity Constraints, Schwerpunktprogramm der Deutschen
Forschungsgemeinschaft, Anwendungsbezogene Optimierung und Steuerung, Report No. 187,
1989.

14] ,ComputationalResults with a CuttingPlaneAlgorithmforDesigning Communication Networks with
Low-Connectivity Constraints, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft,
Anwendungsbezogene Optimierung und Steuerung, Report No. 188, 1989.

[15] M. GROTSCHEL AND M. PADBERG, On the Symmetric Traveling Salesman Problem I: Inequalities, Math.
Programming, 16 (1979), pp. 265-280.

[16] ., On the Symmetric Traveling Salesman Problem II: Lifting theorems and facets, Math. Program-
ming, 16 (1979), pp. 281-302.

[17] .,Polyhedral theory, in The Traveling Salesman Problem, E.L. Lawler et al., eds., John Wiley, New
York, 1985.

[18] R. KARP AND C. PAPADIMITRIOU, On linear characterizations of combinatorial optimization problems,
SIAM J. Comput., 11 (1982), pp. 620--632.



630 SYLVIA C. BOYD AND TIANBAO HAO

[19] A.R. MAHJOUB, TWo Edge Connected Spanning Subgraphs andPolyhedra, Report No. 8850-OR, Institute
fOr Operations Research, Universit/it Bonn, Germany, 1988.

[20] C.L. MOrMA ASD D. E SHALLCROSS, MethodsforDesigning Survivable Communication Networks, Tech-
nical Memorandum, Bellcore, Morristown, NJ, 1986.

[21] G.L. NEMHAUSER AND L. A. WOLSEY, Integerand Combinatorial Optimization, Wiley-Interscience, New
York, 1988.

[22] M. PADBERG AND M. GROTSCHEL, Polyhedral computations, in The Traveling Salesman Problem, E.L.
Lawler et al., eds., John Wiley, New York, 1985.

[23] M. PADaERG AND S. HONG, On the Symmetric Traveling Salesman Problem:A computational study, Math.
Programming Study, 12 (1980), pp. 78-107.

[24] M. PADBERG AND G. RINALDI, A branch-and-cut algorithm for the resolution of large-scale Symmetric
Traveling Salesman Problems, Report R. 247, IASI-CNR, Rome, 1988.

[25] M. PADBERGAND G. RINALDI, Optimization ofa 532-city Symmetric TravelingSalesman Problem by branch
and cut, Oper. Res. Let., 6 (1987), pp. 1-8.

[26] W.R. PULLEYBLANK, Polyhedral combinatorics, in Handbooks in OR and MS, Vol. 1, G. L. Nemhauser
et al., eds., Elsevier Science Publishers B.V., North-Holland, Amsterdam, 1989.

[27] M. STOER, Design ofSurvivable Communication Networks, Ph.D. dissertation, Augsburg University, Ger-
many, 1991.



SIAM J. DISCRETE MATH.
VOI. 6, No. 4, pp. 631-641, November 1993

() 1993 Society for Industrial and Applied Mathematics
O08

EDGE-CHROMATIC SCHEDULING WITH SIMULTANEITY CONSTRAINTS*
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Abstract. An edge-coloring model for some types of scheduling problems is described; the case is handled
where some collections of (nonadjacent) edges are required to have the same color. This corresponds to
simultaneity constraints. The complexity of this problem is studied. Next, some classes of graphs for which
such colorings exist are characterized, and a recognition algorithm is derived.
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1. Introduction. In some types of scheduling problems, there are only a few types
of constraints that must be considered in the construction of a schedule. Such situa-
tions occur in various contexts ranging from simple class-teacher timetabling problems
to special cases of machine scheduling problems. We describe an edge-coloring model
where some additional requirements may be included. This allows us to define a class
of colorings with constraints, and the family of graphs for which such colorings exist is
characterized. Furthermore, a recognition algorithm is derived.

Let us first formulate the basic open shop problem for which some additional con-
ditions are later introduced.

We are given m processors P, P,..., P, and a collection of jobs J, Jz,..., J, to
be processed within a period of k consecutive time units. Each job J consists of tasks
Tx,..., T,,; task T ofjob J has to be processed on processor P; its processing time
p is given. We assume that the p’s are integers. We consider that, ifp 0, then
the task T does not exist. No processor can handle two tasks simultaneously, and no
two tasks of the same job can be processed at the same time. The tasks of the same job
can be processed in any order. Furthermore, we assume that preemptions are allowed
(after any integer number of time units) during the processing of a task on a processor.
We may ask whether it is possible to schedule the jobs within k time units and satisfy the
above requirements.

This situation is similar to the simple class-teacher timetabling problem; assume that
each P is a teacher and that each J is a class, i.e., a group of students taking exactly the
same program. ThenT is the set ofp lectures (of one time unit each) that teacher P
must give to class J.

A feasible schedule exists if and only if k is not smaller than both the maximum num-
ber of lectures that a single teacher must give and the maximum number of lectures that
a single class must take. This can be seen from the following graph-theoretical formula-
tion. We associate with the problem a bipartite multigraph G (P, ,Y, E) constructed
as follows: Each P corresponds to a node in the left set 79 of nodes, and each J corre-
sponds to a node in the right set ff of nodes. Furthermore, node P is linked to node J
by pi parallel edges.
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A classical edge k-coloring ofG is an assignment F of one color F(e) { 1,..., k} to
each edge e of G such that F(e) y F(#) whenever edges e and # are adjacent (i.e., have
at least one node in common).

There is a correspondence between classical edge k-colorings of G and feasible
schedules in k time units for our timetabling problem as well as for our open shop
scheduling problem.

From the theorem of K6nig, such an edge k-coloring exists if and only if k > A(G),
where A(G) is the maximum degree in G (i.e., the maximum number of edges incident
to the same node). See [1].

In the next section, we introduce some additional requirements that occur in some
timetabling and in some production scheduling problems. The complexity of the general
case is studied. Section 3 is devoted to the above coloring model with some special
simultaneity requirements. This leads to a characterization of the family of graphs for
which such colorings exist. A recognition algorithm is given. Some variations of the
coloring model are formulated in 4.

Refer to [1] for graph-theoretical terms not defined here.

2. Simultaneity requirements. In the timetabling model described above, we may
only consider simple requirements related to the classes (no class can take two lectures
simultaneously) and to the teachers (no teacher can give two lectures simultaneously).

It often happens that it is required to have two lectures, represented by edges e

PiJ, g PJ (with Pi P, J J), scheduled at the same hour. An example is
gymnastics, where two classes are grouped together; the girls are then assigned to teacher
P, and the boys to teacher P for one hour.

The data for this problem consist of a bipartite multigraph G (P, if, E) and a set
R of pairs {e, g} of nonadjacent edges. An integer k >_ A(G) is given. Does there exist a
classical edge k-coloring F of G such that F(e) F(g) for each pair (e, g) R ? Let us
call this problem OSSR (open shop with simultaneity requirements). Such constraints
requiring that some fraction of tasks be processed simultaneously may also appear in
preemptive open shop scheduling problems for technological reasons. For example, we
may need a specialist, able to supervise several tasks processed at the same time.

PROPOSITION 2.1. OSSR is NP-complete.
Proof. We sketch a reduction from NODE k-COLORING [4]. Observe first that a

classical edge k-coloring in a multigraph G corresponds to a node k-coloring in the line-
graph L(G) ofG (each edge ofG becomes a node in L(G), andwe link two nodes of L(G)
if the corresponding edges of G are adjacent). If in L(G) two nodes e, g correspond
to edges of G that must have the same color (because they form a pair {e, g} R),
then we identify the nodes e and g in L(G). Any node k-coloring of the resulting graph
corresponds to a classical edge k-coloring of G that satisfies the requirements in R, and
the opposite also holds.

Let us show that any instance (G, k) of NODE k-COLORING can be transformed
into an instance ofOSSR, i.e., of the classical edge k-coloring problemwith requirements
in R.

If G is already the line-graph L(H) of some bipartite multigraph H, then we set
R 0, and we are done. Otherwise, we apply repeatedly the node-separation procedure
NSP(z) to some node z as follows: Node z with neighborhood set N(:e) (IN(m)l >_ 2) is
replaced by two nonadjacent nodes z’, z" with N(z’), N(z") # , N(z’) N(:e") 0,
N(z’) N(z") N(z). Then we introduce into R the pair (z’, z"}. Such a procedure
NSP(z) is repeated until the resulting graph is the line-graph of a bipartite multigraph H.
This happens in at most 2m- n applications of the node-separation procedure, where m
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is the number of edges and where n is the number of nonisolated nodes of G (because,
after 2m n applications, G reduces to a matching and isolated node). The resulting
bipartite multigraph H has an edge k-coloring with requirements in R if and only if the
original G has a node k-coloring. [3

Remark 2.2. The above proof shows that OSSR remains NP-complete even for bi-
partite graphs of the form nPa, where Pa is a chain on three nodes.

Remark 2.3. Consider the companion problemwhere, for each pair of edges {e, 9} E
R, we require that e, have different colors. Such requirements may occur in open shop
scheduling problems where two tasks need the presence of an expert, who cannot super-
vise both at the same time. It may also occur in the timetabling context because two lec-
tures involving different classes may require the same equipment or the same classroom.
When the bipartite multigraph is a matching, this problem is simply a reformulation of
the node-coloring problem for an arbitrary graph.

3. A special case of simultaneity requirements. Our purpose is to characterize a
class of graphs that have edge k-colorings satisfying the requirements in R for a special
type of R. Although these requirements are extremely special, they are interesting be-
cause they allow us to give a complete characterization of a nontrivial class of graphs
that satisfy them. Furthermore, this provides a tool that could prove useful in extending
these results to more general situations.

A chain D of positive length in a graph is attached to a subgraph H ifboth endpoints
z, y of D, but no intermediate nodes or edges, are in H.

If a chain D is attached to a cycle C, then D and C form three chains between z and
y that are node-disjoint except for the endpoints; such a configuration is called a mouth;
it is even (respectively, odd) if the three chains have even (respectively, odd) length.

A handle in a graph G is a chain D of positive length attached to a cycle (7 at its
endpoints z and y, such that every intermediate node of D as well as of one of the two
chains of C between z and y has degree 2 in G. A handle is odd (respectively, even) if
its length is odd (respectively, even).

An edge k-coloring F of a bipartite multigraph G satisfies condition R(C, D) based
on a cycle C {e, e2,..., e2p} (p _> 0) and on a chain D {91, g2,..., gq} (q >_ O) if
the following hold:

F(el) F(e3) F(e2p_),
F(e2) F(ea) F(e2p),

F(9) F(93)
F(g2) F(ga)

Note that, when p 0 (respectively, q 0), the cycle C (respectively, the chain D)
reduces to a single node and the condition on C (respectively, on D) is void.

A graph G is a bipartite odd cactus (or BOCgraph) if it is bipartite and if it does not
contain an even mouth as a partial subgraph.

A block in a graph is a maximal 2-connected partial subgraph. We say that a graph
G has the extensionproperty (EP) if, for any choice of cycles C1,..., Cr in distinct blocks
of G and of chains D1,..., Dr attached to C,..., C’r, respectively, there exists an edge
A(G)-coloring ofG that satisfies the conditions R(C, D),..., R(Cr, Dr). Such an edge
coloring is called an EP coloring of G.

We can now state the main theorem.
THEOREM 3.1. For a bipartite multigraph G, thefollowing statements are equivalent:
(1) G is a BOCgraph;
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(2) Every nontrivial block of G can be reduced to a cycle by repeatedly removing the
intermediate nodes and all the edges ofan odd handle ofthe remaininggraph;

(3) Allpartial subgraphs ofG have EP.
The following two results are used in proving Theorem 3.1. The first was essentially

proved by Whitney.
THEOREM 3.2 (see [8]). A multigraph G is 2-connected ifand only ifit can be obtained

by the following process: Starting from any 2-connected partial subgraph of G, repeatedly
attach chains to the subgraph already constructed.

A subdivision of a graph G is a graph obtained by replacing some edges of G with
chordless chains having the same endpoints. We denote the complete graph on four
nodes by K4.

LEMMA 3.3. A BOCgraph cannot contain a subdivision ofK4 as a partial subgraph.
Proof. Assume, if possible, that the BOC graph contains a subdivision of a K4 with

nodes a, b, c, d. The subdivision of one of the edges ab, bc, ca, say ab, must be of even
length since the graph is bipartite. Then the subdivision of K4 contains an even mouth
between the nodes a and b, a contradiction.

Proof of Theorem 3.1. (2) = (1): If G contains an even mouth, then the process
of repeatedly removing odd handles cannot destroy the even mouth. Thus the block
containing it cannot be reduced to a cycle.

(3) = (1): Assume that G has an even mouth M formed by three node-disjoint even
chains C’, C’, D between two nodes. Take 6’ C’ t_J C’; M has no edge 3-coloring
satisfying R(C, D), so the partial subgraph M of G does not have EP.

(1) =(2): Assume without loss of generality that G is a 2-connected BOC graph. It
is enough to show that G is a cycle or G has a handle, as any handle in a BOC graph must
be odd, and, after its removal, the graph remains a 2-connected BOC graph. By Theo-
rem 3.2, the edge-set of G can be partitioned into C’, P,..., P, where (7 is a cycle and
where eachP is a chain attached to the partial subgraphG consisting of C’, P,..., P_.
We show by induction on r > 1 that one of the P is a handle of (7 G. By the induc-
tion hypothesis, some PO is a handle of G_. Then, by the definition of a handle, G_
has chains P and Q between the endpoints z, y of PO, such that PO, P, and Q are edge-
disjoint and the internal nodes of P have degree 2 in G_. Let z, w be the endpoints
of P. If each of z, w is in {z, y} or not on PO t3 P, then PO remains a handle of G. If
both of z, w are on PO or both are on P, then P is a handle of G. If z is an internal
node of Po and w is an internal node of P, then P, Q, Po, and P form a subdivision of
K4, contradicting Lemma 3.3. The remaining case is that z is not on PO U P, whereas
w is an internal node of PO or of P, say of PO. By the 2-connectivity of G_, it has a
cycle C" containing z and any edge of P. It follows that C" contains all the edges of P
and none of PO. Therefore C’, PO, and P form a subdivision of K4, again contradicting
Lemma 3.3.

(1) (3): We may assume that G is connected. Assume first that each block of G
has EP. Then we may reconstruct G by introducing blocks B, Bu,..., B consecutively,
so that, for each i > 2, B has exactly one node in common with the graph G formed by
B,..., B_. Let z be this node. By induction on s, the graph G has an EP coloring.
Now consider any EP coloring ofB and relabel the colors of the edges in B so that all
the colors at z in G t3 B are distinct. This gives an EP coloring of G U B. Thus G has
EP if each block of G has EP. We may therefore assume that G is 2-connected.

Given the constraint R(C, D), by condition (1), C’t3 D has an EP coloring. It follows
from Theorem 3.2 that G can be constructed from (7 t3 D by repeatedly attaching chains,
say Pu,..., P. By the proof of (1) = (2), we may assume that each P is an odd handle
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in the partial subgraph Gi consisting of C, D, P2,..., Pi-1. Therefore the EP coloring
of Gi_1 can be extended to an EP coloring of G. Thus G has EP. [q

Clearly,. by definition, a graph G is a BOC graph if and only if every block of G is
a BOC graph. The blocks of G can be obtained in linear time [3]. We now sketch an
algorithm to test whether a 2-connected graph G is a BOC graph.

If G is a cycle, it is a BOC graph. Otherwise, find any handle H of G (we soon
describe how to do this). If G has no handles, it is not a BOC graph by condition (2) of
Theorem 3.1. If H is an even handle, then G contains an even mouth and is not a BOC
graph. If H is an odd handle, then, by condition (2) of Theorem 3.1, G is a BOC graph
if and only if the 2-connected graph obtained by removing the interior nodes and edges
of H is a BOC graph, and we proceed recursively.

We now describe how to detect a handle in a 2-connected graph G (V, E). Let
V V1 tO V2, where V1 consists of the vertices of degree 2, and V2 of degree 3 or more.
Starting from any node z E Vg., travel along unused edges of G, marking them as used,
until a second node V E V2 is reached. This takes O({Vl)-time. Then use a standard
traversal algorithm such as breadth-first search [3] to detect in O(IEl)-time a second
chain of unused edges between z and V that uses only nodes of V1 as intermediate nodes.
If such a chain is found, it is a handle of G. If not, repeat the above until all the edges of
G are marked as used, in which case G has no handles.

The total time to find a handle or verify that none exists is thus O(IEI), and the
complete recognition algorithm takes O([E[a)-time.

Remark 3.4. A related class of graphs has been defined for another type of schedul-
ing problem. We consider that the k colors are arranged in a cyclic way, so that color 1
follows color k. Each edge e must receive a prescribed number wc of cyclically consec-
utive colors. Furthermore, at each node z, the cyclic intervals of colors assigned to the
edges adjacent to z must be disjoint, and their union must form a cyclic interval. Let k
be the maximum sum of the weights of all edges adjacent to a node. There exists such
a k-coloring for any choice of weights if and only if the graph is a bipartite outerplanar
graph. Such a graph is called a BEC graph (denoting bipartite edge cactus) in [2]. Its 2-
connected components are constructed by starting from an (even) cycle and repeatedly
introducing odd handles on distinct edges. From this construction, we note that BEC
graphs are a special class of BOC graphs.

4. Some classes ofgraphs with special simultaneity requirements. We examine here
special simultaneity requirements and derive a few classes of bipartite multigraphs that
satisfy these requirements.

Remark 4.1. Recall the definition of OSSR with input (G,/). If H is the line-graph
of G and if H* is the graph obtained from H by identifying the nodes e, t7 for each pair
{e, tT} E/, then G has an edge A-coloring satisfying the requirements in/ if and only
if x(H*) A(G), where X denotes the node-chromatic number.

Remark 4.2. In general, we cannotproceed directly by identifying the edges e, g of
each pair {e, g} of R in G (in either of the two ways) and edge-color the resulting graph
G*. As an example, if G has edges el ab, e bc, ea cd, e4 ef, e5 fg with
R {e2, e4}, then A(G*) > A(G), and thus G* does not have an edge A(G)-coloring,
even though G does have a A(G)-coloring satisfying the requirements in R. Thus we
must invoke the line-graph H and the graph H* obtained from H. However, if H* is a
line-graph, then L(G*) H*, and hence we could proceed directly with G*.

A graph G is said to have the SIMULTproperty if, for each pair (e, g} of nonadja-
cent edges, there exists an edge A(G)-coloring F with F(e) F(9). In other words,
whenever R consists of a single pair, the answer to OSSR is yes.
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We say that a bipartite multigraph G is a SIMULT* graph if every partial subgraph
of t7 has the SIMULT property.

A chordless chain (respectively, cycle) on n nodes is denoted by P, (respectively,
C’,). Its complement is denoted P, (respectively, C,).

THEOREM 4.3. For a bipartite multigraph , thefollowing statements are equivalent:
(1) is a SIMULT* graph;
(2) G contains no P5 as a partial subgraph;
(3) The connected components of are obtainedfrom the square or the bistar shown

in Fig. I by multiplication or removal ofedges and by removal ofnodes.

Square Bistar

FIG. 1. SIMULT* graphs.

Proof. (1) = (2): P5 does not have the SIMULTproperty: Let e and g be the extreme
edges of P and take R {e, g}; then x(H*) 3 > 2 A(P), where H L(P).
Thus, by Remark 4.1, Pg does not have the SIMULT property.

(2) = (3): This is easily verified.
(3) = (1): Let S be a connected component of G, obtained from a square or a bistar

as in condition (3). For any pair {e, g} of nonadjacent edges of S, there exists an edge
A(S)-coloring F with F(e) F(g) 1: it is obtained by coloring e and g with color 1.
The remaining multigraph S’ obtained by removing e and g has A(S’) A(S) 1, so,
by induction on A(S), it can be colored with colors 2, 3,..., A(S). ]

Another simple case is the following situation: Let o(G) denote the maximum size
of a clique in G. A graph G isperfect if every induced subgraph G’ ofG satisfies x(G’)
o(G’). Polynomial-time algorithms exist for finding the chromatic number of a perfect
graph and, in fact, for finding an optimal coloring [5]. We may thus be interested in the
situation, where, starting from a bipartite multigraph G, we construct its line-graph H
L(G), and, by identifying any two nonadjacent nodes of H, we obtain a perfect graph H*.
Such a graph G is said to have the SIMULTANEOUS property. If every partial subgraph
of G has the SIMULTANEOUS property, G is said to be SIMULTANEOUS-perfect.

THEOREM 4.4. For a bipartite multigraph G, thefollowing statements are equivalent:
(1) G is SIMULTANEOUS-perfect;
(2) G has the SIMULTANEOUSproperty;
(3) G contains no P7 as a partial subgraph;
(4) The connectedcomponents ofGare obtainedfrom thegraphs ofthe types G1, G5

shown in Fig. 2 by multiplication or removal ofedges and by removal ofnodes.
We use the following two results in proving Theorem 4.4. Two nodes z, /of G are

called twins if they have the same neighborhood in V {z, /}. Lovisz proved [7] that
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G
G

G3

G4

FIG. 2. SIMULTANEOUS-perfectgraphs.

minimal imperfect graphs contain no twins. More specifically, we need the following
corollary of his result.

LEMMA 4.5 (see [7]). Let a graph G contain two adjacent twins z, y. Then G isperfect
ifand only ifG {x} is perfect.

We also need the following theorem of Hayward.
THEOREM 4.6 (see [6]). Any graph containing neither induced cycles oflength at least

5 nor their complements is perfect.
Proofof Theorem 4.4. (1) = (2): The proof follows directly from the definition.
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(2) = (3): If G contains a Pr as a partial subgraph, then H L(G) contains an
induced Po, and the identification of the endpoints of this Po gives an induced (7 in H*.
Hence H* is not perfect.

(3) = (4): We must verify that a connected bipartite graph without parallel edges
and not containing any P7 as a partial subgraph is contained in a graph of one of the
types Gi of Fig. 2.

Case 1. G is a tree.
Since the longest chain of G has length at most 5, G must be a partial graph of a

graph of type G.
Case 2. G has some cycles.
Then these cycles have length 4 or length 6.
(a) If G has a cycle of length 6, then there are no nodes outside the cycle, so G is a

partial subgraph of a graph of type Gu.
(b) If all cycles of G have length 4, we have two possibilities. If there is exactly one

(7, then G is a partial subgraph of a graph of type Ga or G. Otherwise, G has several
Ca’s. No two of these C4’s can share exactly zero nodes or exactly one node or exactly
one edge (otherwise, G would contain a P7 or C). It follows that all the (7a’s have the
same two nonadjacent nodes z, in common. Hence G contains three or more chains of
length 2 with common endpoints z, . Let z,..., zq be the intermediate nodes of these
chains (q > 3). No z can have a pendant chain of length 2 or more; otherwise, G would
contain a PT. Similarly, neither z nor can have a pendant chain of length 3 or more. If
z has a pendant chain of length 2, then no z has a pendant edge; may have pendant
edges, but no pendant chain of length 2. Hence (7 is a partial subgraph of a graph of type
G4. Finally, if neither z nor has a pendant chain of length 2 or more, then at most one
zi can have pendant edges, so G is a partial subgraph of a graph of type G.

(4) = (1)" If G’ is any partial subgraph of G, then its associated graph (H’)* is
an induced subgraph of H*. Therefore it is enough to show that H* itself is perfect.
Moreover, for the same reason, we may assume that every occurrence of "..." in Fig. 2
represents two or more nodes and that every edge of the figure has been duplicated to
two or more parallel edges of G.

We observe first that H contains no induced P, P, or C’: It contains no P or C’
since G contains no P7 or C’ as a partial subgraph, as verified easily by inspecting Fig. 2,
and it contains no P since P is not a line-graph. It follows that H contains neither an
induced C’ nor an induced C’k for any k > 7 or k 5.

Next, we observe that H* contains neither an induced C’ nor an induced C’ for any
k > 7 or k 5. Indeed, if H* contains an induced C, then H contains an induced C
or P+, which is not the case for k > 7 or k 5; if H* contains an induced C, then H
contains an induced P_, which is not the case for k > 7.

If, in addition, H* contains neither an induced (7 nor an induced C, then it is
perfect by Theorem 4.6, and we are done. We may therefore assume the opposite.

Case 1. H* contains an induced (7.
In this case, H must have a C’ (since H contains no PT). It follows that, if G is con-

nected (as we may assume), it is a multigraph of type Gz of Fig. 2, which is the complete
bipartite graph Ka,a.

In the line graph H L(G), each node has some adjacent twins by the assumption
made at the beginning of the proof that (4) = (1). To obtain H*, we identify a pair
of nonadjacent nodes of H. By virtue of Lemma 4.5, we may remove all but one node
from each maximal set of pairwise adjacent twins of H* without affecting its perfectness.
The resulting graph H* (V, E) is shown in Fig. 3 (it does not depend on the choice of
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nonadjacent nodes ofH to be identified; H*-g
_

L(Ka,a), and g results from identifying
a twin of z1 with a twin of z2). We conclude Case I by showing that this particular graph
is perfect.

Xl

x3

x2

FIG. 3. A graph used in theproofof Theorem 4.4.

Note that H* is 4-colorable---color a,..., f with two colors; Zl, Z2, Z3 with the third
color; and 9 with the fourth. This also shows that the subgraph induced by V {9} is 3-
colorable. It follows that, if I is any induced subgraph of H*, then X(I) w(I). Indeed,
in the case where w(I) 4, I is 4-colorable because H* is; in the case where w(I) 3,
if I contains 9, then ! {9, z3 } is bipartite, and hence I is 3-colorable, and, if I does not
contain 9, then I is 3-colorable as noted above; in the case where w(1) < 2, I is bipartite
since H* contains no induced odd cycles of length 5 or more. Thus H* is perfect.

Case 2. H* contains an induced (76.
In this case, since the line-graph H contains no induced claw K1,3, it follows that H

contains an induced H C6 or H2, as shown in Fig. 4.

H H2

FIG. 4. Two graphs used in theproofofTheorem 4.4.

If H contains H1, then G must be of type G4 or Gs, and, if H contains H2, then G
must be of type G4. Thus it only remains to show that when G is a multigraph of type G4
or G, then H* is perfect.
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A B C D E

Ha, the line graph of a multigraph of type G4

A B C D

Bo Co

E

Hs, the line graph of a multigraph of type G5

represents a clique of size 2 or more.

represents the node-set of the complete join of two or more cliques
referred to as component cliques.

represents the node-set of two or more disjoint cliques of size 2 or
more referred to as component cliques.

represents a complete connection between the two end-sets.

represents a bijection between the component cliques of the left
end-set and the component cliques of the right end-set, where
matched component cliques are completely joined.

FIG. 5. Schematic diagram oftwo line-graphs ofbipartite multigraphs.

Consider H4 and H, the line-graphs of multigraphs of type G4 and G, respectively,
illustrated in Fig. 5. Let (H4)* (respectively, (H)*) be obtained by identifying two non-
adjacent nodes of H4 (respectively, H). We must show that (H4)* (respectively, (H)*)
is perfect.

Case 2.1. H H4 and H* (H4)*.
We show that the nodes of (H4)* can be partitioned into a clique K and sets R1,

Rg. with no edges between R1 and Re, such that K t2 Rx and K t2 R2 induce perfect
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graphs. It then follows that (H4)* is perfect [1, Chap. 16, Thm. 3]. Let a,..., d be nodes
of A,..., D, respectively, and let e, e’ be nonadjacent nodes of E. Assume without loss
of generality that b and c are nonadjacent and d and e are nonadjacent. We obtain (H4)*
by identifying two nonadjacent nodes among a,..., d, e, e’.

If we identify e with z {a, b, e, d}, let D’ be the set of all neighbors of e in D and
take K D’ tO {z}, Rz the neighbors of e in E, R the remaining nodes. Then
the graph induced by K tO Rz is a clique and hence perfect, and the graph induced by
K tAR contains D as a clique cutset. Now the subgraph induced by AU B tAG’ to D is the
complement of a bipartite graph, and the subgraph induced by Dt_JE-Rz is triangulated.
Thus both subgraphs are perfect [1], and hence the graph induced by K tA R is perfect.

If both of the identified nodes are in {e, e’} or both in {a, b, c, d}, then take K D,
Rz E, andR the remaining nodes. ThenK is a clique cutset, Kt_JRz is triangulated,
and K tO R is the complement of a bipartite graph. This shows that (H4)* is perfect.

Case 2.2. H H and H* (H)*.
Let a,..., e, b0, eo be nodes of A,..., E, B0, Go, respectively, with b, c nonadjacent.

Let (H)* be obtained by identifying two nonadjacent nodes among a,..., e, b0, c0. Once
again, we proceed as in Case 2.1. If e is not one ofthe identified nodes, take K BotACo,
Rz E, R the remaining nodes; if e is identified with z {a,..., d}, take K
B0 tO C0 t_J {z}, Rz E {e}, R the remaining nodes. In either case, the graph
induced by K tO Rz is a clique and the graph induced by K tA Rx is the complement of a
bipartite graph. This shows that (Hs)* is perfect. D
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Abstract Algorithms for embedding de Bruijn and shuffle-exchange graphs in books offive pages, with cu-
mulative pagewidth (5/3)2 (2/3)- (8/3)(n mod 2) and (5/6)2 + (2/3) (4/3)(n rood 2), respectively,
are presented. These are the first nontrivial bounds on the pagenumber of de Bruijn and shuffle-exchange
graphs.
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1. Introduction. A book of thickness p is a set ofp half-planes, calledpages, sharing
a common boundary, called the spine. A p-page bookembedding of a graph G (V, A)
is a drawing of G in a book of thickness p so that the nodes of G reside on the spine of
the book, while each edge of G is drawn in exactly one page, in such a way that no edges
of G cross. Thepagenumber of a graph G is the thickness of the smallest (in number of
pages) book into which G can be embedded. The width of a page in a bookembedding is
its maximum cutwidth. The cumulativepagewidth of a bookembedding is the sum of the
widths of all pages.

The bookembedding problem appears in several formulations and has various ori-
gins. (Chung, Leighton, and Rosenberg [5] provide a detailed summary of these vari-
ants.) Within the realm ofparallel architectures, this problem is relevant for the design of
fault-tolerant processor arrays of identical processing elements. Rosenberg’s approach
[15] to the design of such arrays, named Diogenes, assumes that processing elements
are laid out in a logical line, while some number of "bundles" of wires runs in parallel
with the line. The configuration of the fault-free processors into the desired topology
is effected by a network of switches that connect processors to the bundles of wires.
The switching mechanism behaves as a stack, to which wires are entered or from which
they are removed as the linear array of processors is scanned during the configuration
process. Chung, Leighton, and Rosenberg [4] argue that the most significant cost in a
Diogenes layout of an array is the number of bundles of wires, organized in hardware
stacks, required to configure the array. A secondary cost is the total width of these bun-
dles. Therefore, a good Diogenes design requires a linearization of nodes of the target
array such that the edges of its interconnection network can be laid out in few small
stacks. This problem, however, is equivalent to finding an efficient bookembedding of the
graph underlying the interconnection network. The pagenumber of a graph equals the
required number of stacks, while the cumulative pagewidth equals the required stack-
width; it is therefore desirable to achieve bookembeddings of important graph families,
with optimal pagenumber and pagewidth.

This bookembedding problem is generally very hard. Garey et al. [7] show that, for
a given linearization of the nodes of a graph G and a given integer k, the problem of
deciding if the linearization admits a k-page bookembedding of G is NP-complete.
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At present, bookembeddings of several graph families are known, though it is less
often known whether these embeddings are optimal. Exemplifying this fact are the fam-
ily of complete graphs and the family of complete bipartite graphs. While Bernhart
and Kainen [1] determine the pagenumber of complete graphs exactly, Muder, Weaver,
and West [14] present a bookembedding of complete bipartite graphs, which is the best
known, but not known to be optimal. Very few algorithms exist for achieving efficient
bookembeddings of arbitrary graphs. Yannakakis [19] gives an optimal bookembedding
for the class of arbitrary planar graphs. Heath and Istrail [10] provide an algorithm for
constructing efficient bookembeddings of arbitrary graphs of given genus. (Malitz [12]
shows by a nonconstructive proof that better bookembeddings for this graph class are
possible.)

Optimal (within constant factors, or even absolutely) bookembeddings have
been constructed for almost all seriously proposed interconnection networks. Chung,
Leighton, and Rosenberg [5] give such algorithms for trees, grids, X-trees, and hyper-
cubes; Games [8] provides bookembeddings of butterfly-like graphs. Yet, no efficient
bookembeddings have beenfoundfor shuffle-like graphs, another very popular class of in-
terconnection networks represented by de Bruijn graphs and shuffle-exchange graphs.
The very weak upper bound for the much broader class of bounded-degree graphs ap-
plies, but is nonconstructive, so it follows from the results of Chung, Leighton, and
Rosenberg [5] or those of Malitz [13] that there exist bookembeddings of N-node
de Bruijn (shuffle-exchange) graphs with pagenumber O(x/-). This paper presents an
algorithm for embedding these graphs in five pages. The best-known lower bound on the
pagenumber of de Bruijn and shuffle-exchange graphs remains 3, which follows from the
nonplanarity of these graphs.

It may be interesting to compare our results on shuffle-like networks with the results
known about butterfly-like networks. Both families are bounded-degree hypercube-
derivative networks; their computational power is a frequent topic of comparative stud-
ies (cf. [2], [16]). Both families have small pagenumber: three pages are sufficient (and,
in general, necessary) for butterfly-like graphs, in contrast to hypercubes themselves,
whose pagenumber is unbounded (logarithmic) in the size of the graph.

We remark that Rosenberg [15] has proposed for Diogenes a switching mechanism
alternative to stacks ofwires; this mechanism consists ofqueues ofwires, so the success of
Diogenes design with queues depends on finding efficient queue layouts ofgraphs. Heath
and Rosenberg [11] find the queuenumber for practically all popular interconnection
networks; for both butterfly-like and shuffle-like graphs, it is 2.

Section 2 introduces the bidendral decomposition of de Bruijn graphs and adduces
its relevant properties. In 3 this decomposition is exploited in the development of the
five-page bookembedding of de Bruijn graphs. The development starts by embedding
separately the partial subgraphs produced by the decomposition; the partial embeddings
are then composed into an efficient embedding of the whole graph. In 4 the embedding
is adapted to shuffle-exchange graphs.

Notation. Let Z {0, 1}. The Greek letters c, , and 7 denote variables with
values in Z. For integer k > 0, Z denotes the set of all strings of length k over Z. The
lowercase letters of the Roman alphabet (a, b,..., z, /, z) denote variables with values
in Z. Z {} is the singleton set consisting of the empty string . For z Z,
is the length of string z. Let c Z be the length-k string all of whose elements are
equal to c. Let 1 -/ and -.

Remark. The bookembedding problem is defined for undirected graphs, while de
Bruijn and shuffle-exchange graphs are usually thought of as directed. We also use the
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directed versions of these graphs, although the only advantage in manipulating directed
arcs instead of undirected edges is in presentation convenience--we change nothing in
the standard statement of the bookembedding problem.

2. Bidendral decomposition ofde Bruijn graphs. This section presents a decompo-
sition of de Bruijn graphs, which is subsequently exploited to construct their bookem-
bedding. The graphs of interest are defined below.

The order-n de Bruijn graph D(n) (cf. [3]) has node-set Z; given /E Z-1, two arcs
are incident out of each node/y: the shuffle arc that goes to // and the shu.ffle-ezchtmge
arc that goes to //. Let S(//) // and (/y) //. (See Fig. 1.)

shuffle
shuffle-exchange

FIG. 1. De Bruijn graph D(4).

The complete binary tree T(h) of height h has node-set I.J0<<h Z and arcs going
from each y E Z, 0 < k < h, to its children 10 and /1. The root of the tree T(h) is the
empty string A; the leaves of T(h) are all nodes/ Zh.

Levels in the tree T(h) are defined as follows: the 2 nodes z Z, for 0 < k < h,
reside at level h k. So, the root is the only node at level h; the leaves are at level 0.

To specify the bidendral decomposition of de Bruijn graphs, we introduce a binary
tree that only slightly differs from T(h). The suspended complete binary tree T’(h) of
height h is obtained by augmenting the complete binary tree T(h) with a new node A’
and an arc incident out of node A to the root A of T(h). Node A’ is the side root of
T’(h); it is the second occupant of level h in tree T’(h).

Let <z be the lexicographic order on the set of all strings over Z2. Within the tree
T’(h), define tree-order <T, on the node set of T’(h) as follows:

The reversed lexicographic order >z and the reversed tree-order >T, are defined
naturally, so that z >z v if and only if v <z z, and z >T’ v if and only if v <T’ z.

The task now is to identify two suspended complete binary trees in D(n) and to
determine the structure of partial subgraphs induced by the arcs not contained in these
trees. The node-sets of the two trees are obtained by partitioning the node-set of D(n) in
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two sets, thereby inducing a partition of the arc-set of D(n) into four sets. So, for each of
the two values of E Z2, D(n) contains partial subgraphs T. and L., which are defined
in the following sections.

2.1. Trees. T (V, A.) is the subgraph of D(n) induced on the set of nodes

T is isomorphic to the suspended complete binary tree T’(n 2). The isomorphism. of the node-set of T’(n 2) to V. is defined as follows: .t(A’) 7’; for z E Z2k,
k<n-2,

Co(z) on-2-kOlz, (I)l(X) ln-2-k105.

By definition . is injective; it is also surjective by equal cardinality of its domain and its
range (lEvi IZ -xl preserves arcs, since

whenever x Z2k, k < n 2. To verify that every arc in A. that is not a self-loop is the
Z,-2image under . of some arc in T’(n 2), note that, when x E 2 then .(x) 7Vy

(where y x or y 5), whence S((x)) Vx.y V and E(.(x)) 7x7 V..
Finally, S((A’)) -’ (.(A’)).

Call the two arc-sets A0 and A1 the tree arcs of D(n). Since T’(n 2) has 2’-1 1
arcs, there are 2 x (2- 1) 2’ 2 tree arcs in A0 t2 A.

2.2. Leaf subgraphs. Let

y e

be the set ofleaves of the tree T. The graph L. (V7L t2 VV, ATL has node-set consisting
of the leaves of tree T and all nodes of the other tree T. Define the arc-set AL as the
arcs incident out of leaves of tree T.. To verify that every arc in ATL goes from a node in

V7L to some node of the other tree T, note that, for each x V7L, there exists x’ Z-2

such that x 7x’; so

e $(x) z

Call the two arc-sets A0L and AL the leaf arcs of D(n). Since two arcs are incident
out of each of the 2’-2 leaves of T, there are 2 x 2’- x 2 2’ leaf arcs in A0L t_J A1L.

The two trees T and T are node-disjoint, so embedding one of them does not con-
strain the embedding of the other; however, each leaf arc connects nodes from different
trees. The difficulty in embedding D(n) in a small book is in finding a linearization of the
nodes of the two trees that simultaneously accommodates the leaf arcs and respects the
relative ordering of nodes prescribed by the embedding of the tree arcs. The following
lemma clarifies the structure of the leaf subgraphs LT, thereby preparing for the desired
linearization.

LEMMA 2.1. Let a, b VL be two leaves ofT and let (a, u) and (b, v) be two leafarcs
incident into T Then a <T b ifand only if v <T,_ z

Proof. We first show that the tree-order <Tg, induced byT on V0, is the same as the
lexicographic order <z, while the tree-order <T, induced by T on V, is the same as
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the reversed lexicographic order >z. Indeed, for every pair of nodes z, y ,V of tree
T’(n- 2) such that z <T, Y,

(I)o(Z) 0’-2-1u100lul-Il lz <z 0’-2-1ul01y (I)o(y),

dstl(x) 1n-2-1u1111ul-1105 >z I’-2-1uI10y 1(Y)-

When x ,V, then (I)0(x) 0’ <z (I)0(y), and (I) (x) 1’ >z (I)l (Y).
We complete the proof for the case where 7 0, the case where 7 I being dual.

Because a, b E VoL, there exist a’, b’ Z-2 such that a Ola’, b Olb’. As just noted,
a <T; b if and only if a <z b, or, equivalently a’ <z b’, which means that

S(a) la’0 <z la’l g(a)<z lb’0 S(b) <z lb’l (b).

Recall that u {S(a), g(a)} and v {S(b), g(b)}; so this chain of relations is true if and
only if u <z v, or, equivalently, v <TI u.

Given a subset U c_ V., let node U[<T., i] U, 0 <_ i < IUI, have rank i in U,
according to the order <T. Define U[>T;, i] analogously. Let V(e) consist of the level-e
nodes of T.

Linearize the set V of the leaves of T., so that the leaves appear in the tree-

order <T. Partition V into n 1 successive contiguous segments and let S(k) de-

note segment k. Segment S(k), 0 <_ k <_ n 3 consists of 2’-a-k nodes, starting with
V[<T, 2n-2 2n-a-k+l] and ending with vTL[<T, 2n-2 2n-a-k 1]. Segment

S(’-2) contains only one node V[<T,, 2’-2 1].
By Lemma 2.1, our view of the partial subgraphs L. is summarized in the following.

(See Fig. 2.)

A0 order <r,

Ao, A from segment S(0t) to level Vt)

FIG. 2. Bidendral decomposition ofD(5): The trees and leafarcs A.
PROPOSITION 2.2. Let 0 < k <_ n- 2, 0 _< j < 2’-a-k. The leaf arcs inci-

dent out ofnode S() [<%, j] are incident into the pair of level-k nodes V4) [>T., 2j] and

Vv() [>T4, 2j + iI ofT.
3. Embedding de Bruijn graphs in five pages. This section develops the bookem-

bedding of D(n) in five pages that is the main result of this paper. Theorem 3.1 states
the result more precisely.
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THEOREM 3.1. The order-n de Bruijn graph D(n) admits a bookembedding in five
pages, with cumulativepagewidth 5/3)2’ (2/3) 8/3) (n mod 2).

The embedding that establishes Theorem 3.1 is developed in three stages. In the
first stage, the subembeddings of the two trees T and T are specified. These subem-
beddings are independent, because node-sets V0 and V1 are disjoint. Each tree requires
two pages, so four pages may be required for the first-stage subembeddings, since V0
and V1 appear on the spine interleaved in some way dictated by the subembeddings of
subsequent stages, thereby preventing the pages used by one tree from being reused by
the other. Four pages are also sufficient, as the tree-subembeddings do not constrain
each other. In the second stage, each set of leaf arcs A is embedded. The resulting
leaf-subembeddings are not mutually independent, as each involves the leaf nodes V
of one tree and the node-set VV of the other tree. The consideration of interference
between the second-stage subembeddings is deferred until the last stage, so these two
subembeddings are constructed independently; each requires one page. In the last stage,
a node layout consistent with the four subembeddings of the first two stages is exhibited.
Finally, two pages ofthe first stage that can be combined into a single page are identified,
thereby arriving at the total of five pages for the complete embedding.

3.1. Embedding the trees. This section presents two varieties of spiral embedding
of trees, in particular, of T’ (h). In both spiral embeddings, the trees are laid out by an
appropriate alternation of their levels, while each level is contiguous and ordered. We
think of the levels being laid out starting from the lowest-numbered level, the leaves, and
progressing sequentially toward the highest-numbered level, the roots. In the inward
spiral embedding, the last levels to be laid out are the innermost levels, while in the
outward spiral embedding the last levels are the outermost levels. See Figs. 3 and 4. The
following definition makes the layout precise.

level

order

3 2 0

odd side even side

FIG. 3. Inward spiral embedding ofT’ (3).

DEFINITION 3.2. Let 0 _< k <_ [(h- 1)/2] and 0 _< e < Lh/2J.
(1) In the inward spiral embedding of T’(h), the layout of nodes from left to right

along the spine is: nodes at levels 1, 3,..., 2k + 1,..., h 1 + (h mod 2), in that order,
each level in reversed tree-order >T,, followed by nodes at levels h (h mod 2), h 2
(h mod 2),..., h 2 (h mod 2),..., 0, in that order, each level in tree-order <T’.
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level

order <r’

2 0 !3

side odd side

FIG. 4. Outward spiral embedding ofT’ (3).

(ii) In the outward spiral embedding of T’(h), the layout of nodes from left to right
along the spine is: nodes at levels h (h rood 2), h 2 (h rood 2),... ,h 2/?

(h mod 2),..., 0, in that order, each level in tree-order <T’, followed by nodes at levels
1, 3,..., 2k + 1,..., h 1 + (h mod 2), in that order, each level in reversed tree-order
>7"

The spiral embeddings separate odd-numbered tree levels from even-numbered
ones, so that all levels of equal parity appear at one side of some point on the spine,
while the levels of opposite parity appear at the other side. Call these sides the even
and the odd sides of the spine, according to the tree levels that occupy them. In the
inward spiral embedding the odd side is the left side of the spine: in the outward spiral
embedding the odd side is the right side of the spine. Otherwise, both embeddings place
identically the levels of equal parity relative to one other--the odd-numbered ones in
the order of increasing level number, the even-numbered ones in the order of decreas-
ing level number. They also identically place the nodes inside each level--in tree-order
within even-numbered levels, in reversed tree-order within odd-numbered levels. In
summary, we have the following conclusion.

PROPOSITION 3.3. The even side of a spiral embedding is laid out in tree-order The
odd side ofa spiral embedding is laid out in reversed tree-order

The properties of the arc-assignment in the spiral embeddings are summarized in
the following lemma.

LEMMA 3.4. Both outward and inward spiral embeddings of T’(h) require two pages.
Cumulativepagewidth ofthe outward spiral embedding is 2h+ 2 while cumulativepage-
width ofthe inward spiral embedding is 2h+l 1.

Proof. The arcs of T’ (h) go from nodes of one level to nodes at the level below; thus
each arc goes either from the even side of the spine to the odd side, or vice versa. Assign
to the upper page of a spiral embedding those arcs that go from the odd side to the even
side and assign to the lower page those arcs that go from the even side to the odd side.

Consider two arcs (x, xa) and (y, y), where Ix[, lyl < h. Say that these arcs are
assigned to the same page of a spiral embedding; so x and y are at the same side of
the spine, while xa and yl3 are both at the other side. If x y, then the two arcs
share an endpoint; thus they cannot cross. If x <T, Y, then xa <T’ y/3. However, by
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Proposition 3.3, the even and the odd sides of the spine are ordered oppositely; so zcz
and /3 appear on the spine ordered oppositely to z and ; the two arcs therefore nest
inside one another.

To verify the cumulative pagewidth, note that the total cutwidth of both pages in the
outward spiral embedding equals the number of arcs in the complete binary
tree T(h), the maximum occurring at the division point between the odd and even
sides; the total cutwidth ofboth pages in the inward spiral embedding equals the number
of arcs in the suspended complete binary tree T’(h), the maximum occurring between
the two roots.

The first stage of the embedding, the layout of the two trees, is now complete.
The node layout ofthe two trees T is as follows.
(i) T is laid out by outward spiral embedding;
(ii) T is laid out by inward spiral embedding.
Recalling that the height of each tree is re 2, Lemma 3.4 yields Corollary 3.5.
COROLLARY 3.5. The two component trees T and T of D(re) are embedded in two

pages each, with cumulativepagewidth 2’- 2 and 2’- 1, respectively.

3.2. Embedding the leafares. The next goal is to embed leaf arcs A, which go from

V to VV, without violating the relative ordering of nodes of VV, stipulated by the spiral
embedding of T. See Fig. 5.

odd side of T’ even side of T’

FIG. 5. Embedding leafarcs A ofD(5).

The node layout ofthe leafsubgraph L. is as follows. Lay out the nodes VV as man-
dated by the spiral embedding of tree T{ (inward if 1, outward if 0). Then
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interleave the leaves V of tree T with the odd side of the spiral embedding of T so
that the following hold:

(i) Each even-numbered segment Szi) of V is placed contiguously, in tree-order,
between levels Vv(Zi-1) and Vv(Z’+l). If level 2i-1 does not exist, S(z’) is placed imme-

diately to the left of the leftmost node of level Vv(Zi+1); analogously, if level 2i + 1 does

not exist, S(zi) is placed immediately to the right of the rightmost node of level Vv((z-1);
(ii) Each node of an odd-numbered segment ofV is placed between the two nodes

of Vv to which it is adjacent via leaf arcs of A.
The properties of the second-stage embedding are summarized in the following

lemma.
LEMMA 3.6. Each leafsubgraph L., generated by arcs A that go from leaves V to

nodes ofV, is embedded in onepage ofwidth (1/3)(2’ + 5 4(n mod 2)). The leafnodes
V are laid out in tree-order.

Proof. First, all leaf nodes ofodd-numbered segments ofV are placed immediately
beside their corresponding adjacent nodes in the tree T; so arcs incident out of odd-
numbered segments do not cross any other arcs on the page; these arcs contribute 1 to
the pagewidth.

To complete the proof for leaf arcs incident out of even-numbered segments of V,
invoke Propositions 2.2 and 3.3. The odd-numbered levels ofT are placed in increas-

ing order of level numbers, thus compelling the odd-numbered segments of leaves V to
appear in order of increasing segment numbers. Furthermore, each even-numbered leaf
segment, sayS(k), is placed between levels Vv((k- 1) and VV((+1) ofT (assumingboth levels

exist), thus between segments S(-1) and S(+1). This imposes the order of increasing
segment numbers on even-numbered segments. So, all nodes of even-numbered seg-
ments appear in tree-order and lie within the odd side, while the even-numbered levels
ofT are also in tree-order and lie within the even side. By Proposition 2.2, this results
in opposite orders of sources and destinations of these leaf arcs; therefore, no two leaf
arcs cross.

By Proposition 3.3, the order within odd-numbered levels of T is reversed tree-
order. By Proposition 2.2, the order within odd-numbered leaf segments of V must
be tree-order. Since the leaves in even-numbered segments are also in tree-order, and
since all segments are laid out in order of increasing segment number, the entire leaf set

V is in tree-order.
The contribution of leaf arcs incident out of even-numbered segments of leaves V

into even-numbered levels of tree T is

L-j ) 1
22k+(nmd2) if- 1 (n mod 2) (2n -}- 2 4(n mod 2)),

k=O

which yields the claimed pagewidth after accounting for the leaf arcs incident out of
odd-numbered segments.

3.3. The complete embedding. The partial embeddings defined in the previous sec-
tions must yet be proved consistent. The embeddings of the trees in the first stage are
trivially so, since they involve disjoint sets of both nodes and arcs. By construction, the
second-stage embedding of each leaf subgraph L. is consistent with the corresponding
spiral embedding of tree T. It is also consistent with the embedding of tree T., because
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the embedding of L. involves only the leaves V of T., and requires only that these ap-
pear in tree-order (by Lemma 3.6). However, this is exactly the order required by the
spiral embedding of T. It remains to confirm that both leaf sets V can be laid out
simultaneously in the odd sides of the spiral embeddings of the corresponding trees T.
To that end, recall that the two spiral embeddings have their odd (even) sides in opposite
sides of the spine, so the constraint is readily satisfied by identifying the odd side of one
spiral embedding with the even side of the other. See Fig. 6.

/

FIG. 6. Embedding D(5) in fivepages.

COROLLARY 3.7. The four partial embeddings of the two trees T and the two leaf
subgraphs L. define an embedding ofD(n) in sixpages.

The final task is to show that two of the six pages can be coalesced.
LEMMA 3.8. Assume that the lowerpage ofa spiral embedding accommodates those

arcs that go from the even side to the odd side. Then, the two lower pages of the spiral
embeddings ofthe trees T and T can be coalesced.

Proof. Let (z0, /0) be an arc on the lower page of the outward spiral embedding of
T and let (z,) be an arc on the lower page of the inward spiral embedding of T.
We prove that the only possible ordering of the endpoints of these arcs on the spine is
z0, yl, zl, y0, in which ordering the two arcs do not cross. Since the sources of the arcs
are in the even sides and the destinations in the odd sides of the corresponding spiral
embeddings, both :e0 and 1 are to the left of zl and /0, as the left side is even forT and
odd for T.

To prove that zo is to the left of /1, we find a node that is both to the left of /1 and to
the right of z0. Indeed, z0 is in some nonleaf even-numbered level of T, so it is to the
left of all leaves of V0, by properties of the outward spiral embedding. However, /1 is in
some odd-numbered level of T, hence is to the right of leaf segment So(), by properties
of the embedding of leaf arcs. Thus, all nodes in segment S0() are to the left of /1 and



652 BOJANA OBRENI(

to the right of z0. Analogously, all nodes in segment S) are to the left of !/0 and to the
right of z, whence the claimed ordering.

The proof of Theorem 3.1 is completed by combining the cumulative pagewidths of
the component embeddings, as established in Corollary 3.5 and Lemma 3.6, to derive
the claimed cumulative pagewidth.

4. Embedding shuttle-exchange graphs in five pages. The order-n shuffle-exchange
graph S(n) (cf. [18]) has node-set Z; given !# Z- and/7 Zz, the shuffle arc goes
from node/7!/to node 1//7, and the exchange arc goes from node 1//7 to node 1//7.

Feldmann and Unger [6] show that the undirected shuffle-exchange graph S(n) is a
subgraph of the de Bruijn graph D(n). The bookembedding of Theorem 3.1 thus con-
tains a bookembedding of S(n), given the appropriate renaming of nodes of D(n). The
following theorem announces that this bookembedding of de Bruijn graph D(n) almost
contains that of shuffle-exchange graph S(n)even without renaming of nodes. (See
Fig. 7.)

Vo A,A

FiG. 7. Embedding S(5) in fivepages.

THEOREM 4.1. The order-n shuffle-exchange graph S(n) admits a bookembedding in
fivepages, with cumulativepagewidth (5/6)2’ + (2/3) (4/3)(n mod 2).

Proof. The node layout is identical to that of D(n). All shuffle arcs of S(n) are
identified with shuffle arcs of D(n). Each exchange arc of S(n) is incident to nodes 1/1’
and 1/, for some 1/E Z-1. However, one of {1/1", 1/} is the immediate successor of the
other in the tree-order of one of the trees, say in <T4. There are no nodes ofV between
1/1’ and 1/, so a new arc between them does not cross any other arc in either of the two
pages of the spiral embedding of T.

The claimed cumulative pagewidth is arrived at after removing the shuffle-exchange
arcs from the embedding of D(n) and subsequently inserting exchange arcs into the spi-
ral embeddings of the two trees, rq
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5. Conclusion. We have presented algorithms for embedding shuffle-like graphs in
books of five pages. It remains unknown whether five pages are necessary, as the best-
known lower bound is 3: Fig. 8, below, presents an embedding of the order-5 de Bruijn
graph in four pages.

FIG. 8. Embedding D(5) in fourpages.

The pagewidths of our bookembeddings are greater than optimal by a factor loga-
rithmic in the size of the graphs. This weakness is found in other bookembeddings of
popular interconnection networks (cf. [8], [5]); it would be very interesting to bring the
pagewidths of these embeddings closer to optimal, while retaining small pagenumbers,
or to find some pagenumber-pagewidth tradeoffs. The general problem of transforming
a bookembedding with optimal pagenumber and suboptimal pagewidth into one hav-
ing pagewidth of optimal order and pagenumber not much greater than optimal is open
for all but one-page graphs: Heath [9] presents an algorithm that converts one-page
bookembeddings into two-page bookembeddings having logarithmic (asymptotically op-
timal) cumulative pagewidth. Although the general problem for graphs with arbitrary
pagenumber is open, some special cases offer evidence that good solutions are possible:
Chung, Leighton, and Rosenberg [5] describe families of one-page and two-page graphs
whose cumulative pagewidth decreases dramatically (from linear in the number ofnodes
to a constant) when only one additional page is used; Stfhr [17] constructs families with
the same property, but for an arbitrary value of the pagenumber. For the Diogenes ap-
proach to fault-tolerant design of processor arrays, simultaneous optimization of both
cost measures in the bookembeddings of the prevailing interconnection networks would
reduce notably the price of fault-tolerance.
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Abstract. There is a continuing search for dense (, D) interconnection graphs, that is, regular, undi-
rected, degree graphs with diameter D and having a large number of nodes. Cayley graphs formed by Borel
subgroups currently contribute to some of the densest known ( 4, D) graphs for a range of D [1]. How-
ever, the group theoretic representation ofthese graphs makes the development of efficient routing algorithms
difficult. In an earlier report, it was shown that all Cayley graphs have generalized chordal ring (GCR) repre-
sentations [2]. In this paper, it is shown that all degree-4 Borel Cayley graphs can also be represented by the
more restrictive chordal rings (CR) through a constructive proof. A step-by-step algorithm to transform any
degree-4 Borel Cayley graph into a CR graph is provided. Examples are used to illustrate this concept.
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1. Introduction. Multiprocessors and multicomputers are two major categories of
parallel computers [3]. In the former, processors communicate via shared memory,
whereas in the latter, each processor has its own local memory (hence a computer), and
communication is via message passing. Whether it is a shared-memory multiprocessor
or a message-passing multicomputer, an efficient interconnection network to interconnect
the communicating elements is critical to the performance of the parallel computer [4].
In the design of an interconnection network, there are two major issues, the intercon-
nection topology and routing algorithms.

An interconnection topology can be modeled as a graph. To model a multicomputer
system, we consider regular, undirected graphs with no multiple edges between any pair
of nodes. A graph is regular when it has the same number of incident edges, or degree,
at every node [5]. Nodes of the graph correspond to processors with local memory, and
the edges represent connections between these elements. Due to the limited number of
connections that can be made to real chips, we are interested primarily in regular graphs
of small degree. For a given small degree, we are interested in dense graphs [6]. A dense
graph is one with a large number of nodes for a given diameter. The diameter is the max-
imum distance between all node pairs. Here distance between two nodes refers to the
smallest number of hops between the two nodes. A dense graph allows the interconnec-
tion of a large number of processing elements with a potentially small communication
delay. Furthermore, a symmetric graph is also desirable, because then an identical rout-
ing algorithm can be used at every node [3].

A variety of network topologies and routing algorithms have been proposed as
interconnection models [7]-[12]. However, graphs originally generated from these
topologies have not been the densest for their interconnection degree. The search for
(6,D) graphs that connect the maximum number ofnodeswith a degree 6 and diameterD
continues [6]. Among these (6,D) graphs, the degree-4 graphs (i.e., 6 4) receive
special attention because of the realizability of degree-4 interconnections. The
TRANSPUTERTM chips are examples of such connectability [13].

Amid the many interconnection models, a special class of symmetric graphs, Cayley
graphs, is an attractive candidate [1], [14], [15]. Besides their symmetric property, Cayley
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graphs from the Borel subgroup, Borel Cayley graphs for short, are the densest known
degree-4 graphs for a range of diameters (D 7,..., 13) [1]. In other words, these
degree-4 graphs interconnect the largest number of nodes for this degree and range of
diameter (D 7,..., 13), thus potentially minimizing communication delay in a parallel
computer. However, practical implementation of these graphs as an interconnection
model in a multicomputer system is hampered by the lack of a systematic representation
or structure of Borel Cayley graphs. Originally, Borel Cayley graphs are defined over a
group of matrices, which has no simple ordering and hence no regular graph structure.
This representation problem of Borel Cayley graphs makes the development of routing
algorithms difficult.

Generalized chordal rings (GCR) [12] and the more specialized chordal rings (CR)
[10], on the other hand, are two existing topologies that are defined in the integer domain
and have a systematic and regular structure. The definitions and properties of GCR
and CR graphs are reviewed in the next section. In an earlier report, we proved that
any Cayley graph can be represented as GCRs and provided a sufficient condition for
Cayley graphs to have CR representations [2]. This paper concentrates on degree-4Borel
Cayley graphs. We present another interesting result concerning the representations of
these graphs. Namely, all degree-4 Borel Cayley graphs have the more restrictive CR
representations, in addition to other GCR representations. A CR is a special case of a
GCR. It includes a Hamiltonian cycle formed by edges connecting adjacent integers in
the modulo n labels, thus permitting a distance-reduction routing algorithm, called CR
routing. Given a degree-4 Borel Cayley graph with n pk nodes, where p is a prime
number and k < p, is a factor ofp- 1, this distance-reduction algorithm requires a small
table of O(k). However, the algorithm is suboptimal in the sense that a shortest path is
not guaranteed. Simulation shows that a more dynamic approach produces pathlength
closer to optimal. The details ofCR routing, its simulation, and other routing algorithms
are discussed in other papers [16]-[18].

This paper is organized as follows. In 2 we review the definitions of GCRs, CRs,
Cayley graphs, and Borel Cayley graphs. The proposition that all Cayley graphs have
GCR representations and the sufficient condition for a Cayley graph to have a CR rep-
resentation are also restated. In 3 we prove that all degree-4 Borel Cayley graphs have
CR representations. Section 4 includes three examples to illustrate the transformation
of degree-4 Borel Cayley graphs to CRs. Finally, in 5 we present a summary and con-
clusions.

2. Review. In this section, we review the definitions of GCRs, CRs, Cayley graphs
in general, and Borel Cayley graphs in particular. We begin with the definition of GCR.

DEFINITION 1. A graph R is a GCR if nodes of R can be labeled with integers
mod r (the number of nodes) and if there is a divisor q ofn such that node i is connected
to node j if and only if node i + q (mod n) is connected to node j + q (mod n).

According to this definition, vertices of a GCR are classified into q classes, each
class with n/q elements. The classification is based on modulo q arithmetic. Two vertices
having the same residue (mod q) are considered to be in the same class. That is, class
i consists of the following nodes: i, i + q, i + 2q, ..., i + (m 1)q (mod n), where
m n/q and node i is the representing element of class i. Since i connects to j implies
that i + q connects to j + q (mod n), nodes in the same class have the same connection
rules defined by the connection constants or GCR constants. When the GCR constants
for the different classes are known, connections of the entire graph are defined.

For example, Fig. 1 shows a degree-4 GCR with ten nodes and q 2 classes. The
connection rules for these classes can be defined as follows: Let V {0, 1,..., 9}. For
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any i E V, if

i mod 2 =: "0" i is connected to i + 2, i + 3, i 1, i 2 (mod 10);
=: "1" i is connected to i + 1, i + 4, i 4, i 3 (mod 10).

In this case, the vertices of the graph are numbered from 0 to 9 and are divided into
even and odd classes. For the even vertices, the connection constants are +2, +3, -1,
and -2, and, for the odd vertices, the connection constants are /1, +4, -4, and -3. The
addition of these connection constants to the node label is done in modulo n arithmetic.

FIG. 1. A degree-4 GCR (n 10, q 2).

This class-structure of a GCR provides a regular structure and a concise and simple
way of describing connectivity in the integer domain, therefore making GCR an attrac-
tive representation.

A CR is a special case of GCR, in which every node has +1 and -1 modulo rt con-
nections. In other words, a CR satisfies the connection condition in Definition 1, and, in
addition, all the nodes on the peripheral of the ring are connected to form a Hamiltonian
cycle.

Figure 2 shows a degree-4 CR with ten nodes and q 2 classes. The connection
rules for these classes can be defined as follows: Let V {0, 1,..., 9}. For any i E V, if

i mod 2 =: "0" i is connected to i + 1, i 1, + 2, i 2 (mod 10);
=" "1" i is connected to i + 1, i 1, i + 4, i 4 (mod 10).

Note that every class has +1 and -1 as GCR constants and that nodes on the peripheral
of the ring are connected.

The construction of Cayley graphs is described by finite (algebraic) group theory.
Recall that a group (V, *) consists of a set V, which is closed under inversion, and a
single law of composition *, also known as group multiplication. There also exists an
identity element I V. A group is finite if there is a finite number of elements in V.

DEFINITION 2. A graph (3 (V, G) is a Cayley graph with vertex set V if two nodes
v, v V are adjacent v v 9 for some 9 (, where (V, *) is a finite group
and G c V\{I}. G is called the generator set of the graph and I is the identity element
of the finite group (V, *).

The definition of a Cayley graph requires nodes to be elements in a group but does
not specify a particular group. A class of Cayley graphs that contributes to the densest
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FG. 2. A degree-4 CR (n 10, q 2).

degree-4 graphs arises from a subgroup, the Borel subgroup BL(Zp), of the general
linear 2 2 matrices GL(Zp). The definition of the Borel subgroup is as follows.

DEFINITION 3. If V is a Borel subgroup, BL(Zp), of GL(Zp), then

0 X=

where a is a ed parameter Zp{0, 1}, p is prime, and k is the order of a. That is,
ak 1 (mod p), and k is a factor ofp 1.

us, the nodes of Borel Cayley graphs are 2 x 2 matrices that satis the definition
of a Borel subgroup, and modular matr multiplication is chosen as the group oper-
ation *. Note that the variables of a Borel matr are t Zk and y Zp. In other
words, there are n =[ V ]= p x k nodes. By choosing specific generators, Chudnovs,
Chudnovs, and Denneau [1] constructed the densest, nonrandom (6 4, D) graphs
own for D 7,..., 13 from Borel Cayley graphs (Table 1). In a separate research
effort, Dinneen [20] and Campbell et al. [21] have constructed small diameter symmet-
ric neorks from Cayley graphs foxed by linear groups. Interestingly, for the cases of
6 4, D 7,..., 13, these graphs have the same number of nodes as the Borel Cayley
graphs in Table 1. Our investigation [22] showed that the Borel group can be formulated
as a special case of the linear group described in [20].

TLE I

Diameter Borel Moore Known graphs
Cayley graphs bound (1987)

7 1,081 4,371 856
8 2,943 13,119 1,872
9 7,439 39,363 4,352
10 15,657 118,095 13,056
11 41,831 354,291
12 82,901 1,062,879
13 140,607 3,118,643

The Moore bound shown in Table 1 is an upper bound for the number of nodes in a
degree-4 graph with diameter D. By arranging the nodes of a graph as a tree, the Moore
bound shows that

n < 1 + 6 + 6(6 1) +..-+ 6(6 1)D- 6(6 1)D 2
6-2
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Graphs attaining this Moore bound are calledMooregraphs and are the densest possible
for that degree and diameter. However, Moore graphs have been proved to be nonex-
istent except for some trivial cases. Specfically, these include complete graphs (D 1)
and rings (6 2). Otherwise, it has been shown that Moore graphs exist only for diame-
ter equals 2, degree equals 3, the Peterson graph, or diameter equals 2, degree equals 7,
the Hoffman-Singleton graph, and possibly for diameter equals 2, degree 57 [12]. Given
this general impossibility of constructing Moore graphs, there has been a long-standing
search to find the densest regular graphs of a given degree and diameter. It is also worth
noting that the Borel Cayley graph discovered by Chudnovsky, Chudnovsky, and Den-
neau [1] with D 11, 6 4 has n 38,764. In our research, we have discovered yet
another denser Borel Cayley graph with n 41,831 for D 11, 6 4.

However, useful representations of Borel Cayley graphs are a challenge. These
graphs are defined over a group of matrices, which lack a simple ordering that is very
helpful in the development of efficient routing schemes. Furthermore, in this original
matrix definition, there is no concise description of connections. Adjacent nodes can be
identified only through modular matrix multiplications. The problem of finding an opti-
mal path between nonadjacent nodes is not trivial. In an earlier report, we proved that
all Cayley graphs can be represented by GCR [2]. This GCR representation is useful
for routing because nodes are defined in the integer domain and there is a systematic
description of connections. Different time and space efficient routing algorithms are
devised for Borel Cayley graphs as a result of their GCR representations [16]-[18].

We restate this proposition as follows.
PROPOSITION 1. For any finite Cayley graph (2 with vertex set V and any T E V such

that T" I, there exists a GCR representation of (2 with divisor q n/ra, where n -I V I.
The proof of this proposition is included in [2] and not repeated here. In the course

of proving this proposition, we have constructed a step-by-step algorithm to transform
any Cayley graph into a GCR. This algorithm is summarized in Table 2. The element
T is referred to as the transform element, and it can be any element in the vertex set.
In other words, this transformation is not unique. In the next section, we show that, by
choosing a specific transform element T and class representing elements ai (Table 2),
all degree-4 Borel Cayley graphs have CR representations.

TABLE 2
An algorithm to generate a GCR representation.

To generate a GCR with divisor q,
choose an element T in V where T I and m n/q.
For any element a in V, define N(a) as
N(a)={xEV:x=TSa} s O, 1, (m -1)

1. Construct N(ai), 0,..., (q 1) by picking arbitrary
ai E V\ N (ao)\... \ N(ai-1); a0, al,...,aq-1
are the representative elements in partitions
i(ao), i(al ),..., N(aq-1).

2. Associate ai i, 0, 1,..., (q 1) and Tsai + sq,
s 0,..., (m 1). This forms the q classes of the GCR.

3. Obtain the connecting constant for each class:
For each class of the GCR, find the neighboring nodes
of the representing element, a.
e.g., if ai is adjacent to a node, b T
then any node w in class is connected to w + j + sq i.

In [2] we also provided a sufficient condition for a Cayley graph to have a CR rep-
resentation. For convenience, we restate this proposition as follows.
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PROPOSITION 2. LetA, B be two distinctgenerators ofafinite Cayleygraph C. Assume
that A B-1, Aq I, and m n/q. If (AB)m Ior(A-IB)m I, thenCR
representations with divisor q exist. The transform element T AB or A-B and the
representing element ofclass 0 is I and ofclass i is A, i 1,..., q 1.

3. CR representations. In this section, we show that all connected degree-4 Borel
Cayley graphs have CR representations. During our studies of Borel Cayley graphs, we
discovered some useful properties of the subgroup. These properties and their proofs
are presented here. Throughout this section, we assume a connected degree-4 Borel
Cayley graph with n nodes and parameters a, p, and k, as defined in Definition 3, and
generators A, B, A-, and B-, where

A at Yl and B y2
0 1 0 1

Furthermore, the order of A and B are k and k2, where kl, k2 Zk.
PROPOSITION 3. Let

X= 0 eBL2(Zp)

and X I be a Borel matrix, as defined in Definition 3. If q is the order ofX, i.e., q is the
smallestpositive integer such that Xq I, then

q= { LClVlt(t’ k if t O,
p /ft 0,

where LCM(t,k) denotes the least common multiple of t and k.
Proof. We have

xq ( aqt (a(q-1)t + a(q-2)t + + a)y )0 1

qt 0 (mod k) and (a(q-)t + a(q-2)t +... + a) 0 (mod p)
Xq I or

qt 0 (mod k) and y 0.

Case 1. t O. In this case,

because

Hence

(a(q-1)t d- a(q-2)t +’" q- a) 0 (mod p) qt 0 (mod k)

(a(q-1)t -+- a(q-2)t -f- A- a) 0

=: (a 1)(a(q-)t 4- a(q-2)t 4-’" A- a) 0

:ez aqt --1 =0

qt =0

(mod p)
(mod p)
(mod p)
(mod k).

xq--I qt O (modk)

= q LCM (t,)
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Case 2. t 0. In this case, y 0; otherwise X I. Hence

qt 0 (mod k)Xq I =#
(a(q-1)t + a(q-2)t +-.. + a) 0 (mod p),

and

(a(q-1)t + a(q-2)t +... + a) 0

=, q= p.

(mod p)
(mod p)

PROPOSITION 4. We have

B A’ for any integer m E Zk.

Proof. If B Am, the generators of the graph are A, A", Akx-1, Alex-m, which
implies that all nodes in the graph can be written as multiples of A. This means that
some nodes in the graph are not connected because there are at most k < n different
multiples of A. U

PROPOSITION 5. We have

(1) (1 at )y (1 atx )y2 (mod p) : AB BA.

The proof of this proposition is a straightforward substitution and is omitted.
PROPOSITION 6. If AB BA, then, for any path X with ml as the net number of

generator A and with me as the net number ofgenerator B,

X ATM B"2

where

m number ofA number ofA-
m2 number ofB number ofB-

( mod k1),
( mod k).

Proof. Since A- Akx- and B- Bk2-, it suffices to consider paths com-
posed of generators A and B only. We use mathematical induction to prove this propo-
sition.

If ml m2 1, AB BA. Obviously, the proposition also holds for ml
1, m2 0 and m1 0, me 1. Hence the proposition is true for m < 1 and me < 1.

Assume the proposition holds for m < m and me < m for some integers m E

Zkx andm Zk.
Consider ml m + 1 and m2 m. There exists an integer 0,...,m such

that

AB

mA, (m2-1)B

AmBm-tAB (by assumption).

Furthermore, Bm-tA AB"-t by assumption. Hence
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Similarly, the proposition is true for mt= m + 1 and m2 m + 1. By the principle of
mathematical induction, the proposition is true for all ml E Zkl and m2 Zk2. D

Based on Propositions 5 and 6, we have three useful corollaries.
COROLLARY 1. IfAB BA, then the graph is disconnected.
Proof. If AB BA, from Proposition 6, an element X in the graph is represented

as

X I or ATM or B"2 or A’mB’,

where ml 1,..., k 1, mz 1,..., kz 1. In other words, there are at most

1 + (kl 1) + (k2 1)+ (kl 1)(k2 1) <_ 1 + 2(k- 1)h- (k- 1)2 k2

different X. Since k is a factor of p 1 (Definition 3),

n=pxk>k2,

which implies that some nodes of the graph cannot be generated by A, B, and hence
the graph is disconnected. D

COROLLARY 2. The values of t and tz cannot be both zero.

Proof. We have

tl --t2=0
= (1 at )yl (1 atx )y2
> AB BA (by (1)),

which implies the graph is disconnected by Corollary 1.
COROLLARY 3. The values ofy and Yz cannot be both zero.

Proof. We have

Yl :y2:0

(1 at)yl (1 atx)y2
AB BA (by (1)),

which implies that the graph is disconnected by Corollary 1.
PROPOSITION 7. For anypath X composed ofgenerators A, B, A-1, and B-1,

X ( a<it+jtz>O (gyl q- hy2>P

=: (1 atl)g + (1 at2)h 1 ait+jt: (mod p),

where (x) k denotes x mod k.
Proof. We prove this proposition by induction on the length of the path. For the

single step path X A,

i 1, j O,
g 1, h O,

(1 at )g 1 at

Therefore, the proposition holds. Similarly, the proposition holds for X B, A-1 B-1
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Assume the proposition holds for some path X’. That is,

X ( a
0

and

mod p).

Consider the path

((i’+)+j’t) ((g’ + ai’t+J’t)y + h’y2)p)X’A
0 1

(1 at )(g’ + aCt+’t + (1 at )h’ (mod p)
(1 -at)g + (1 -at)h + (1 -at)aCt+’t (mod p)

1 ai’tl+j’t2 + (1 atl)ai’t+j’t2 (mod p) (by assumption)

1 a(+)t+’t2 (mod p).

That is, the proposition holds for X’A. Similarly, the proposition is true for X’A-1,
X’B, X’B-1. By the principle of mathematical induction, the proposition is true for any
path X. U

PROPOSITION 8. For anypaths X, Y, composed ofgenerators A, B, A-, and B-,
let

x=(a(Ug-jt2) (gy+hy2)P)l and y= (a(i’j’)’ (9’y+h’y2)p)1

where (X)p denotes x (mod p). Then

X=Y

itl + jtu i’t + j’tu (mod k)

and

g g’and h h’ (mod p)
(1 at- )y (1 atl )yz

or

(mod p).

Proof. Since

y

0

0

(gy + hy2 p
1 ]

(9’Y1 + h’y2)p
1 ]

from Proposition 7,

(2) (1-at)g + (1- at2)h 1- ait+jt

(1 atl)g + (1 at)h 1 ai’tx+j’tz

(mod p),

(mod p)
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(3)

X=Y

= it: + it2 i’t: + j’t2 (mod k)

= (1 at’)g + (1 at)h (i at’)g + (I at-)h
= (1 at’)(g g’) (1 at-)(h’- h)

Also,

(mod p)
(mod p)

X=Y

(4) gy: + hy2 g’y: / h’y2 (modp)

= (g g’)y: (h’ h)y2 (mod p).

From (3) and (4), we have

(=) Obviously,

(1 at)y: (1 at: )Y2
g=g and h=h

(mod p)
(mod p).

it: + jr2 i’t: + j’t2
g=g’ and h=h’

On the other hand, from (2),

(mod k)
(mod p)

from (2)

or

it1 + jr2 i’t: + j’t2 (mod k)
= (I at,)# + (1 at2)h (1 at’)g + (1 at=)h (mod p).

Since (1 ate)y: (1 at:)y2 (mod p) and from Corollaries 2 and 3, t:,t2 and yl,y2

are not both zero, we have

(mod p)
(1 ate)y:(1 at’)g + (1 at’)y2(1 at:)h
(1 at-)yl(1 atX)g + (1 atX)y2(1 at)h
gYl + hy2 gy: + hy2 (mod p)

= X=Y. 121

COROLLARY 4. Let X, Y be defined as in Proposition 8. For a connected degree-4
Borel Cayley graph,

it: + jr2 i’t: + j’t2 (mod k) and
X Y :

g’ h’g andh (modp).

and

Proof. From Proposition 8,

X=Y

= it1 + jr2 i’tl + j’t2 (mod k)

g g’ and h h’ (modp) or

(1 at )y: (1 at‘ )Y2 (mod V).
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However, from Proposition 5 and Corollary 1,

(1 a)y (1 a)y (mod p) AB BA the graph is disconnected.

Hence, for a connected degree-4 Borel Cayley graph,

it1 + jr2 itl + jt2 (mod k) and
X =Y :

g’ =h’g andh (modp).

With the above propositions and corollaries, we are now ready to state the main
result of this paper.

PROPOSITION 9. All connected degree-4 Borel Cayleygraphs have CR representations.
Proof. We consider three eases. In the first two cases, the idea of the proof is to

construct a specific GCR with q k classes. We choose the transform element

T= y’ 0
0 1

and the representing element of class j to be

aj
0 1

where i, j 0,..., k 1, j e Zp and no two classes have the same value for i. These
choices ensure that any Borel matrix element

0 1

can be classified by the value t. Furthermore, if we can choose the class representing
elements such that

ao al ak-1 T ao

(the symbol denotes adjacency), we have a CR representation.
For the third case, we prove that the sufficient condition in Proposition 2 is satisfied

and hence a CR representation.
Case 1. t, t 0 and either (t, k) i or (t, k) 1. Without loss of generality,

we assume that (tl, k) 1, ( tl and k are relatively prime). In other words, multiples of
1 (mod k) span the set {1,..., (k 1)}. Since t (1,..., (k 1)}, we have

m/;1 /;2 (mod k) for some m 1,..., (k 1).

We consider a GCR with

(5) T BAk-I-mB(A-)ra-.
Claim. It holds that

for some y’ Zv and y’ #- O.
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Proof. Note that the superscript t of the first element of any matrix

at Y)0 1

can be found by counting the net number of generators A and B that composed the
matrix. As an example, for matrix X AB, its t value is t + tz (mod k). Counting the
net number of generators A and B in (5),

t= + (k- 1 m)tl + t= + (m- 1)(k- tl) 0 (mod k).

Hence the first element of T is 1. We proceed to prove that T % I. Since mtl t=
(mod k), we let B HA’, where H ( ) for some z E Zp and z - 0 because
B % A" as stated in Proposition 4,

(a contradiction).

Hence T I. According to Proposition 3,

T= 1 = TP I"

We can construct a GCR with divisor q k and choose the representing elements ac-
cording to (5). That is, the representing element of class j, aj is the composition of the
first j elements in (5). Specifically,

ao I;
al B;
a2 BA;

aq-m B Ak-l-m"

aq-m+l B Ak-l-m B;
aq-m+2 B Ak-l-m B A-1",

aq-1 B Ak-l-’ B (A-l)m-=.
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Note that

ao al ao B;
al a2--al*A;

aq-2 aq-1 aq-2 * A.-1"

%-1 T ao 2" %_1 A-,

where the symbol denotes adjacency. Furthermore, given

a
aj

0 1

the i values for representing elements ao,..., aq_ are

where t2 mt (mod k). Since (t, k) 1, these values of i span the entire set of
{0,..., k 1 }. In other words, we have a CR representation.

An alternate way to construct a CR representation is to choose

T B-I(A-1)k-I-mB-1Am-1.

In this case,

ao I;
al =n-I"

a2 B-1 A-l;

aq-m B-1 (A-1)k-l-m"
aq-m+l B-1 (A-l)k-l-m B-l;
aq--rn+2---B-1 (A-l)k-l-m B-1 fit_;

aq-1 --B-1 (A-l)k-l-m ]3-1 Am-2.

The proof of this construction is similar to the one shown above and is not repeated.
Case 2. t, t 0 and (t, k) 1 and (t, k) 1.
In this case, (t, t2) 1 (t and t2 are relatively prime) because otherwise the graph

is disconnected. Furthermore, tlk t2k2 k. Since tl and t2 are relatively prime, we
can divide the set {0,..., k 1} into tx distinct subsets each with kx elements as follows:

{O, tl,...,(kl--1)tl},
{t2, t2 + tl,...,t2 q- (kl 1)t},

{(t 1)t2, (tl 1)t2 + t,..., (tl 1)t2 + (kl 1)t}.
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If each number in the above subsets represents the superscript i of a class representing
element

aj
0 1

where yj is an integer in zp, the corresponding class representing element within one
subset (on the same row) can be cyclically connected by generator A, and those on the
same column can be connected, but not cyclically, by generator B. As discussed at the
outset of this proof, the idea is to construct a specific GCR by choosing the transform
element

T y’ #0,
0 1

and the representing element of class j,

such that the superscript i spans the set {0, 1,..., k 1} and 0
T 0, where the symbol denotes adjacency.

In this case, the problem of finding such choices for T and class representing ele-
ments o,..., %-1 is the same as finding a Hamiltonian cycle to "march through" the
k numbers in the subsets, starting from 0. There are two ways of constructing this
Hamiltonian cycle, depending on whether t is odd or even. Figures 3 and 4 show
a Hamiltonian cycle for tl 2,a. In these cases, T BA-B-(A-1)-1 and
T Btl-IAkl-I{B-I(A-1)kl-2B-1Akl-2}A. The mathematical formulations of
these two subcases are as follows.

Subcase 1. tl is odd. We define the integer d= (tl 1)/2. In this case, we consider
a GCR with

(6) T

Claim. It holds that

for some y E Zp and y : 0.

Proof. By counting the net numbers of A and B in (6),

tl--1(tl 1)t2 tl + 2
(-t2 + 2tl t2 2tl) + tl 0 (mod k),

the first element of T is 1. We proceed to prove that T I. Let

(1 gyl+hy2)(1 0yl+0y2)(7) = 0 1 0 1

where
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A"t A
0 t -
t2 t2+t

A A

F6. 3. A Hamiltonian cyclefor 2.

(k-l)t

0 t

2tz 2tz+t
A A

(k-l)t 0

1
tz+(k 1) t

.2tz+(kl.l) t
A

(8)

FIG. 4. A Hamiltonian cyclefor 3.

d

g _a2d-t + E{a(2i-1)t--$ @ a(2i-1)$ a2(i-1)$. a2(i-1)t.-t }
i--1

Wa-tl (mod p),

2d-1 d

(9) h E ait E{a(ui-x)t-t’ + a2(i-)t+tl } (mod p).
i--0 i-1

Equations (8) and (9) are obtained by observing that, from (6),

T Bt-Ak-{B-(A-)k-2B-Ak-2}dA
B2dA-{B-A2B-A-2}dA,

and, for any Borel matrix,

( at ) (at+tx (yTaty)p)0
A=

0 1

0 Yl A- (Y at-tl
0 1

( at ) (at+t (Yd-aty2)p)0 Yl B=
0 1

( at ) --_( at-t )0
B-1 (Y at-t’Y2)P

0 1
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Hence

/
B2d la2dt2

0

2d-1

air2 Y2
i=0

1

/
B2dA-1 /a2dt2-tl

0

2d-1

air2 Y2 a2dt2-tlyl
i=0

1

B2dA-B- 21 aitg- a(2d-1)tz-tx ) Y2 -a2dt-tx
i=0

1

Yl

1B2dA-:{B-:A2B-:A-2}dA 0
gYl + hy2

1 )
where g and h are described by (8) and (9).

From (7) and Corollary 4, g h 0(mod p). That is,

g 0 (mod p)

d

:: a2dt2-tl --a-t1 E {a(2i-1)t2-tl
i--1

a2(i-1)t2-t }

(10)

d-2 (a(2i-1)t2 a2(i-1)t2 } (modp)
i--1

(11)

Similarly,

h=0

d d

(ate- 1)E a2(i-1)t= -t. _i_ (ate. 1)E a2(i-:)t,

i=1 i=1

d

(a-t’ + 1)(at 1)E a2(’-:)t (mod p).
i-----1

(mod p) =v
2d-1 d

E ait (at-t’ + at’)E
i=0 i=1

d 2d-1

i=1 i=0

(mod p)

(mod p)

(mod p).

Using (10) and (11), we have
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2d-I

(a$2-1 + a) (a2dtg-tl a-1) (a-1 + 1) (a 1) a (mod p)
i--0

2d-1

a(2dA-1)t2-2t at2-2tl - a2dr2 1 (at2-tl a-tl - at2 1) ait2

i:0

2d-1

(a(i+l)t2-t’ ait2-tl + a(i+l)t2 air2}
i:0

+ 11( 1)
22dt-t a-t W a2dt 1

g(2d+l)t-t gt-t g2dt 1

(t,-t 1)((t-l)t, 1) 0 (because 2d tl- 1).

That is, T I = tl t2 or tl I or t2 0, which contradict (t, t2) 1, (t, k) : 1,
and t, tz 0. Hence T # I. Similar to Case 1, we can now construct a GCRwith divisor
q k and choose the representing elements according to (6). That is, the representing
element of class j is the composition of the first j elements in (6). Specifically,

ao I;
al B;
a2 B2;

at1-1 St1-1"

atl Bt-lA;
a,+ Bt*-A2;

att+k-2 ltt-lAkl-l"

at,+kt-1 Btt-Ak-B-"
at+k, Bt*-A-IB-A-;

at,+l+ Bt*-Ak*-lB-t(A-t)2;

}e.

Again, we assume that the representing element of class j is

With these choices, the superscript i spans the set of {0, 1,..., k 1}. Furthermore, the
following representing elements are connected to each other: 0 %-1
T 0. Hence we have a CR representation.
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Subcase 2. tl is even
a GCR with

We define the integer d= (tl/2)- 1. In this case, we consider

(12) T Bt-IA-{B-(A-1)’-ZB-1A-Z)dB-(A-)x-1.
Again, using similar techniques as in Subcase 1, we can prove that

for some and 0. A GCR with divisor q k can then be constructed with
class representing elements, o, 1,...,-, determined from the composition of the
first j elements in (12). That is,

ao I;
a B;
a2 B2;

aq_ Bt-Ak-{B-I(A-)-2B-A-2}dB-(A-X)-2.

As before, the superscripts of the first element of all class representing elements span
the set of {0, 1,..., k- 1}. Also, the representing elements are connected to each other:
ao a aq_ T ao. Hence we have a CR representation.

Case 3. tl 0 In this case, we can assume that (t2, k) 1 (t2 and k are relatively
prime); otherwise the graph is disconnected. According to Proposition 3, t 0
Ap I. Consider

A-B= (atz y2-yl)0 1

(A-B)" I :: m LCM (t2, k)
t2

Hence m nip k LCM (tz, k)/t2. According to the sufficient condition in Propo-
sition 2, we choose T A-1B and the representing element of class i, ai A
(i 0,..., p 1) to construct a CR representation with divisor q p. V1

In the above proposition, we proved that all degree-4 Borel Cayley graphs have CR
representations. In the course of proving the proposition, we provided an algorithm for
the construction of a CR representation. This algorithm is summarized in Table 3. For
simplicity, Table 3 only shows one possible way of constructing a CR representation in
Case 1, even though an alternate way exists.

4. Examples. In this section, we use three examples to illustrate the three cases dis-
cussed in the constructive proof ofCR representations (3). Again, we assume a degree-
4 Borel Cayley graph with parameters n, p, a, k as defined in Definition 3. Furthermore,
n p k and A, B, A-, B-1 are the generators, where

at Yl B Y= 0 1 0 1

t,t2 {0,...,k- 1}, andy,y2 {0,...,p- 1}.
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TAaLE 3
An algorithm to generate a CFt representation.

For any degree-4 Borel Cayley graph with n =IV =/9 x k,
assume A, B, and their inverses are generators

A-- ( atx

In each of the following cases, we construct a CR representation
with divisor q, by following the procedure summarized in
Table 2. Instead of using arbitrary transform element and
class representing elements, we have specific choices.

Case 1. tl,t2 0and (tl,k) 1.
Assume t2 ret for some integer re;

T B Ak--’ B (A-)’-.

The representing element of class 0 is I and of class j is the
composition of the first j elements in the above equation.
With these choices, there are q k classes.

Case 2. tl,t2 7 0and (tl,k) I and (t2,k) 1. sume
Subcae 1. t is odd, let d (t 1)/2;

e representing element of class 0 is I and of class j is the
composition of the first j elements in the above equation.
With these choices, there are q k classes.

Subcae 2. t is even, let d t/2 1;

e representing element of class 0 is I and of class j is the
composition of the first j elements in the above equation.
With these choices, there are q k classes.

Case 3. O.
In this case, we can have a CR with q p classes and the transfo
element and class representing elements are

T=A-1B and aj =Aj j=0,1, q-1

4.1. Case 1. We consider a Bocci subgroup with p 13, k 12, a 2, n 156.
We choose parameters for the generators as t 5, t2 2, yl 1, y2 1. That is,

(0 1), B (04 ). For this set of generators, diameter D 5. Since t, tz #
and (tl, k) 1, the conditions for Case 1 in Table 3 are satisfied. Furthermore,

10 tx (mod k). Accordingly, we choose

T=BAB (A-I)9 (
We thus have a CR representation with divisor q k 12. For any i E V, if i mod 12 ="

"0" i is connected to i + 1, i 1, i + 14, i 38 (mod n);
"1" i is connected to i + 1, i 1, i 22, 69 (mod n);
"2" i is connected to i + 1, i 1, i 14, i 57 (mod n);
"3" i is connected to i + 1, i 1, i + 22, i 58 (mod n);
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"4" i is connected to i + 1, i 1, i 34, i 69 (mod n);
"5" i is connected to i + 1, i 1, i + 74, i + 58 (mod n);
"6" i is connected to i + 1, i 1, i + 14, i + 34 (mod n);
"7" i is connected to i + 1, i 1, i 22, i 74 (mod n);
"8" i is connected to i + 1, i 1, i + 50, i 14 (mod n);
"9" i is connected to i + 1, i 1, i + 62, i + 22 (mod n);
"10" i is connected to i + 1, i 1, i + 38, i 50 (mod n);
"11" i is connected to i + 1, i 1, i 57, i 62 (mod n).

4.2. Case 2. We consider the same Borel group as in Case 1, but with a different set
of generators. The parameters for the generators are tl 2, t2 3, t/1 1, /2 1.
That is, A ( ), B ( ). For this set of generators, diameter D 6. Since
tl, t2 0, (t, k) 1, and (t2, k) 1, the conditions for Case 2 in Table 3 are satisfied.
Furthermore, k 6, and t 2 is even. Accordingly, we choose

T B A’ B-1 (A-1)zi ( 41).
We thus have a CR representation with divisor q k 12. For any i E V, if i mod 12 =:

"0" i is connected to i + 1, i 1, i 5, i + 64 (mod n);
"1" i is connected to i + 1, i 1, i + 5, i 16 (mod n);
"2" i is connected to i + 1, i 1, i + 54, i 51 (mod n);
"3" i is connected to i + 1, i 1, i + 28, i + 67 (mod n);
"4" i is connected to i + 1, i 1, i 64, i + 77 (mod n);
"5" i is connected to i + 1, i 1, i + 18, i 33 (mod n);
"6" i is connected to i + 1, i 1, i 5, i + 40 (mod n);
"7" i is connected to i + 1, i 1, i + 5, i 28 (mod n);
"8" i is connected to i + 1, i 1, i + 33, i 54 (mod n);
"9" i is connected to i + 1, i 1, i 77, i + 16 (mod n);
"10" i is connected to i + 1, i 1, i 67, i 40 (mod n);
"11" i is connected to i + 1, i 1, i + 51, i 18 (mod n).

4.3. Case 3. We consider a smaller Borel Cayley graph with a 2, p 7, k 3,
n 21, diameter D 3, and the generators A ( 1), B ( 1). Note that, in this
case, we have tl 0, t2 1, q p 7, and n/q LCM (t2 t,k)/(tz t) 3.
According to Table 3, we choose T (A-B), aj AJ to produce a CR representation
with divisor, q p 7. Let V {0, 1,..., 20}. For any i V, if i mod 7 =:

"0" i is connected to i + 1, i 1, i 10, i + 6 (mod n);
"1" i is connected to i + 1, i 1, i + 7, i 7 (mod n);
"2" i is connected to i + 1, i 1, i + 10, i 6 (mod n);
"3" i is connected to i + 1, i 1, i + 6, i 5 (mod n);
"4" i is connected to i + 1, i 1, i + 9, i + 10 (mod n);
"5" i is connected to i + 1, i 1, i + 5, i 10 (mod n);
"6" i is connected to i + 1, i 1, i 6, i 9 (mod n).

We show this CR representation of the graph in Fig. 5.

5. Conclusions. Dense, symmetric graphs are good candidates for the interconnec-
tion topology of a multicomputer system. Being a class of symmetric graphs, Cayley
graphs are attractive. In our earlier research effort, we discussed the representations
and routing of Cayley graphs [2]. In this paper, we analyzed a special class of Cay-
ley graphs, the Borel Cayley graphs, which generates the densest known, constructive,
degree-4 graphs with diameter D 7,..., 13.
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FIG. 5. CR representation of BL2(Z7).

Borel Cayley graphs are defined over a group ofmatrices, the Borel matrices. That is,
nodes are labeled as matrices. There is no inherent, simple ordering of node labels and
no known computational routing algorithm with a constant or O(1) space commitment.
GCRs and CRs, on the other hand, are two existing topologies defined in the integer
domain and have systematic structure.

By transforming into GCRs [2], Cayley graphs have a systematic representation.
Furthermore, an optimal, time-efficient routing algorithm, called vertex-transitive routing,
is developed for Borel Cayley graphs [18]. However, the goal of developing an optimal,
space-efficient, distance-reduction routing algorithm is still elusive.

Through the discovery of inherent properties of degree-4 Borel Cayley graphs, we
proved that CR representations always exist for these graphs. A step-by-step algorithm
and examples are used to illustrate the transformation to CR representations. This spe-
cial case of a GCR includes a Hamiltonian cycle formed by edges connecting adjacent
integers in the modulo n labels, thus permitting a distance-reduction routing algorithm,
called CR routing. Given a Borel Cayley graph with n pk nodes (p is a prime and k
is a factor of p 1), this distance-reduction algorithm requires a small table of O(k).
However, the algorithm is suboptimal in the sense that a shortest path is not guaranteed.
Readers interested in CR routing are referred to [17].

Aside from facilitating the development of a space-efficient routing algorithm, the
existence of a CR representation for any degree-4 Borel Cayley graphs also partially
proved the long-standing conjecture that all Cayley graphs have Hamiltonian cycles [19].
Obviously, a CR graph, by definition, contains a Hamiltonian cycle. In fact, its class
structure and connection rules impose a stronger condition. By providing a CR rep-
resentaion, we have thus shown that all connected, degree-4 Borel Cayley graphs have
Hamiltonian cycles.
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ERRATA:
LYAPUNOV FUNCTIONALS FORAUTOMATA NETWORKS
DEFINED BY CYCLICALLYMONOTONE FUNCTIONS*

E. GOLES? AND S. MARTNEZ?

Theorems 2 and 3 of our paper have already been proved by Poljak and Turzik [1].
(Our main contribution was determination of a Lyapunov operator for such automata.)

To prove Theorem 2 of our paper, the definition of strict cyclically monotone given
on p. 201 must be changed to the following: f is strict cyclically monotone if and only if
f is cyclically monotone and g(u) 9(u)+ < f(v), u v >= f(u) f(v), where 9 is
a potential associated to f. f(u) f(v), where g is a potential associated to f.

From previous definition, in the proof of Theorem 2 in our paper, the equation

implies f(u(t)) f(u(t + 2)); that is, x(t + 3) x(t + 1).
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